Rapid Multi-Residue Method for Simultaneous Determination of 1,3,5-Triazine Herbicides in Environmental Samples by Capillary GC-MS-EI Selective Ion Monitoring Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Methods
Gas Chromatograph–Mass Spectrometry
2.3. Preparation of Reference Analytical Standard Stock Solutions
2.4. Collection of Water and Soil Samples
2.5. Extraction of Residues from Water
2.6. Extraction of Residues from Soil
2.7. Column Chromatography
2.8. Recovery Process and Methodology Study
2.9. Method Validation and Demonstration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridges, D.C. A Simulation Analysis of the Use and Benefits of Triazine Herbicides. ACS Symposium SERIES 683: Triazine Herbicides: Risk Assessment; Ballantine, L.G., McFarland, J.E., Hackett, D., Eds.; American Chemical Society: Washington, DC, USA, 1998; p. 24. [Google Scholar]
- Bardalaye, P.C.; Wheeler, W.B. Gas chromatographic determination of ametryn and its metabolites in tropical root crops. J. Assoc. Off. Anal. Chem. 1984, 67, 280. [Google Scholar] [CrossRef] [PubMed]
- Battista, M.; Di Corcia, A.; Marchetti, M. Extraction and isolation of triazine herbicides from water and vegetables by a double trap tandem system. Anal. Chem. 1989, 61, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Brzezicki, J.M.; Andersen, M.E.; Cranmer, B.K.; Tessari, J.D. Quantitative identification of atrazine and its chlorinated metabolites in plasma. J. Anal. Toxicol. 2003, 27, 569. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, B.A.; Fultz, E.; Haack, K.W.; Vogel, J.S.; Gilman, S.D.; Gee, S.J.; Hammock, B.D.; Hui, X.; Wester, R.C.; Maibach, H.I. HPLC-accelerator MS measurement of atrazine metabolites in human urine after dermal exposure. Anal. Chem. 1999, 71, 3519–3525. [Google Scholar] [CrossRef]
- Balduini, L.; Matoga, M.; Cavalli, E.; Seilles, E.; Riethmuller, D.; Thomassin, M.; Guillaume, Y.C. Triazine herbicide determination by gas chromatography-mass spectrometry in breast milk. J. Chromatogr. B 2003, 794, 389–395. [Google Scholar] [CrossRef]
- Bouaid, A.; Martin-Esteban, A.; Fernandez, P.; Camara, F.C. Microwave-assisted extraction method for the determination of atrazine and four organophosphorus pesticides in oranges by gas chromatography (GC). J. Anal. Chem. 2000, 367, 291–394. [Google Scholar] [CrossRef]
- Bailey, R.; LeBel, G.; Lawrence, J.F. Gas-liquid chromatography of triazine herbicides as heptafluorobutyryl derivatives and some applications to analysis in foods. J. Chromatogr. A 1978, 161, 251–257. [Google Scholar] [CrossRef]
- Bardalaye, P.C.; Wheeler, W.B.; Meister, C.W.; Templeton, J.L. Capillary gas chromatographic determination of terbutryn and its degradation products in sorghum grain and confirmation of the compounds by mass spectrometry. Food Addit. Contam. 1985, 2, 283–294. [Google Scholar] [CrossRef]
- Bardalaye, P.C.; Wheeler, W.B. Capillary gas chromatographic determination of prometryn and its degradation products in parsley. J. Assoc. Off. Anal. Chem. 1985, 68, 750–753. [Google Scholar] [CrossRef]
- Bardalaye, P.C.; Wheeler, W.B.; Templeton, J.L. Gas chromatographic and mass spectrometric determination of ametryn and its N-dealkylated products. J. Assoc. Off. Anal. Chem. 1984, 67, 904–909. [Google Scholar] [CrossRef]
- Calderon, M.J.; Ortega, M.; Hermosin, M.C.; Garcia-Baudin, J.; Cornejo, J. Hexazinone and simazine dissipation in forestry field nurseries. Chemosphere 2004, 54, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dopico, M.S.; Gonzalez, M.V.; Castro, J.M.; Gonzalez, E.; Perez, J.; Rodríguez, M.; Calleja, A. Determination of triazines in water samples by high-performance liquidchromatography with diode-array detection. J. Chromatogr. Sci. 2002, 40, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesudoss, S.K.; Vijaya, J.J.; Kennedy, L.J.; Rajan, P.L.; Al-Lohedan, H.A.; Ramalingam, R.J.; Kaviyarasu, K.; Bououdina, M. Studies on the efficient dual performance of Mn1–xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B Biol. 2016, 165, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Dich, J.; Zahm, S.H.; Hanberg, A.; Adami, H.O. Pesticides and cancer. Cancer Causes Control. Cancer Causes Control. 1997, 8, 420–423. [Google Scholar] [CrossRef]
- Denovan, L.A.; Lu, C.; Hines, C.J.; Fenske, R.A. Saliva biomonitoring of atrazine exposure among herbicide applicators. Int. Arch. Occup. Environ. Health 2000, 73, 457–462. [Google Scholar] [CrossRef]
- Erickson, M.D.; Frank, C.W.; Morgan, D.P. Determination of s-triazine herbicide residues in urine: Analytical method development. J. Agric. Food Chem. 1979, 27, 740–743. [Google Scholar] [CrossRef]
- Ferrari, R.; Nilsson, T.; Arena, R.; Arlati, P.; Bartolucci, G.; Basla, R.; Cioni, F.; DelCarlo, G.; Dellavedova, P.; Fattore, E.; et al. Inter-laboratory validation of solid-phase microextraction for the determination of triazine herbicides and their degradation products at ng/l level in water samples. J. Chromatogr. A 1998, 795, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Funari, E.; Brambilla, A.L.; Camoni, I.; Canuti, A.; Cavallaro, A.; Chierici, S.; Cialella, G.; Donati, G.; Jaforte, A.; Prandi, L. Extensive atrazine pollution of drinking water in the Lombardia region and related public health aspects. Biomed. Environ. Sci. 1998, 1, 350–355. [Google Scholar]
- Ferris, I.G.; Haigh, B.M. A rapid and sensitive HPLC procedure for the determination of atrazine residues in soil-water extracts. J. Chromatogr. Sci. 1987, 25, 170–173. [Google Scholar] [CrossRef]
- Hequet, V.; Gonzalez, C.; Le Cloirec, P. Photochemical processes for atrazine degradation: Methodological approach. Water Res. 2001, 35, 4253–4260. [Google Scholar] [CrossRef]
- Friedmann, A.S. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod. Toxicol. 2002, 16, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.D.; Gee, S.J.; Hammock, B.D.; Vogel, J.S.; Haack, K.; Buchholz, B.A.; Freeman, S.P.; Wester, R.C.; Hui, X.; Maibach, H.I. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Anal. Chem. 1998, 70, 3463–3469. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Wintersteiger, R. Rapid screening of triazines and quantitative determination in drinking water. J. Biochem. Biophys. Methods 2002, 53, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Q. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry. J. Assoc. Off. Anal. Chem. 1989, 72, 349–354. [Google Scholar] [CrossRef]
- Hernandez, F.; Hidalgo, C.; Sancho, J.V.; Lopez, F. Coupled-column liquid chromatography applied to the trace-level determination of triazine herbicides and some of their metabolites in water samples. J. Anal. Chem. 1998, 70, 3322–3328. [Google Scholar] [CrossRef]
- Harman, W.L.; Wang, E.; Williams, J.R. Reducing atrazine losses: Water quality implications of alternative runoff control practices. J. Environ. Qual. 2004, 33, 7. [Google Scholar] [CrossRef]
- Holland, D.C.; Munns, R.K.; Roybal, J.E.; Hurlbut, J.A.; Long, A.R. Liquid chromatographic determination of simazine, atrazine, and propazine residues in catfish. J. AOAC Int. 1995, 78, 1067–1071. [Google Scholar] [CrossRef]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, F.; Beltran, J.; Lopez, F.J.; Gaspar, J.V. Use of solid-phase microextraction for the quantitative determination of herbicides in soil and water samples. Anal. Chem. 2000, 72, 2313–2322. [Google Scholar] [CrossRef]
- Hormann, W.D.; Formica, G.; Ramsteiner, K.; Eberle, D.O. Pesticide residues. Automated method for extraction; cleanup; and gas chromatographic determination of triazine herbicides in soil. J. Assoc. Off. Anal. Chem. 1972, 55, 1031–1038. [Google Scholar]
- Ismaili, L.; Andre, C.; Nicod, L.; Truong, T.T.; Mollet, J.; Thomassin, M.; Cavalli, E.; Chaumont, J.P.; Xicluna, A.; Guillaume, Y.C. Triazine-human serum albumin association: Thermodynamic approach and sodium effect. J. Chromatogr. B. Analyt Technol. Biomed. Life Sci. 2002, 780, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, M.; Sancho, J.V.; Pozo, O.J.; Hernandez, F. Use of quadrupole time-of-flight mass spectrometry in environmental analysis: Elucidation of transformation products of triazine herbicides in water after UV exposure. Anal. Chem. 2004, 76, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Jandera, P.; Spacek, M. Method for characterization of selectivity in reversed-phase liquid chromatography. III. Retention behavior in gradient-elution chromatography: Application to the chromatography of pesticide compounds. J. Chromatogr. 1986, 366, 107–126. [Google Scholar] [CrossRef]
- Kettles, M.K.; Browning, S.R.; Prince, T.S.; Horstman, S.W. Triazine herbicide exposure and breast cancer incidence: An ecologic study of Kentucky counties. Environ. Health Perspect. 1997, 105, 1222–1227. [Google Scholar] [CrossRef]
- Kim, K.R.; Son, E.W.; Hee-Um, S.; Kim, B.O.; Rhee, D.K.; Pyo, S. Immune alterations in mice exposed to the herbicide simazine. J. Toxicol. Environ. Health A 2003, 66, 1159–1173. [Google Scholar] [CrossRef]
- Kumazawa, T.; Sato, K.; Seno, H.; Suzuki, O. Rapid isolation with Sep-Pak C18 cartridges and capillary gas chromatography of triazine herbicides in human body fluids. Forensic Sci. Int. 1992, 54, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Anderson, L.C.; Fenske, R.A. Determination of atrazine levels in whole saliva and plasma in rats: Potential of salivary monitoring for occupational exposure. J. Toxicol. Environ. Health 1997, 50, 101–111. [Google Scholar] [PubMed]
- Loos, R.; Niessner, R. Analysis of atrazine terbutylazine and their N-dealkylated chloro and hydroxyl metabolites by solid-phase extraction and gas chromatography-mass spectrometry and capillary electrophoresis-ultraviolet detection. J. Chromatogr. A 1999, 835, 217–229. [Google Scholar] [CrossRef]
- Muir, D.C. Determination of terbutryn and its degradation products in water; sediments; aquatic plants; and fish. J. Agric. Food Chem. 1980, 28, 714–719. [Google Scholar] [CrossRef]
- Ma, W.T.; Fu, K.K.; Cai, Z.; Jiang, G.B. Gas chromatography/mass spectrometry applied for the analysis of triazine herbicides in environmental waters. Chemosphere 2003, 52, 1627–1632. [Google Scholar] [CrossRef]
- Mazanti, L.; Rice, C.; Bialek, K.; Sparling, D.; Stevenson, C.; Johnson, W.E.; Kangas, P.; Rheinstein. Aqueous-phase disappearance of atrazine; metolachlor and chlorpyrifos in laboratory aquaria and outdoor macrocosms. J. Arch. Environ. Contam. Toxicol. 2003, 44, 67280–67284. [Google Scholar] [CrossRef] [PubMed]
- Mendas, G.; Drevenkar, V.; Zupancic-Kralj, L. Solid-phase extraction with styrene-divinylbenzene sorbent for high-performance liquid or gas chromatographic determination of urinary chloro- and methylthiotriazines. J. Chromatogr. A 2001, 918, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Minero, C.; Pelizzetti, E.; Malato, S.; Blanco, J. Large solar plant photocatalytic water decontamination: Degradation of atrazine. Solar Energy 1996, 56, 411–419. [Google Scholar] [CrossRef]
- Moretti, M.; Marcarelli, M.; Villarini, M.; Fatigon, C.; Scassellati-Sforzolin, G.; Pasquini, R. In vitro testing for genotoxicity of the herbicide terbutryn: Cytogenetic and primary DNA damage. Toxicology In Vitro 2002, 16, 81–88. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, P.A.; Delzell, E.; Sathiakumar, N.; Myers, S.L. Mortality among triazine herbicide manufacturing workers. J. Toxicol. Environ. Health A 2003, 66, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, M.L.; Speth, T.F.; Kelty, C.A. Determination of interfering triazine degradation products by gas chromatography-ion traps mass spectrometry. J. Chromatogr. A 2000, 868, 115–119. [Google Scholar] [CrossRef]
- Mueller, T.C.; Senseman, S.A.; Carson, K.H.; Sciumbato, A.S. Stability and recovery of triazine and chloroacetamide herbicides from pH adjusted water samples by using empore solid-phase extraction disks and gas chromatography with ion trap mass spectrometry. J. AOAC Int. 2001, 84, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Navarro, S.; Vela, N.; Garcia, C.; Navarro, G. Persistence of simazine and terbuthylazine in a semiarid soil after organic amendment with urban sewage sludge. J. Agric. Food Chem. 2003, 51, 7359–7365. [Google Scholar] [CrossRef]
- Navarro, S.; Oliva, J.; Barba, A.; Garcia, C. Determination of simazine; terbuthylazine; and their dealkylated chlorotriazine metabolites in soil using sonication micro extraction and gas chromatography. J. AOAC Int. 2000, 83, 1239–1243. [Google Scholar]
- O’Connor, J.C.; Plowchalk, D.R.; Van Pelt, C.S.; Davis, L.G.; Cook, J.C. Role of prolactin in chloro-S-triazine rat mammary tumorigenesis. Drug. Chem. Toxicol. 2000, 23, 575–601. [Google Scholar] [CrossRef]
- Okihashi, M.; Akutsu, K.; Obana, H.; Hori, S. Determination of triazine herbicides in foods with liquid chromatography mass spectrometry. Analyst 2000, 125, 1966–1969. [Google Scholar] [CrossRef] [PubMed]
- Purcell, M.; Neault, J.F.; Malonga, H.; Arakawa, H.; Carpentier, R.; Tajmir-Riahi, H.A. Interactions of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis, and FTIR spectroscopy. Biochim. Biophys. Acta 2001, 1548, 129. [Google Scholar] [CrossRef] [PubMed]
- Pensabene, J.W.; Fiddler, W.; Donoghue, D.J. Supercritical fluid extraction of atrazine and other triazine herbicides from fortified and incurred eggs. J. Agric. Food Chem. 2000, 48, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, R.H.; Lanchote, V.L.; Bonato, P.S.; Tozato, E.; de Carvalho, D.; Gomes, M.A.; Cerdeira, A.L. Determination of ametryn herbicide by bioassay and gas chromatography-mass spectrometry in analysis of residues in drinking water. Boll. Chim. Farm. 1999, 138, 249–253. [Google Scholar] [PubMed]
- Ritter, W.F. Pesticide contamination of ground water in the United States--a review. J. Environ. Sci. Health B 1990, 25, 1–29. [Google Scholar] [CrossRef]
- Ramsteiner, K.; Hormann, W.D.; Eberle, D.O. Multiresidue method for the determination of triazine herbicides in field-grown agricultural crops; water; and soils. J. Assoc. Off. Anal. Chem. 1974, 57, 192–201. [Google Scholar] [CrossRef]
- Rivas, J.; Beltran, F.J.; Garcia-Araya, J.F.; Navarret, V. Simazine removal from water in a continuous bubble column by O3 and O3/H2O2. J. Environ. Sci. Health B. 2001, 36, 809–819. [Google Scholar] [CrossRef]
- Rooney, A.A.; Matulk, R.A.; Luebke, R.W. Developmental atrazine exposure suppresses immune function in male, but not female Sprague-Dawley rats. Toxicol. Sci. 2003, 76, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Rayner, J.L.; Wood, C.; Fenton, S.E. Exposure parameters necessary for delayed puberty and mammary gland developmentin Long-Evans rats exposed in utero to atrazine. Toxicol. Appl. Pharmacol. 2004, 195, 23–34. [Google Scholar] [CrossRef]
- Ramesh, A.; Ravi, P.E. Application of solid-phase microextraction (SPME) in the determination of residues of certain herbicides at trace levels in environmental samples. J. Environ. Monit. 2001, 3, 505. [Google Scholar] [CrossRef]
- Ramesh, A.; Ravi, P.E. Electron ionization gas chromatography-mass spectrometric determination of residues of thirteen pyrethroid insecticides in whole blood. J. Chromatogr. B 2004, 802, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Ravi, P.E. Negative Ion Chemical Ionization Gas Chromatographic-Mass Spectrometric Determination of Residues of Different Pyrethroid Insecticides in Whole Blood and serum. J. Anal. Toxicol. 2004, 28, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stalikas, C.; Knopp, D.; Niessner, R. Sol-gel glass immunosorbent-based determination of s-triazines in water and soil samples using gas chromatography with a nitrogen phosphorus detection system. Environ. Sci. Technol. 2002, 36, 3372–3377. [Google Scholar] [CrossRef] [PubMed]
- Sabik, H.; Jeannot, R.; Rondeau, B. Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides; including triazines and degradation products; in ground and surface waters. J. Chromatogr. A 2000, 885, 217–236. [Google Scholar] [CrossRef]
- Silva, E.; Fialho, A.M.; Sa-Correi, I.; Burns, R.G.; Shaw, L.J. Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine. Environ. Sci. Technol. 2004, 38, 632–637. [Google Scholar] [CrossRef]
- Stevens, J.T.; Breckenridge, C.B.; Wetzel, L. A risk characterization for atrazine: Oncogenicity profile. J. Toxicol. Environ. Health A 1999, 56, 69–109. [Google Scholar] [CrossRef]
- Shen, G.; Lee, H.K. Determination of triazines in soil by microwave-assisted extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2003, 985, 167–174. [Google Scholar] [CrossRef]
- Tanabe, A.; Kawata, K. Determination of triazine pesticides and related compounds in environmental water by liquid chromatography-mass spectrometry. Anal. Sci. 2004, 20, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Tucker, S.P.; Reynolds, J.M.; Wickman, D.C.; Hines, C.J.; Perkins, J.B. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2; 4-D herbicides in hand-wash; dermal-patch; and air samples. Appl. Occup. Environ. Hyg. 2001, 16, 698–707. [Google Scholar] [CrossRef]
- Tavera-Mendoza, L.; Ruby, S.; Brousseau, P.; Fournier, M.; Cyr, D.; Marcogliese, D. Response of the amphibian tadpole xenopus laevis to atrazine during sexual di.erentiation of the ovary. Environ. Toxicol. Chem. 2002, 21, 1264–1267. [Google Scholar] [CrossRef]
- Tuzimski, T.; Soczewinski, E. Correlation of retention parameters of pesticides in normal- and reversed-phase systems and their utilization for the separation of a mixture of 14 triazines and urea herbicides by means of two-dimensional thin-layer chromatography. J. Chromatogr. A 2002, 961, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, B.A.; Ilgner, R.H. Determination of atrazine and four organophosphorus pesticides in ground water using solid phase microextraction (SPME) followed by gas chromatography with selected-ion monitoring. J. Chromatogr. A 2002, 972, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Papadopoulou-Mourkidou, E. Determination of triazine and chloroacetanilide herbicides in soils by microwave-assisted extraction (MAE) coupled to gas chromatographic analysis with either GC-NPD or GC-MS. J. Agric. Food Chem. 2002, 50, 5026–5033. [Google Scholar] [CrossRef] [PubMed]
- Viden, I.; Rathouska, Z.; Davidek, J.; Hajslova, J. Use of gas liquid chromatography/mass spectrometry for triazine herbicide residues analysis in forage and milk. Z. Lebensm. Unters. Forsch. 1987, 185, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, K.C. Herbicide resistance work in the United States Department of Agriculture-Agricultural Research Service. Pest. Manag. Sci. 2003, 59, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Duh, J.R.; Liang, Y.F.; Chen, Y.L. Dissipation of three s-triazine herbicides, atrazine, simazine, and ametryn, in subtropical soils. Bull. Environ. Contam. Toxicol. 1995, 55, 351–358. [Google Scholar] [CrossRef]
- Winklmair, M.; Weller, M.G.; Mangler, J.; Schlosshauer, B.; Niessner, R. Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. J. Anal. Chem. 1997, 358, 614. [Google Scholar]
- Yokley, R.A.; Cheung, M.W. Analytical method for the determination of atrazine and its dealkylated chlorotriazine metabolites in water using gas chromatography/mass selective detection. J. Agric. Food Chem. 2000, 48, 4500–4507. [Google Scholar] [CrossRef]
Compound Name | Molecular Ion (m/z) | Fragment Ions (m/z) | Retention Time (min) |
---|---|---|---|
Atrazine | 216 | 200, 215 | 10.07 |
Ametryn | 227 | 212, 227 | 14.07 |
Prometryn | 241 | 226, 241 | 10.94 |
Propazine | 229 | 214, 229 | 7.72 |
Terbuthalazine | 229 | 214, 229 | 8.43 |
Terbutryn | 241 | 226, 241 | 12.19 |
Simazine | 202 | 186, 201 | 13.14 |
Simetryn | 213 | 170, 213 | 18.03 |
Lindane (Internal standard) | 290 | 183, 219 | 6.43 |
Compound Name | LODs (pg mL−1) | LOQs (pg mL−1) | Equation | R2 | Linear Dynamic Range (pg mL−1) |
---|---|---|---|---|---|
Atrazine | 0.1 | 1 | y = 28,307x − 3007.2 | 0.9999 | 1–500 |
Ametryn | 0.5 | 5 | y = 30,351x − 11,443 | 0.9988 | 1–500 |
Prometryn | 0.5 | 5 | y = 30,011x − 8480.2 | 0.9999 | 1–500 |
Propazine | 0.1 | 1 | y = 26,944x − 1937.3 | 0.9999 | 1–500 |
Terbuthalazine | 0.1 | 1 | y = 31,650x − 2034.9 | 1.0000 | 1–500 |
Terbutryn | 0.5 | 5 | y = 29,274x − 8174.5 | 0.9996 | 1–500 |
Simazine | 0.1 | 1 | y = 21,348x − 3064.2 | 0.9997 | 1–500 |
Simetryn | 0.5 | 5 | y = 30,373x − 12,489 | 0.9999 | 1–500 |
Compound Name | Spiked Concentration (pg mL−1) | Recovery Range (%) | Relative Standard Deviation (%) |
---|---|---|---|
Atrazine | (10–100) | 94–101 | 1.27–2.94 |
Ametryn | (10–100) | 93–101 | 1.42–2.64 |
Prometryn | (10–100) | 94–100 | 1.86–2.52 |
Propazine | (10–100) | 94–102 | 1.43–2.83 |
Terbuthalazine | (10–100) | 95–103 | 1.84–3.13 |
Terbutryn | (10–100) | 95–99 | 1.43–2.77 |
Simazine | (10–100) | 94–99 | 1.57–2.49 |
Simetryn | (10–100) | 94–101 | 1.23–3.02 |
Compound Name | Spiked Concentration (pg g−1) | Recovery Range (%) | Relative Standard Deviation (%) |
---|---|---|---|
Atrazine | (10–100) | 92–96 | 1.92–2.84 |
Ametryn | (10–100) | 91–97 | 1.50–2.76 |
Prometryn | (10–100) | 92–98 | 2.07–3.23 |
Propazine | (10–100) | 92–101 | 1.59–2.97 |
Terbuthalazine | (10–100) | 94–102 | 1.60–2.53 |
Terbutryn | (10–100) | 93–98 | 1.71–3.01 |
Simazine | (10–100) | 91–98 | 1.43–2.67 |
Simetryn | (10–100) | 93–99 | 1.60–2.77 |
Compound Name | Residue | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Varanavasi (26/05/05) | Arambakkam (26/05/05) | Oragadam (27/05/05) | Thirukachur (27/05/05) | Malaipattu (28/05/05) | ||||||
Water (pg mL−1) | Soil (pg g−1) | Water (pg mL−1) | Soil (pg g−1) | Water (pg mL−1) | Soil (pg g−1) | Water (pg mL−1) | Soil (pg g−1) | Water (pg mL−1) | Soil (pg g−1) | |
Atrazine | 27 | 05 | 15 | 07 | 28 | 03 | - | 06 | 32 | 07 |
Ametryn | - | - | - | - | - | - | - | - | - | - |
Prometryn | - | - | - | - | - | - | - | - | - | - |
Propazine | - | - | - | - | - | - | - | - | - | - |
Terbuthalazine | - | - | - | - | - | - | - | - | - | - |
Terbutryn | - | - | - | - | - | - | - | - | - | - |
Simazine | - | 09 | 14 | 11 | - | - | 08 | - | 06 | - |
Simetryn | - | - | - | - | - | - | - | - | - | - |
Sample Matrix (Compounds) | Preparation Method | Analytical Method | Sample Detection Limit | Recovery (%) | Reference |
---|---|---|---|---|---|
Water (triazine) | SPME Extraction using fibre coated with corbowax divinyl benzene. | GC/MS | 4–24 ng L−1 | >90% | [2] |
Solid phase extraction using two types: 1. Acetone for styrene divinyl benzene copolymer; 2. Methanol for graphitized carbon black. | LC/MS | 0.2–28 ng L−1 | 73–111% | [5] | |
Water (atrazine, simazine cyanazine) | Solid phase extraction using C-18 cartridge. | GC/MS | 1.7 ppt L−1 * | 90.5 ± 3.5% | [6] |
Water and soil (atrzine and simazine) | Extraction with SPE known amount of 15N, 13C-alachlor, and 2H5 atrazine was added as internal standard. | Isotopic dilution GC/MS | water-0.05 ppb, Soil-0.5 ppb,* | ≥80% | [10] |
water and soil (individual–atrazine, simazine, terbumeton, terbutryn, terbuthalzine) | Water-SPME extraction, Soil-microwave assisted solvent extraction using methanol. | GC/MS | water-0.1–10 ng mL−1 Soil-1–10 ng G−1, | ≥80% | [12] |
Drinking water (ametryn) | Bioassay method compared with GCMS. | GC/MS | 0.01 µg L−1 | >90% | [36] |
Soil (atrazine) | Microwave-assisted extraction using hexane: acetone (1:1) solvent, at 90 °C for 9 min, power 50%. | GCMS | 2–4 µg Kg−1 | 76.1–87.2% | [56] |
Water (atrazine, terbuthalazine) | Extracted by lichrolut EN. | GCMS- | 2 µg Kg−1 | >80% | [69] |
Water (atrazine and its degradation) | Ext; water samples are buffered to pH = 10 and partitioned in ethyl acetate. | GCMS | 0.05 ng | 90% | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, P.E.; Thirugnanam, P.E.; Rajabathar, J.R.; Al-Lohedan, H.; Jenifer, S.; Karnan, M. Rapid Multi-Residue Method for Simultaneous Determination of 1,3,5-Triazine Herbicides in Environmental Samples by Capillary GC-MS-EI Selective Ion Monitoring Method. Separations 2023, 10, 363. https://doi.org/10.3390/separations10060363
Ravi PE, Thirugnanam PE, Rajabathar JR, Al-Lohedan H, Jenifer S, Karnan M. Rapid Multi-Residue Method for Simultaneous Determination of 1,3,5-Triazine Herbicides in Environmental Samples by Capillary GC-MS-EI Selective Ion Monitoring Method. Separations. 2023; 10(6):363. https://doi.org/10.3390/separations10060363
Chicago/Turabian StyleRavi, Perumal E., Perumal E. Thirugnanam, Jothi Ramalingam Rajabathar, Hamad Al-Lohedan, S. Jenifer, and Muthusamy Karnan. 2023. "Rapid Multi-Residue Method for Simultaneous Determination of 1,3,5-Triazine Herbicides in Environmental Samples by Capillary GC-MS-EI Selective Ion Monitoring Method" Separations 10, no. 6: 363. https://doi.org/10.3390/separations10060363
APA StyleRavi, P. E., Thirugnanam, P. E., Rajabathar, J. R., Al-Lohedan, H., Jenifer, S., & Karnan, M. (2023). Rapid Multi-Residue Method for Simultaneous Determination of 1,3,5-Triazine Herbicides in Environmental Samples by Capillary GC-MS-EI Selective Ion Monitoring Method. Separations, 10(6), 363. https://doi.org/10.3390/separations10060363