Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula
Abstract
1. Introduction
2. Materials and Methods
2.1. Bee Pollen Samples
2.2. Determination of the Botanical Origin of the Harvested Bee Pollen
2.3. Bioactive Compound Extraction
2.4. LC/DAD/ESI-MSn Analysis
2.5. Color CIELab*
2.6. Statistical Treatment
3. Results
3.1. Main Phenolic Compounds and MS/MS Fragmentation Patterns
3.2. Quantification of Phenolic Compounds
3.3. CIELab Color of Castanea Bee Pollen
CIELab Coordinates | Mean | Maximum | Minimum | SD | |
Lightness (L*) | 59.7 | 64.2 | 52.5 | 3.5 | |
Redness (a*) | 6.1 | 6.8 | 4.8 | 0.7 | |
Yellowness (b*) | 41.9 | 49.3 | 26.7 | 7.3 | |
Chroma (Cab*) | 42.3 | 49.6 | 27.4 | 7.2 | |
Hue angle (hab*) | 81.3 | 84.2 | 77.0 | 2.3 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camazine, S. The regulation of pollen foraging by honey bees: How foragers assess the colony’s need for pollen. Behav. Ecol. Sociobiol. 1993, 32, 265–272. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Brunet, J.-L.; Alaux, C. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-L.; Zhang, X.-W.; Chai, J.-P.; Yang, D.-R. Pollen phenolics and regulation of pollen foraging in honeybee colony. Behav. Ecol. Sociobiol. 2006, 59, 582–588. [Google Scholar] [CrossRef]
- Rodríguez-Flores, S.; Escuredo, O.; Seijo, M.C. Characterization and antioxidant capacity of sweet chestnut honey produced in North-West Spain. J. Apic. Sci. 2016, 60, 19–30. [Google Scholar] [CrossRef]
- Rojo, S.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods 2023, 12, 294. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Míguez, M.; Seijo, M.C. Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food Chem. 2019, 297, 124979. [Google Scholar] [CrossRef]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. Evid. Based Complement. Altern. Med. 2015, 297425. [Google Scholar] [CrossRef]
- Oroian, M.; Dranca, F.; Ursachi, F. Characterization of Romanian bee pollen—An important nutritional source. Foods 2022, 11, 2633. [Google Scholar] [CrossRef]
- Capparelli, S.; Pieracci, Y.; Coppola, F.; Marchioni, I.; Sagona, S.; Felicioli, A.; Pistelli, L.; Pistelli, L. The colors of Tuscan bee pollen: Phytochemical profile and antioxidant activity. Nat. Prod. Res. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.; Estevinho, L.M. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef]
- Sobral, F.; Calhelha, R.C.; Barros, L.; Dueñas, M.; Tomás, A.; Santos-Buelga, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Flavonoid composition and antitumor activity of bee bread collected in northeast Portugal. Molecules 2017, 22, 248. [Google Scholar] [CrossRef]
- Münstedt, K.; Männle, H. Bee products and their role in cancer prevention and treatment. Complement. Ther. Med. 2020, 51, 102390. [Google Scholar] [CrossRef]
- Rajs, B.B.; Primorac, L.; Gal, K.; Bubalo, D.; Prđun, S.; Flanjak, I. Influence of botanical origin on phenolic content and antioxidant capacity of monofloral bee pollen. Acta Sci. Pol. Technol. Aliment. 2022, 21, 213–222. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem. 2023, 405, 134800. [Google Scholar] [CrossRef]
- Kyselka, J.; Bleha, R.; Dragoun, M.; Bialasová, K.; Horáčková, S.; Schaätz, M.; Sluková, M.; Filip, V.; Synytsya, A. Antifungal polyamides of hydroxycinnamic acids from sunflower bee pollen. J. Agric. Food Chem. 2018, 66, 11018–11026. [Google Scholar] [CrossRef]
- Karkar, B.; Şahin, S.; Güneş, M.E. Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. J. Apic. Res. 2021, 60, 765–774. [Google Scholar] [CrossRef]
- Delgado, A.M.; Issaoui, M.; Chammem, N. Analysis of main and healthy phenolic compounds in foods. J. AOAC Int. 2019, 102, 1356–1364. [Google Scholar] [CrossRef]
- Puerto, N.; Prieto, G.; Castro, R. Chemical composition and antioxidant activity of pollen. Review. Chil. J. Agric. Anim. Sci. Ex Agro-Cienc. 2015, 31, 115–126. [Google Scholar]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki Michałand Sobczak, A.; Stojko Rafałand Buszman, E. Polyphenol content and antioxidant activity of bee pollen extracts from Poland. J. Apic. Res. 2015, 54, 482–490. [Google Scholar] [CrossRef]
- Campos, M.; Markham, K.R.; Mitchell, K.A.; da Cunha, A.P. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochem. Anal. An Int. J. Plant Chem. Biochem. Tech. 1997, 8, 181–185. [Google Scholar] [CrossRef]
- Aylanc, V.; Tomás, A.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Assessment of bioactive compounds under simulated gastrointestinal digestion of bee pollen and bee bread: Bioaccessibility and antioxidant activity. Antioxidants 2021, 10, 651. [Google Scholar] [CrossRef]
- Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Mărgăoan, R.; Caeiro, A.; Graça Campos, M. Similarity of data from bee bread with the same taxa collected in India and Romania. Molecules 2018, 23, 2491. [Google Scholar] [CrossRef]
- Aylanc, V.; Ertosun, S.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. Int. J. Food Sci. Technol. 2022, 57, 3490–3502. [Google Scholar] [CrossRef]
- Aylanc, V.; Larbi, S.; Calhelha, R.; Barros, L.; Rezouga, F.; Rodríguez-Flores, M.S.; Seijo, M.C.; El Ghouizi, A.; Lyoussi, B.; Falcão, S.I.; et al. Evaluation of Antioxidant and Anticancer Activity of Mono- and Polyfloral Moroccan Bee Pollen by Characterizing Phenolic and Volatile Compounds. Molecules 2023, 28, 835. [Google Scholar] [CrossRef]
- Bokern, M.; Witte, L.; Wray, V.; Nimtz, M.; Meurer-Grimes, B. Trisubstituted hydroxycinnamic acid spermidines from Quercus dentata pollen. Phytochemistry 1995, 39, 1371–1375. [Google Scholar] [CrossRef]
- Elejalde-Palmett, C.; de Bernonville, T.D.; Glevarec, G.; Pichon, O.; Papon, N.; Courdavault, V.; St-Pierre, B.; Giglioli-Guivarc’h, N.; Lanoue, A.; Besseau, S. Characterization of a spermidine hydroxycinnamoyltransferase in Malus domestica highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. J. Exp. Bot. 2015, 66, 7271–7285. [Google Scholar] [CrossRef]
- Mihajlovic, L.; Radosavljevic, J.; Burazer, L.; Smiljanic, K.; Velickovic, T.C. Composition of polyphenol and polyamide compounds in common ragweed (Ambrosia artemisiifolia L.) pollen and sub-pollen particles. Phytochemistry 2015, 109, 125–132. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Sy, A.A.; Gloer, J.B. Spermidine and flavonoid conjugates from peanut (Arachis hypogaea) flowers. J. Agric. Food Chem. 2008, 56, 2960–2969. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.M.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic profiling of Portuguese propolis by LC--MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef]
- El Ghouizi, A.; El Menyiy, N.; Falcão, S.I.; Vilas-Boas, M.; Lyoussi, B. Chemical composition, antioxidant activity, and diuretic effect of Moroccan fresh bee pollen in rats. Vet. World 2020, 13, 1251. [Google Scholar] [CrossRef]
- Aličić, D.; Šubarić, D.; Jašić, M.; Pašalić, H.; Ačkar, D. Antioxidant properties of pollen. Hrana U Zdravlju I Bolesti. 2014, 3, 6–12. [Google Scholar]
- Campos, M.G.; Webby, R.F.; Markham, K.R.; Mitchell, K.A.; Da Cunha, A.P. Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J. Agric. Food Chem. 2003, 51, 742–745. [Google Scholar] [CrossRef]
- Leja, M.; Mareczek, A.; Wyżgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative properties of bee pollen in selected plant species. Food Chem. 2007, 100, 237–240. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Lu, Q. Separation and characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules 2020, 25, 1264. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Almaraz-Abarca, N.; Rivera-Rodríguez, D.M.; Arráez-Román, D.; Segura-Carretero, A.; Sánchez-González, J.D.J.; Delgado-Alvarado, A.; Ávila-Reyes, J.A. Los fenoles del polen del género Zea. Acta Botánica Mex. 2013, 105, 59–85. [Google Scholar] [CrossRef][Green Version]
- Qin, F.; Sun, H. Immunosuppressive activity of Pollen Typhae ethanol extract on the immune responses in mice. J. Ethnopharmacol. 2005, 102, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Castiglioni, S.; Maldarizzi, G.; Carloni, P.; Lucini, L. UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. Int. J. Food Sci. Technol. 2019, 54, 335–346. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Gercek, Y.C.; Celik, S.; Bayram, S. Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules 2022, 27, 117. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Karkar, B. The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. J. Food Biochem. 2019, 43, e12888. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, F.; Baldermann, S.; Murata, A.; Tu, Y.; Asai, T.; Watanabe, N. Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs. J. Sci. Food Agric. 2012, 92, 2128–2132. [Google Scholar] [CrossRef]
- Zeiss, D.R.; Piater, L.A.; Dubery, I.A. Hydroxycinnamate amides: Intriguing conjugates of plant protective metabolites. Trends Plant Sci. 2021, 26, 184–195. [Google Scholar] [CrossRef]
- Kim, S.B.; Liu, Q.; Ahn, J.H.; Jo, Y.H.; Turk, A.; Hong, I.P.; Han, S.M.; Hwang, B.Y.; Lee, M.K. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorg. Chem. 2018, 81, 127–133. [Google Scholar] [CrossRef]
- Su, J.; Yang, X.; Lu, Q.; Liu, R. Antioxidant and anti-tyrosinase activities of bee pollen and identification of active components. J. Apic. Res. 2021, 60, 297–307. [Google Scholar] [CrossRef]
- Wang, R.; Su, G.; Wang, L.; Xia, Q.; Liu, R.; Lu, Q.; Zhang, J. Identification and mechanism of effective components from rape (Brassica napus L.) bee pollen on serum uric acid level and xanthine oxidase activity. J. Funct. Foods 2018, 47, 241–251. [Google Scholar] [CrossRef]
- Dou, W.; Zhang, J.; Li, H.; Kortagere, S.; Sun, K.; Ding, L.; Ren, G.; Wang, Z.; Mani, S. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway. J. Nutr. Biochem. 2014, 25, 923–933. [Google Scholar] [CrossRef]
- Šarić, A.; Balog, T.; Sobočanec, S.; Kušić, B.; Šverko, V.; Rusak, G.; Likić, S.; Bubalo, D.; Pinto, B.; Reali, D.; et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem. Toxicol. 2009, 47, 547–554. [Google Scholar] [CrossRef]
- Tomás-Lorente, F.; Garcia-Grau, M.M.; Nieto, J.L.; Tomás-Barberán, F.A. Flavonoids from Cistus ladanifer bee pollen. Phytochemistry 1992, 31, 2027–2029. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Tomás-Lorente, F.; Ferreres, F.; Garcia-Viguera, C. Flavonoids as biochemical markers of the plant origin of bee pollen. J. Sci. Food Agric. 1989, 47, 337–340. [Google Scholar] [CrossRef]
- Ferreres, F.; Pereira, D.M.; Valentão, P.; Andrade, P.B. First report of non-coloured flavonoids in Echium plantagineum bee pollen: Differentiation of isomers by liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 801–806. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Gašić, U.M.; Nedić, N.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. Lwt 2019, 112, 108244. [Google Scholar] [CrossRef]
- Mosić, M.; Trifković, J.; Vovk, I.; Gašić, U.; Tešić, Ž.; Šikoparija, B.; Milojković-Opsenica, D. Phenolic composition influences the health-promoting potential of bee-pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; CFR Ferreira, I.; et al. Evaluation of the phenolic profile of Castanea sativa Mill. by-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef]
- Adaškevičiūtė, V.; Kaškonienė, V.; Barčauskaitė, K.; Kaškonas, P.; Maruška, A. The impact of fermentation on bee pollen polyphenolic compounds composition. Antioxidants 2022, 11, 645. [Google Scholar] [CrossRef]
Peak | Rt (min) | λmax (nm) | [M-H]− m/z | MS2 (% Base Peak) | Proposed Compound |
---|---|---|---|---|---|
1 | 12.3 | 255,354 | 623 | 315 (100) | Isorhamnetin-O-hexosyl-deoxyhexoside a,c,d |
2 | 12.6 | 255, 354 | 609 | 315 (100) | Isorhamnetin-O-pentosyl-hexoside a,c |
3 | 13.0 | 255, 355 | 609 | 315 (100) | Isorhamnetin-O-pentosyl-hexoside (isomer) a,c |
4 | 13.6 | 254, 354 | 623 | 315(100) | Isorhamnetin-O-hexosyl-deoxyhexoside (isomer) a,c,d |
5 | 14.3 | 255, 354 | 477 | 314 (100), 315 (51) | Isorhamnetin-O-hexoside a,c |
6 | 15.1 | 295 | 630 | 494 (86), 468 (100), 358 (7) | N1, N5, N10-tricaffeoylspermidine a,e |
7 | 15.8 | 295, 315 | 630 | 494 (86), 468 (100), 358 (7) | N1, N5, N10-tricaffeoylspermidine (isomer) a,e |
8 | 16.2 | 298, 318 | 630 | 494 (86), 468 (100), 358 (7) | N1, N5, N10-tricaffeoylspermidine (isomer) a,e |
9 | 16.8 | 299, 319 | 630 | 494 (86), 468 (100), 358 (7) | N1, N5, N10-tricaffeoylspermidine (isomer) a,e |
10 | 18.0 | 296, 315 | 614 | 468 (21), 478 (100). 452 (78), 358 (18) | N1-p-coumaroyl-N5, N10-dicaffeoylspermidine a,f |
11 | 19.3 | 297, 311 | 614 | 494 (24), 478 (100). 452 (78), 358 (18) | N1-p-coumaroyl-N5, N10-dicaffeoylspermidine (isomer) a,f |
12 | 19.5 | 296, 319 | 644 | 508 (100), 482 (10), 468 (11) | N1-feruloyl-N5, N10-dicaffeoylspermidine a,g,h |
13 | 20.0 | 296, 319 | 644 | 508 (100), 482 (76), 468 (4) | N1-feruloyl-N5, N10-dicaffeoylspermidine (isomer) a,g,h |
14 | 22.2 | 294, 310 | 598 | 478 (41), 462 (100), 452 (39), 342 (13) | N1, N5-di-p-coumaroyl-N10-caffeoylspermidine a,e |
15 | 22.8 | 298, 309 | 598 | 478 (100), 436 (11), 358 (16) | N1, N10-di-p-coumaroyl-N5-caffeoylspermidine a,e |
16 | 24.1 | 294, 308 | 582 | 462 (100), 436 (10), 342 (6) | N1, N5, N10-tri-p-coumaroylspermidine a,e,f |
17 | 25.1 | 289 | 271 | 177 (15), 151 (100) | Naringenin a,b |
18 | 25.5 | 293, 308 | 582 | 462 (100), 436 (10), 342 (6) | N1, N5, N10-tri-p-coumaroylspermidine (isomer) a,e,f |
19 | 26.5 | 298, 308 | 582 | 462 (100), 436 (10), 342 (6) | N1, N5, N10-tri-p-coumaroylspermidine (isomer) a,e,f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Rojo, S.; Vilas-Boas, M.; Falcão, S.I. Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula. Separations 2023, 10, 270. https://doi.org/10.3390/separations10040270
Rodríguez-Flores MS, Escuredo O, Seijo MC, Rojo S, Vilas-Boas M, Falcão SI. Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula. Separations. 2023; 10(4):270. https://doi.org/10.3390/separations10040270
Chicago/Turabian StyleRodríguez-Flores, María Shantal, Olga Escuredo, María Carmen Seijo, Sergio Rojo, Miguel Vilas-Boas, and Soraia I. Falcão. 2023. "Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula" Separations 10, no. 4: 270. https://doi.org/10.3390/separations10040270
APA StyleRodríguez-Flores, M. S., Escuredo, O., Seijo, M. C., Rojo, S., Vilas-Boas, M., & Falcão, S. I. (2023). Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula. Separations, 10(4), 270. https://doi.org/10.3390/separations10040270