Momilactones and Phenolics in Brown Rice: Enrichment, Optimized Extraction, and Potential for Antioxidant and Anti-Diabetic Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Germination Process
2.3. Cooking Process
2.4. Extraction
2.5. Identification and Quantification of Momilactones A (MA) and B (MB) by Ultra-Performance Liquid Chromatography–Electrospray Ionization-Mass Spectrometry (UPLC–ESI-MS)
2.6. Identification and Quantification of Phenolic and Flavonoid Compounds by High-Performance Liquid Chromatography (HPLC)
2.7. Antioxidant Activities
2.8. α-Amylase Inhibition Assay
2.9. α-Glucosidase Inhibition Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Quantities of Momilactones A (MA) and B (MB) in Rice Samples
3.2. Contents of Tricin, Caffeic Acid, ρ-Hydroxybenzoic Acid, ρ-Coumaric Acid, Ferulic Acid, Salicylic Acid, and Cinnamic Acid in Rice Samples
3.3. Average Values of Momilactones A (MA) and B (MB), Phenolic Acids, and Flavonoids in Rice Varieties under Germination Conditions, Cooking Processes, and Extraction Methods
3.4. Ordinary Least-Square Regression (OLS) Estimation for the Effects of Different Treatments on Brown Rice
3.5. Antioxidant Activity by the DPPH and ABTS Radical Scavenging Assay
3.6. α-Amylase and α-Glucosidase Inhibition Assay
3.7. Comparison of Extraction Techniques for Momilactones A (MA) and B (MB) from Different Rice Types
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks, J.L.F.; Elias, M.C.; Vanier, N.L.; De Oliveira, M. The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chem. 2016, 208, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Ravichanthiran, K.; Ma, Z.F.; Zhang, H.; Cao, Y.; Wang, C.W.; Muhammad, S.; Aglago, E.K.; Zhang, Y.; Jin, Y.; Pan, B. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants 2018, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, H.; Kokawa, M.; Kitamura, Y. Establishment of a cultivation method for sprouted brown rice and elucidation of its functional food characteristics. Food Sci. Technol. Res. 2021, 27, 341–349. [Google Scholar] [CrossRef]
- Wu, X.; Guo, T.; Luo, F.; Lin, Q. Brown Rice: A missing nutrient-rich health food. Food Sci. Hum. Wellness. 2023, 12, 1458–1470. [Google Scholar] [CrossRef]
- Gong, E.S.; Luo, S.J.; Li, T.; Liu, C.M.; Zhang, G.W.; Chen, J.; Zeng, Z.C.; Liu, R.H. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 2017, 227, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.; Shabbir, U.; Chen, X.; Chelliah, R.; Elahi, F.; Ham, H.J.; Oh, D.H. Phytochemical profiling and cellular antioxidant efficacy of different rice varieties in colorectal adenocarcinoma cells exposed to oxidative stress. PLoS ONE 2022, 17, e0269403. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Verardo, V.; Gómez-Caravaca, A.M.; Marconi, E.; Segura-Carretero, A.; Garrido-Frenich, A.; Fernández-Gutiérrez, A. Determination of lipophilic and hydrophilic bioactive compounds in raw and parboiled rice bran. RSC Adv. 2016, 6, 50786–50796. [Google Scholar] [CrossRef]
- Hasan, M.; Quan, N.V.; Anh, L.H.; Khanh, T.D.; Xuan, T.D. Salinity treatments promote the accumulations of momilactones and phenolic compounds in germinated brown rice. Foods 2023, 12, 2501. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Ahmad, A.; Khanh, T.D.; Dat, T.D. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm. J. 2019, 27, 643–649. [Google Scholar] [CrossRef]
- Quan, N.V.; Thien, D.D.; Khanh, T.D.; Tran, H.D.; Xuan, T.D. Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 2019, 8, 602. [Google Scholar] [CrossRef]
- Quan, N.V.; Tran, H.D.; Xuan, T.D.; Ahmad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 2019, 24, 482. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Wongsa, P. Phenolic compounds and potential health benefits of pigmented rice. J. Rice Res. Dev. 2020, 4, 19–21. [Google Scholar]
- Delbaere, K.; Close, J.C.T.; Brodaty, H.; Sachdev, P.; Lord, S.R. Determinants of disparities between perceived and physiological risk of falling among elderly people: Cohort study. BMJ 2010, 341, 4165. [Google Scholar] [CrossRef]
- Do Nascimento, L.Á.; Abhilasha, A.; Singh, J.; Elias, M.C.; Colussi, R. Rice germination and its impact on technological and nutritional properties: A review. Rice Sci. 2022, 29, 201–215. [Google Scholar] [CrossRef]
- Gujral, H.S.; Sharma, P.; Bajaj, R.; Solah, V. Effects of incorporating germinated brown rice on the antioxidant properties of wheat flour chapatti. Food Sci. Technol. Int. 2012, 18, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Anh, L.H.; Khanh, T.D.; Xuan, T.D. Biological roles of momilactones: Achievements, challenges, and promising approaches to exploit their beneficial properties. Front. Nat. Prod. 2023, 2, 1245869. [Google Scholar] [CrossRef]
- Park, C.; Jeong, N.Y.; Kim, G.Y.; Han, M.H.; Chung, I.M.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of PRB phosphorylation and induction of the cyclin-dependent kinase inhibitor P21Waf1/Cip1. Oncol. Rep. 2014, 31, 1653–1660. [Google Scholar] [CrossRef]
- Lee, S.C.; Chung, I.-M.; Jin, Y.J.; Song, Y.S.; Seo, S.Y.; Park, B.S.; Cho, K.H.; Yoo, K.S.; Kim, T.H.; Yee, S.B. Momilactone B, an allelochemical of rice hulls, induces apoptosis on human lymphoma cells (Jurkat) in a micromolar concentration. Nutr. Cancer 2008, 60, 542–551. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, H.R.; Park, E.; Lee, S.C. Cytotoxic and antitumor activity of momilactone B from rice hulls. J. Agric. Food Chem. 2007, 55, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Ti, H.; Zhang, R.; Li, Q.; Wei, Z.; Zhang, M. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Res. Int. 2015, 76, 813–820. [Google Scholar] [CrossRef]
- Ahmad, A.; Xuan, T.D.; Minh, T.N.; Siddiqui, N.A.; Quan, N.V. Comparative extraction and simple isolation improvement techniques of active constituents’ momilactone A and B from rice husks of Oryza Sativa by HPLC analysis and column chromatography. Saudi Pharm. J. 2019, 27, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Anwar, F.; Zafar, M.N.; Nazar, M.F. Effect of ultrasonic extraction regimes on phenolics and antioxidant attributes of rice (Oryza sativa L.) cultivars. IJCCE 2018, 37, 109–119. [Google Scholar]
- Bonto, A.P.; Tiozon, R.N.; Sreenivasulu, N.; Camacho, D.H. Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrason. Sonochem. 2021, 71, 105383. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Pan, Z.; Yue, T.; Atungulu, G.G.; Berrios, J. Effect of ultrasonic treatment of brown rice at different temperatures on cooking properties and quality. Cereal Chem. 2010, 87, 403–408. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T.M. Momilactones A and B: Optimization of yields from isolation and purification. Separations 2018, 5, 28. [Google Scholar] [CrossRef]
- Anh, L.H.; Quan, N.V.; Quang, V.L.; Takami, A.; Khanh, T.D.; Xuan, T.D. Rice momilactones and phenolics: Expression of relevant biosynthetic genes in response to UV and chilling stresses. Agronomy 2022, 12, 1731. [Google Scholar]
- Anh, L.H.; Quan, N.V.; Lam, V.Q.; Iuchi, Y.; Takami, A.; Teschke, R.; Xuan, T.D. Antioxidant, anti-tyrosinase, anti-α-amylase, and cytotoxic potentials of the invasive weed Andropogon virginicus. Plants 2021, 10, 69. [Google Scholar] [CrossRef]
- Kato, T.; Kabuto, C.; Sasaki, N.; Tsunagawa, M.; Aizawa, H.; Fujita, K. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron. Lett. 1973, 39, 3861–3864. [Google Scholar] [CrossRef]
- Kong, C.; Liang, W.; Xu, X.; Hu, F.; Wang, P.; Jiang, Y. Release and activity of allelochemicals from allelopathic rice seedlings. J. Agric. Food Chem. 2004, 52, 2861–2865. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.H.; Li, H.B.; Hu, F.; Xu, X.H.; Wang, P. Allelochemicals released by rice roots and residues in soil. Plant Soil. 2006, 288, 47–56. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Rice Antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Jung, T.K.; Kim, S.H. Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J. Agric. Food Chem. 2006, 54, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Minh, T.N.; Anh, L.H.; Khanh, T.D. Allelopathic momilactones A and B are implied in rice drought and salinity tolerance, not weed resistance. Agron. Sustain. Dev. 2016, 36, 52. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Kakar, K.; Xuan, T.D.; Quan, N.V.; Wafa, I.K.; Tran, H.D.; Khanh, T.D.; Dat, T.D. Effcacy of N-Methyl-N-Nitrosourea mutation on physicochemical properties, phytochemicals, and momilactones A and B in rice. Sustainability 2019, 11, 6862. [Google Scholar] [CrossRef]
- Tian, S.; Nakamura, K.; Kayahara, H. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem. 2004, 52, 4808–4813. [Google Scholar] [CrossRef]
- Ti, H.; Zhang, R.; Zhang, M.; Li, Q.; Wei, Z.; Zhang, Y.; Tang, X.; Deng, Y.; Liu, L.; Ma, Y. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem. 2014, 161, 337–344. [Google Scholar] [CrossRef]
- Lien, D.T.P.; Tram, P.T.B.; Toan, H.T. Effects of extraction process on phenolic content and antioxidant activity of soybean. J. Food Nutr. Sci. 2015, 3, 33–38. [Google Scholar]
- Ly, D.; Lee, S.G. Comparisons of phenolic compounds, flavonoids contents and antioxidant activity in eco-friendly cultivated and conventional cultivated rice. Free Radic. Antioxid. 2014, 141, 378–385. [Google Scholar]
- Patil, S.B.; Khan, M.K. Germinated brown rice as a value-added rice product: A review. J. Food Sci. Technol. 2011, 48, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhai, X.; Zhang, N.; Tan, B. Effects of germination, fermentation and extrusion on the nutritional, cooking and sensory properties of brown rice products: A comparative study. Foods 2023, 12, 1542. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Lindemann, I.; Dittgen, C.L.; de Souza Batista, C.; Dos Santos, J.P.; Bruni, G.P.; Elias, M.C.; Vanier, N.L. Rice and common bean blends: Effect of cooking on in vitro starch digestibility and phenolics profile. Food Chem. 2021, 340, 127908. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M. Methicillin-resistant staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef]
- Iloki-Assanga, S.B.; Lewis-Luján, L.M.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes 2015, 8, 396. [Google Scholar] [CrossRef]
- Metrouh-Amir, H.; Duarte, C.M.M.; Maiza, F. Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind. Crops Prod. 2015, 67, 249–256. [Google Scholar] [CrossRef]
- Chan, A.P.L.; Chan, T.Y.K. Methanol as an unlisted ingredient in supposedly alcohol-based hand rub can pose serious health risk. Int. J. Environ. Res. Public Health 2018, 15, 1440. [Google Scholar] [CrossRef]
- Alzeer, J.; Abou Hadeed, K. Ethanol and its halal status in food industries. Trends Food Sci. Technol. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Min, B.; Gu, L.; McClung, A.M.; Bergman, C.J.; Chen, M.H. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 2012, 133, 715–722. [Google Scholar] [CrossRef]
- Lee, C.W.; Yoneyama, K.; Takeuchi, Y.; Konnai, M.; Tamogami, S.; Kodama, O. Momilactones A and B in rice straw harvested at different growth stages. Biosci. Biotechnol. Biochem. 1999, 63, 1318–1320. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D. Inhibitory activities of momilactones A, B, E, and 7-ketostigmasterol isolated from rice husk on paddy and invasiveweeds. Plants 2019, 8, 159. [Google Scholar] [CrossRef]
Sample Code | Cooking Process | Extraction Condition | Sample Code | Cooking Process | Extraction Condition |
---|---|---|---|---|---|
KB1 | Non-cooked | Sonication, heat, and 80% methanol | KB7 | Non-cooked | Sonication, heat, and 80% ethanol |
GKB1 | Non-cooked | Sonication, heat, and 80% methanol | GKB7 | Non-cooked | Sonication, heat, and 80% ethanol |
MQ1 | Non-cooked | Sonication, heat, and 80% methanol | MQ7 | Non-cooked | Sonication, heat, and 80% ethanol |
GMQ1 | Non-cooked | Sonication, heat, and 80% methanol | GMQ7 | Non-cooked | Sonication, heat, and 80% ethanol |
KB2 | Cooked | Sonication, heat, and 80% methanol | KB8 | Cooked | Sonication, heat, and 80% ethanol |
GKB2 | Cooked | Sonication, heat, and 80% methanol | GKB8 | Cooked | Sonication, heat, and 80% ethanol |
MQ2 | Cooked | Sonication, heat, and 80% methanol | MQ8 | Cooked | Sonication, heat, and 80% ethanol |
GMQ2 | Cooked | Sonication, heat, and 80% methanol | GMQ8 | Cooked | Sonication, heat, and 80% ethanol |
KB3 | Non-cooked | Sonication and 80% methanol | KB9 | Non-cooked | Sonication and 80% ethanol |
GKB3 | Non-cooked | Sonication and 80% methanol | GKB9 | Non-cooked | Sonication and 80% ethanol |
MQ3 | Non-cooked | Sonication and 80% methanol | MQ9 | Non-cooked | Sonication and 80% ethanol |
GMQ3 | Non-cooked | Sonication and 80% methanol | GMQ9 | Non-cooked | Sonication and 80% ethanol |
KB4 | Cooked | Sonication and 80% methanol | KB10 | Cooked | Sonication and 80% ethanol |
GKB4 | Cooked | Sonication and 80% methanol | GKB10 | Cooked | Sonication and 80% ethanol |
MQ4 | Cooked | Sonication and 80% methanol | MQ10 | Cooked | Sonication and 80% ethanol |
GMQ4 | Cooked | Sonication and 80% methanol | GMQ10 | Cooked | Sonication and 80% ethanol |
KB5 | Non-cooked | Heat and 80% methanol | KB11 | Non-cooked | Heat and 80% ethanol |
GKB5 | Non-cooked | Heat and 80% methanol | GKB11 | Non-cooked | Heat and 80% ethanol |
MQ5 | Non-cooked | Heat and 80% methanol | MQ11 | Non-cooked | Heat and 80% ethanol |
GMQ5 | Non-cooked | Heat and 80% methanol | GMQ11 | Non-cooked | Heat and 80% ethanol |
KB6 | Cooked | Heat and 80% methanol | KB12 | Cooked | Heat and 80% ethanol |
GKB6 | Cooked | Heat and 80% methanol | GKB12 | Cooked | Heat and 80% ethanol |
MQ6 | Cooked | Heat and 80% methanol | MQ12 | Cooked | Heat and 80% ethanol |
GMQ6 | Cooked | Heat and 80% methanol | GMQ12 | Cooked | Heat and 80% ethanol |
IC50 Value (mg/mL) | ||||
---|---|---|---|---|
Sample | DPPH | ABTS | α-Amylase | α-Glucosidase |
GKB4 | 1.47 ± 0.07 b | 1.7 ± 0.10 b | 0.55 ± 0.01 b | 0.69 ± 0.03 b |
GKB9 | 1.56 ± 0.06 b | 1.80 ± 0.04 b | 0.48 ± 0.02 a | 0.15 ± 0.01 a |
MQ7 | 4.98 ± 0.12 a | 3.49 ± 0.07 a | 4.89 ± 0.51 c | NA |
BHT | 0.02 ± 0.67 | 0.06 ± 0.44 | ND | ND |
Acarbose | ND | ND | 0.26 ± 0.08 | 2.48 ± 0.13 |
Plant Part | Extraction Method | Quantification Technique | Momilactone A (μg/g DW) | Momilactone B (μg/g DW) | Reference |
---|---|---|---|---|---|
Straw (O. sativa) | Extraction: 80% aqueous MeOH | HPLC-MS-MS (positive-ion mode) | 3.8 | 2.01 | [54] |
Aerial parts of 30 rice (O. sativa) varieties | Extraction: MeOH | GC-MS | 69.9–99.3 | 64.4–114.1 | [36] |
Husks (O. sativa) | Extraction: EtOAc, MeOH, and distilled water | RP-HPLC | 11.8–58.8 | 3.0–104.4 | [28] |
Heat (100 °C) and pressure (120 kPa) | |||||
Different plant parts (O. sativa) | MeOH | HPLC | 2.07–16.44 | 1.06–12.73 | [10] |
Husks (O. sativa) | MeOH | HPLC-MS-MS | 51.96 | 42.33 | [55] |
Grains (O. sativa) | MeOH | UPLC-ESI-MS (positive-ion mode) | 0.05–1.56 | 0.05–1.61 | [11] |
Germinated brown rice | MeOH | UPLC-ESI-MS (positive-ion mode) | 1.70–18.94 | 7.20–41.00 | [9] |
Germinated brown rice and non-germinated brown rice | 80% MeOH | UPLC-ESI-MS (positive-ion mode) | 0.29–147.73 | 0.33–118.8 | Current study |
80% EtOH | |||||
Cooked and non-cooked | |||||
2 h sonication at 80 °C | |||||
2 h sonication at RT | |||||
2 h heat at 80 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Anh, L.H.; Xuan, T.D. Momilactones and Phenolics in Brown Rice: Enrichment, Optimized Extraction, and Potential for Antioxidant and Anti-Diabetic Activities. Separations 2024, 11, 6. https://doi.org/10.3390/separations11010006
Hasan M, Anh LH, Xuan TD. Momilactones and Phenolics in Brown Rice: Enrichment, Optimized Extraction, and Potential for Antioxidant and Anti-Diabetic Activities. Separations. 2024; 11(1):6. https://doi.org/10.3390/separations11010006
Chicago/Turabian StyleHasan, Mehedi, La Hoang Anh, and Tran Dang Xuan. 2024. "Momilactones and Phenolics in Brown Rice: Enrichment, Optimized Extraction, and Potential for Antioxidant and Anti-Diabetic Activities" Separations 11, no. 1: 6. https://doi.org/10.3390/separations11010006
APA StyleHasan, M., Anh, L. H., & Xuan, T. D. (2024). Momilactones and Phenolics in Brown Rice: Enrichment, Optimized Extraction, and Potential for Antioxidant and Anti-Diabetic Activities. Separations, 11(1), 6. https://doi.org/10.3390/separations11010006