A Fast LC-MS/MS Methodology for Estimating Savolitinib in Human Liver Microsomes: Assessment of Metabolic Stability Using In Vitro Metabolic Incubation and In Silico Software Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. In Silico Study of SVB Metabolic Lability
2.4. LC-MS/MS Instrumental Features
2.5. SVB and OLM Working Dilutions
2.6. Establishing of SVB Calibration Standards
2.7. Extraction of the Target Analytes (SVB and OLM) from the HLMs Matrix
2.8. Validation Parameters of the Developed LC-MS/MS Methodology
2.8.1. Specificity
2.8.2. Sensitivity and Linearity
2.8.3. Precision and Accuracy
2.8.4. Matrix Effect and Extraction Recovery
2.8.5. Stability
2.9. In Vitro Assessment of the Metabolic Stability of SVB
3. Results and Discussions
3.1. In Silico Software of Metabolic Lability of SVB
3.2. LC-MS/MS Methodology Establishment
3.3. Validation of the Developed LC-MS/MS Analytical Methodology
3.3.1. Specificity
3.3.2. Linearity and Sensitivity
3.3.3. Accuracy and Precision
3.3.4. HLMs Matrix Does Not Affect the Recovery and Extraction of SVB in the Current LC-MS/MS System
3.3.5. SVB was Stable in the HLMs Matrix and DMSO
3.4. Evaluation of the Greenness of the Established LC-MS/MS Methodology Using AGREE Software
3.5. In Vitro Metabolic Incubations of SVB with HLMs Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielecki, J.; Foo, J.; Oxnard, G.R.; Hutchinson, K.; Ohashi, K.; Somwar, R.; Wang, L.; Amato, K.R.; Arcila, M.; Sos, M.L. Optimization of dosing for EGFR-mutant non–small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med. 2011, 3, 90ra59. [Google Scholar] [CrossRef] [Green Version]
- Katayama, R.; Khan, T.M.; Benes, C.; Lifshits, E.; Ebi, H.; Rivera, V.M.; Shakespeare, W.C.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl. Acad. Sci. USA 2011, 108, 7535–7540. [Google Scholar] [CrossRef] [PubMed]
- Barinaga, M. From Bench Top to Bedside. Science 1997, 278, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Shenouda, S.K.; Alahari, S.K. MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009, 28, 369. [Google Scholar] [CrossRef]
- Takano, T.; Fukui, T.; Ohe, Y.; Tsuta, K.; Yamamoto, S.; Nokihara, H.; Yamamoto, N.; Sekine, I.; Kunitoh, H.; Furuta, K.; et al. EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: A historical comparison of patients treated before and after gefitinib approval in Japan. J. Clin. Oncol. 2008, 26, 5589–5595. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Fujino, T.; Suda, K.; Mitsudomi, T. Emerging MET tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Expert Opin. Emerg. Drugs 2020, 25, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Dai, G.; Weng, J.; Zhang, Z.; Wang, Q.; Zhou, F.; Jiao, L.; Cui, Y.; Ren, Y.; Fan, S.; et al. Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J. Med. Chem. 2014, 57, 7577–7589. [Google Scholar]
- Gavine, P.R.; Ren, Y.; Han, L.; Lv, J.; Fan, S.; Zhang, W.; Xu, W.; Liu, Y.J.; Zhang, T.; Fu, H.; et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol. Oncol. 2015, 9, 323–333. [Google Scholar] [CrossRef]
- Chi-Med Announces NDA Acceptance in China for Savolitinib in the Treatment of Non-Small Cell Lung Cancer with MET Exon 14 Skipping Mutations. In First NDA Filing of Savolitinib Globally; Chi-Med: Hong Kong, China, 2020; pp. 1–3.
- Markham, A. Savolitinib: First Approval. Drugs 2021, 81, 1665–1670. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A Green HPLC Method for Determination of Nine Sulfonamides in Milk and Beef, and Its Greenness Assessment with Analytical Eco-Scale and Greenness Profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Tyzack, J.D.; Kirchmair, J. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem. Biol. Drug Des. 2019, 93, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Marothu Vamsi, K.; Kantamaneni, P.; Gorrepati, M. In vitro Metabolic Stability of Drugs and Applications of LC-MS in Metabolite Profiling. In Drug Metabolism; Katherine, D., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 5. [Google Scholar]
- Houston, J.B. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. 1994, 47, 1469–1479. [Google Scholar] [CrossRef]
- Obach, R.S.; Baxter, J.G.; Liston, T.E.; Silber, B.M.; Jones, B.C.; MacIntyre, F.; Rance, D.J.; Wastall, P. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997, 283, 46–58. [Google Scholar]
- Attwa, M.W.; AlRabiah, H.; Alsibaee, A.M.; Abdelhameed, A.S.; Kadi, A.A. An UPLC–ESI–MS/MS Bioanalytical Methodology for the Quantification of Gilteritinib in Human Liver Microsomes: Application to In Vitro and In Silico Metabolic Stability Estimation. Separations 2023, 10, 278. [Google Scholar]
- Attwa, M.W.; Abdelhameed, A.S.; Alsibaee, A.M.; Kadi, A.A. A Rapid and Sensitive UPLC-MS/MS Method for Quantifying Capmatinib in Human Liver Microsomes: Evaluation of Metabolic Stability by In Silico and In Vitro Analysis. Separations 2023, 10, 247. [Google Scholar] [CrossRef]
- Attwa, M.W.; Alsibaee, A.M.; Aljohar, H.I.; Abdelhameed, A.S.; Kadi, A.A. Development of a Fast and Sensitive UPLC–MS/MS Analytical Methodology for Fenebrutinib Estimation in Human Liver Microsomes: In Vitro and In Silico Metabolic Stability Evaluation. Separations 2023, 10, 302. [Google Scholar]
- Busby, W.F., Jr.; Ackermann, J.M.; Crespi, C.L. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab. Dispos. 1999, 27, 246–249. [Google Scholar]
- Störmer, E.; Roots, I.; Brockmöller, J. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br. J. Clin. Pharmacol. 2000, 50, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Fouin-Fortunet, H.; Tinel, M.; Descatoire, V.; Letteron, P.; Larrey, D.; Geneve, J.; Pessayre, D. Inactivation of cytochrome P-450 by the drug methoxsalen. J. Pharmacol. Exp. Ther. 1986, 236, 237–247. [Google Scholar] [PubMed]
- U.S. Department of Health and Human Services; Food and Drug Administratio; Center for Drug Evaluation and Research (CDER); Center for Veterinary Medicine (CVM). Bioanalytical Method Validation. In Guidance for Industry; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Smith, G. European Medicines Agency guideline on bioanalytical method validation: What more is there to say? Bioanalysis 2012, 4, 865–868. [Google Scholar] [CrossRef]
- McNaney, C.A.; Drexler, D.M.; Hnatyshyn, S.Y.; Zvyaga, T.A.; Knipe, J.O.; Belcastro, J.V.; Sanders, M. An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev. Technol. 2008, 6, 121–129. [Google Scholar] [CrossRef]
- Słoczyńska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Żelaszczyk, D.; Popiół, J.; Pękala, E. Metabolic stability and its role in the discovery of new chemical entities. Acta Pharm. 2019, 69, 345–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.; Kirchmair, J. Software for metabolism prediction. In Drug Metabolism Prediction; Wiley: Hoboken, NJ, USA, 2014; pp. 27–52. [Google Scholar]
- Hunt, P.A.; Segall, M.D.; Tyzack, J.D. WhichP450: A multi-class categorical model to predict the major metabolising CYP450 isoform for a compound. J. Comput.-Aided Mol. Des. 2018, 32, 537–546. [Google Scholar] [CrossRef]
- G. Shin, Y.; Le, H.; Khojasteh, C.; ECA Hop, C. Comparison of metabolic soft spot predictions of CYP3A4, CYP2C9 and CYP2D6 substrates using MetaSite and StarDrop. Comb. Chem. High Throughput Screen. 2011, 14, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Meesters, R.; Voswinkel, S. Bioanalytical method development and validation: From the USFDA 2001 to the USFDA 2018 guidance for industry. J. Appl. Bioanal. 2018, 4, 67–73. [Google Scholar] [CrossRef]
- Leahy, D.E. Integrating invitro ADMET data through generic physiologically based pharmacokinetic models. Expert Opin. Drug Metab. Toxicol. 2006, 2, 619–628. [Google Scholar] [CrossRef]
LC (UPLC) | MS/MS (TQD MS) | ||
---|---|---|---|
Isocratic mobile phase | 0.1% HCOOH in H2O (45%; pH: 3.2) | ESI | Cone gas: 100 L/H flow rate |
55% ACN | Positive ESI source | ||
Injection volume: 5.0 μL | The voltage of RF lens: 0.1 (V) | ||
Flow rate: 0.4 mL/min. | Capillary voltage: 4 KV | ||
Eclipse plus-C8 column | 100.0 mm long | The voltage of extractor: 3.0 (V) | |
2.1 mm i.d. | Nitrogen (drying gas; 350 °C) at 100 L/hr | ||
T: 22.0 ± 2.0 °C | Mode | MRM | |
3.5 μm particle size | Collision cell | Argon gas at 0.14 mL/min |
Time Segments | Elution Time | MRM Data | ||
---|---|---|---|---|
Mass spectra segment | 0.0 to 1.0 min | SVB (0.69 min) | First mass transition (m/z) | 346.11→ 318.12 CE: 10 and CV: 30 |
Second mass transition (m/z) | 346.11→ 145.16 CE a: 16 and CV b: 30 | |||
1.0 to 2.0 min | OLM (IS; 1.16 min) | First mass transition (m/z) | 487.15→ 70.13 CE: 40 and CV: 52 | |
Second mass transition (m/z) | 487.15→ 57.98 CE: 44 and CV: 52 |
Analytes | Mobile Phase | Extraction Method Recovery | Stationary Phase | |||
---|---|---|---|---|---|---|
ACN | Methanol | Protein Precipitation Using ACN | Solid Phase Extraction | C8 Column | C18 Column | |
SVB | 0.69 min | 1.0 min | High (100.88 ± 2.31%) | Low (80.54%) | 0.69 min | 1.45 min |
Good peak | Tailed | Precise (RSD < 2.29%) | Not precise | Perfect shape | Tailed peaks | |
OLM | 1.16 min | 1.15 min | High (99.61 ± 2.82%) | Low (77.89%) | 1.16 min | 1.84 min |
Good peak shape | Overlapped | Precise (RSD < 2.17%) | Not precise | Perfect shape | Perfect shape |
SVB (ng/mL) | Mean | SD | RSD (%) | Accuracy (%) | Recovery |
---|---|---|---|---|---|
1.0 | 0.97 | 0.08 | 7.90 | −3.33 | 96.67 |
15.0 | 15.12 | 0.30 | 1.98 | 0.80 | 100.80 |
100.0 | 103.80 | 2.69 | 2.59 | 3.80 | 103.80 |
200.0 | 202.79 | 3.61 | 1.78 | 1.39 | 101.39 |
500.0 | 509.41 | 3.01 | 0.59 | 1.88 | 101.88 |
1500.0 | 1534.13 | 9.64 | 0.63 | 2.28 | 102.28 |
3000.0 | 2980.00 | 36.13 | 1.21 | −0.67 | 99.33 |
% Recovery | 100.88 ± 2.31 |
SVB (ng/mL) | Intra-Day (Twelve Sets in One Day) | Inter-Day (Six Sets in Three Days) | ||||||
---|---|---|---|---|---|---|---|---|
QCs | 1.0 | 3.0 | 900.0 | 2400.0 | 1.0 | 3.0 | 900.0 | 2400.0 |
Mean | 1.04 | 3.00 | 895.43 | 2389.58 | 0.93 | 3.12 | 887.65 | 2396.13 |
SD | 0.09 | 0.13 | 7.37 | 20.14 | 0.02 | 0.05 | 6.13 | 18.12 |
Precision (%RSD) | 8.75 | 4.36 | 0.82 | 0.84 | 1.64 | 1.44 | 0.69 | 0.76 |
% Accuracy | 3.67 | 0.00 | −0.51 | −0.43 | −6.67 | 4.11 | −1.37 | −0.16 |
Recovery (%) | 103.67 | 100.00 | 99.49 | 99.57 | 93.33 | 104.11 | 98.63 | 99.84 |
Stability Features | 3.0 | 2400.0 | 3.0 | 2400.0 | 3.0 | 2400.0 | 3.0 | 2400.0 |
---|---|---|---|---|---|---|---|---|
Mean | SD | RSD (%) | Accuracy (%) | |||||
Long-Term Stability (−80 °C for 28 d) | 2.98 | 2389.38 | 0.07 | 22.57 | 2.18 | 0.94 | −0.56 | −0.44 |
Auto-Sampler Stability (24 h at 15 °C) | 2.96 | 2387.65 | 0.05 | 11.00 | 1.70 | 0.46 | −1.44 | −0.51 |
Freeze–Thaw Stability (three cycles at −80 °C) | 2.89 | 2356.83 | 0.02 | 15.13 | 0.69 | 0.64 | −3.67 | −1.80 |
Short-Term Stability (4 h at room temperature) | 2.97 | 2404.27 | 0.13 | 9.53 | 4.29 | 0.40 | −0.89 | 0.18 |
Criteria | Score | Weight |
---|---|---|
1. Direct analytical techniques should be applied to avoid sample treatment. | 0.3 | 2 |
2. Minimal sample size and minimal number of samples are goals. | 0.75 | 3 |
3. If possible, measurements should be performed in situ. | 0.66 | |
4. Integration of analytical processes and operations saves energy and reduces the use of reagents. | 1.0 | 2 |
5. Automated and miniaturized methods should be selected. | 0.75 | 3 |
6. Derivatization should be avoided. | 1.0 | 2 |
7. Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided. | 1.0 | 1 |
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time. | 1.0 | 2 |
9. The use of energy should be minimized. | 0.0 | 2 |
10. Reagents obtained from renewable sources should be preferred. | 0.5 | 2 |
11. Toxic reagents should be eliminated or replaced. | 1.0 | 3 |
12. Operator’s safety should be increased. | 1.0 | 3 |
Time Points (min.) | Mean a (ng/mL) | X b | LN X | Linearity Features |
---|---|---|---|---|
0.00 | 872.95 | 100.00 | 4.61 | Regression line equation: y = −0.02825x + 4.654 |
2.50 | 815.77 | 93.45 | 4.54 | |
5.00 | 754.67 | 86.45 | 4.46 | R² = 0.9904 |
7.50 | 667.63 | 76.48 | 4.34 | |
15.00 | 478.20 | 54.78 | 4.00 | Slope: −0.02825 |
20.00 | 347.26 | 39.78 | 3.68 | |
30.00 | 277.42 | 31.78 | 3.46 | t1/2: 24.54 min and |
40.00 | 243.29 | 27.87 | 3.33 | Clint: 33.05 mL/min/kg |
50.00 | 233.78 | 26.78 | 3.29 | |
70.00 | 216.32 | 24.78 | 3.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attwa, M.W.; AlRabiah, H.; Abdelhameed, A.S.; Kadi, A.A. A Fast LC-MS/MS Methodology for Estimating Savolitinib in Human Liver Microsomes: Assessment of Metabolic Stability Using In Vitro Metabolic Incubation and In Silico Software Analysis. Separations 2023, 10, 450. https://doi.org/10.3390/separations10080450
Attwa MW, AlRabiah H, Abdelhameed AS, Kadi AA. A Fast LC-MS/MS Methodology for Estimating Savolitinib in Human Liver Microsomes: Assessment of Metabolic Stability Using In Vitro Metabolic Incubation and In Silico Software Analysis. Separations. 2023; 10(8):450. https://doi.org/10.3390/separations10080450
Chicago/Turabian StyleAttwa, Mohamed W., Haitham AlRabiah, Ali S. Abdelhameed, and Adnan A. Kadi. 2023. "A Fast LC-MS/MS Methodology for Estimating Savolitinib in Human Liver Microsomes: Assessment of Metabolic Stability Using In Vitro Metabolic Incubation and In Silico Software Analysis" Separations 10, no. 8: 450. https://doi.org/10.3390/separations10080450
APA StyleAttwa, M. W., AlRabiah, H., Abdelhameed, A. S., & Kadi, A. A. (2023). A Fast LC-MS/MS Methodology for Estimating Savolitinib in Human Liver Microsomes: Assessment of Metabolic Stability Using In Vitro Metabolic Incubation and In Silico Software Analysis. Separations, 10(8), 450. https://doi.org/10.3390/separations10080450