In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines
Abstract
:1. Introduction
2. Methodology
2.1. Plant Collection, Extraction, and Phytochemical Analysis
2.2. GC–MS Analysis
2.3. Liquid Chromatography–Mass Spectrometry (LC–MS) Analyses
2.4. Estimation of Total Phenolic and Flavonoid Contents
2.5. In Vitro Cytotoxicity of B. hochstetteri Extracts
2.6. Determination of Early and Late Apoptosis through Binding of Annexin V to Phosphatidylserine
2.7. Caspase Activation Assay
2.8. Anti Bcl-2 Activity
2.9. DNA Fragmentation Analysis
2.10. Statistical Analysis
3. Results
3.1. Phytochemical Analysis; Total Phenolic and Flavonoid Contents
3.2. GC–MS and LC–MS Analysis
3.3. In Vitro Cytotoxicity of B. hochstetteri Extracts
3.4. Effects of Extracts on Early and Late Apoptosis; Flow Cytometry-Based Mechanistic Pathway Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Shamsi, H.O.; Abu-Gheida, I.H.; Iqbal, F.; Al-Awadhi, A. (Eds.) Cancer in the Arab World, 1st ed.; Springer: Singapore, 2022; ISBN 9789811679476. [Google Scholar]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative Approaches for Cancer Treatment: Current Perspectives and New Challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The Challenge of Drug Resistance in Cancer Treatment: A Current Overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, R.S.; Karam, C.; Fostok, S.; El-Jouni, W.; Barbour, E.K. Anti-Inflammatory Bioactivities in Plant Extracts. J. Med. Food 2007, 10, 1–10. [Google Scholar] [CrossRef]
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; et al. Targeting Cancer Signaling Pathways by Natural Products: Exploring Promising Anti-Cancer Agents. Biomed. Pharmacother. 2022, 150, 113054. [Google Scholar] [CrossRef] [PubMed]
- WHO Traditional Medicine Strategy: 2014–2023. Available online: https://apps.who.int/iris/bitstream/handle/10665/92455/9789241506090_eng.pdf (accessed on 28 September 2022).
- Ghule, B.V.; Yeole, P.G. In Vitro and in Vivo Immunomodulatory Activities of Iridoids Fraction from Barleria Prionitis Linn. J. Ethnopharmacol. 2012, 141, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Cheng, Y.-C. Old Formula, New Rx: The Journey of PHY906 as Cancer Adjuvant Therapy. J. Ethnopharmacol. 2012, 140, 614–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Chandan, B.K.; Prabhakar, A.; Taneja, S.C.; Singh, J.; Qazi, G.N. Chemistry and Hepatoprotective Activity of an Active Fraction from Barleria Prionitis Linn. in Experimental Animals. Phytother. Res. 2005, 19, 391–404. [Google Scholar] [CrossRef]
- Kosmulalage, K.S.; Zahid, S.; Udenigwe, C.C.; Akhtar, S.; Ata, A.; Samarasekera, R. Glutathione S-Transferase, Acetylcholinesterase Inhibitory and Antibacterial Activities of Chemical Constituents of Barleria Prionitis. Z. Naturforsch. B J. Chem. Sci. 2007, 62, 580–586. [Google Scholar] [CrossRef]
- Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; El-Hendawy, S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). Plants 2021, 11, 82. [Google Scholar] [CrossRef]
- Lekhak, M.M.; Patil, S.S.; Deshmukh, P.V.; Lekhak, U.M.; Kumar, V.; Rastogi, A. Genus Barleria L. (Acanthaceae): A Review of Its Taxonomy, Cytogenetics, Phytochemistry and Pharmacological Potential. J. Pharm. Pharmacol. 2022, 74, 812–842. [Google Scholar] [CrossRef]
- Agyare, C.; Obiri, D.D.; Boakye, Y.D.; Osafo, N. Anti-Inflammatory and Analgesic Activities of African Medicinal Plants. In Medicinal Plant Research in Africa; Elsevier: Amsterdam, The Netherlands, 2013; pp. 725–752. ISBN 9780124059276. [Google Scholar]
- Davies, N.W. Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicon and Carbowax 20M Phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Hanafi, H.H.; Irawan, C.; Rochaeni, H.; Sulistiawaty, L.; Roziafanto, A.N.; Supriyono, S.S. Phytochemical Screening, LC-MS Studies and Antidiabetic Potential of Methanol Extracts of Seed Shells of Archidendron Bubalinum (Jack) I.c. Nielson (Julang Jaling) from Lampung, Indonesia. Pharmacogn. J. 2018, 10, s77–s82. [Google Scholar] [CrossRef] [Green Version]
- Selvin, A.S.M.; Ismael, M.F.; Ricardo, S.A.; Jhunior, A.M.F.; da María, C.C.F. Determination of Total Phenolic Compounds, Antioxidant Activity and Nutrients in Brazil Nuts (Bertholletia Excelsa H. B. K.). J. Med. Plant Res. 2020, 14, 373–376. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Marfell, B.J.; Scott, A.P.; Waterhouse, N.J. Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 2016, pdb-prot087288. [Google Scholar] [CrossRef]
- Ravid, T.; Tsaba, A.; Gee, P.; Rasooly, R.; Medina, E.A.; Goldkorn, T. Ceramide Accumulation Precedes Caspase-3 Activation during Apoptosis of A549 Human Lung Adenocarcinoma Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L1082–L1092. [Google Scholar] [CrossRef] [Green Version]
- Moraes, V.W.R.; Caires, A.C.F.; Paredes-Gamero, E.J.; Rodrigues, T. Organopalladium Compound 7b Targets Mitochondrial Thiols and Induces Caspase-Dependent Apoptosis in Human Myeloid Leukemia Cells. Cell Death Dis. 2013, 4, e658. [Google Scholar] [CrossRef] [Green Version]
- Kyrylkova, K.; Kyryachenko, S.; Leid, M.; Kioussi, C. Detection of Apoptosis by TUNEL Assay. Methods Mol. Biol. 2012, 887, 41–47. [Google Scholar] [CrossRef]
- Ros, M.; Pernice, M.; Le Guillou, S.; Doblin, M.A.; Schrameyer, V.; Laczka, O. Colorimetric Detection of Caspase 3 Activity and Reactive Oxygen Derivatives: Potential Early Indicators of Thermal Stress in Corals. J. Mar. Biol. 2016, 2016, 6825949. [Google Scholar] [CrossRef]
- Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Kamal, M.A.; Ojha, S. Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des. 2016, 22, 3237–3264. [Google Scholar] [CrossRef] [PubMed]
- Paciana, I.; Butnariu, M. Highlighting the Compounds with Pharmacological Activity from Some Medicinal Plants from the Area of Romania. Med. Aromat. Plants 2021, 10, 370. [Google Scholar]
- Breeta, R.D.I.E.; Grace, V.M.B.; Wilson, D.D. Methyl Palmitate-A Suitable Adjuvant for Sorafenib Therapy to Reduce in Vivo Toxicity and to Enhance Anti-Cancer Effects on Hepatocellular Carcinoma Cells. Basic Clin. Pharmacol. Toxicol. 2021, 128, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Letawe, C.; Boone, M.; Piérard, G.E. Digital Image Analysis of the Effect of Topically Applied Linoleic Acid on Acne Microcomedones. Clin. Exp. Dermatol. 1998, 23, 56–58. [Google Scholar] [CrossRef] [PubMed]
- McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Phytol. Food Chem. Toxicol. 2010, 48 (Suppl. 3), S59–S63. [Google Scholar] [CrossRef]
- Abraham, T.W.; Höfer, R. Lipid-Based Polymer Building Blocks and Polymers. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 15–58. [Google Scholar]
- Cárdeno, A.; Aparicio-Soto, M.; Montserrat-de la Paz, S.; Bermudez, B.; Muriana, F.J.G.; Alarcón-de-la-Lastra, C. Squalene Targets Pro- and Anti-Inflammatory Mediators and Pathways to Modulate over-Activation of Neutrophils, Monocytes and Macrophages. J. Funct. Foods 2015, 14, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Rangel, M.L.; Guerrero-Analco, J.A.; Monribot-Villanueva, J.L.; Kiel-Martínez, A.L.; Avendaño-Reyes, S.; Díaz Abad, J.P.; Bonilla-Landa, I.; Dávalos-Sotelo, R.; Olivares-Romero, J.L.; Angeles, G. Anatomical and Chemical Characteristics of Leaves and Branches of Juniperus Deppeana Var. Deppeana (Cupressaceae): A Potential Source of Raw Materials for the Perfume and Sweet Candies Industries. Ind. Crops Prod. 2018, 113, 50–54. [Google Scholar] [CrossRef]
- Yan, N.; Liu, Y.; Liu, L.; Du, Y.; Liu, X.; Zhang, H.; Zhang, Z. Bioactivities and Medicinal Value of Solanesol and Its Accumulation, Extraction Technology, and Determination Methods. Biomolecules 2019, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Van, H.T.M.; Yang, S.H.; Khadka, D.B.; Kim, Y.-C.; Cho, W.-J. Total Synthesis of 8-Oxypseudopalmatine and 8-Oxypseudoberberine via Ring-Closing Metathesis. Tetrahedron 2009, 65, 10142–10148. [Google Scholar] [CrossRef]
- Comprehensive Natural Products Chemistry; Meth-Cohn, O.; Barton, D. (Eds.) Pergamon, an Elsevier Science Imprint: Oxford, UK, 1999; ISBN 9780080912837. [Google Scholar]
- Xiong, Y.; Wu, X.; Rao, L. Tetrastigma Hemsleyanum (Sanyeqing) Root Tuber Extracts Induces Apoptosis in Human Cervical Carcinoma HeLa Cells. J. Ethnopharmacol. 2015, 165, 46–53. [Google Scholar] [CrossRef]
- López, M.; Martínez, F.; Del Valle, C.; Ferrit, M.; Luque, R. Study of Phenolic Compounds as Natural Antioxidants by a Fluorescence Method. Talanta 2003, 60, 609–616. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, H.S.; Song, Y.-S. Genistein as a Potential Anticancer Agent against Ovarian Cancer. J. Tradit. Complement. Med. 2012, 2, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Adjakly, M.; Ngollo, M.; Boiteux, J.-P.; Bignon, Y.-J.; Guy, L.; Bernard-Gallon, D. Genistein and Daidzein: Different Molecular Effects on Prostate Cancer. Anticancer Res. 2013, 33, 39–44. [Google Scholar]
- Hwang, K.-A.; Choi, K.-C. Anticarcinogenic Effects of Dietary Phytoestrogens and Their Chemopreventive Mechanisms. Nutr. Cancer 2015, 67, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled Demolition at the Cellular Level. Nat. Rev. Mol. Cell Biol. 2008, 9, 231–241. [Google Scholar] [CrossRef]
- Moongkarndi, P.; Kosem, N.; Kaslungka, S.; Luanratana, O.; Pongpan, N.; Neungton, N. Antiproliferation, Antioxidation and Induction of Apoptosis by Garcinia Mangostana (Mangosteen) on SKBR3 Human Breast Cancer Cell Line. J. Ethnopharmacol. 2004, 90, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Cai, X.; Lu, W.; Zhou, F.; Huo, J. Growth Inhibition and Induction of Apoptosis in SHG-44 Glioma Cells by Chinese Medicine Formula “Pingliu Keli”. Evid. Based. Complement. Alternat. Med. 2011, 2011, 958243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.H.; Kılıc, O.; Bursal, E. Anticholinergic, Antidiabetic and Antioxidant Activities of Anatolian Pennyroyal (Mentha Pulegium)-Analysis of Its Polyphenol Contents by LC-MS/MS. Biocatal. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nordin, N.; Majid, N.A.; Hashim, N.M.; Rahman, M.A.; Hassan, Z.; Ali, H.M. Liriodenine, an Aporphine Alkaloid from Enicosanthellum Pulchrum, Inhibits Proliferation of Human Ovarian Cancer Cells through Induction of Apoptosis via the Mitochondrial Signaling Pathway and Blocking Cell Cycle Progression. Drug Des. Dev. 2015, 9, 1437–1448. [Google Scholar]
- Li, L.; Xu, Y.; Wang, B. Liriodenine Induces the Apoptosis of Human Laryngocarcinoma Cells via the Upregulation of P53 Expression. Oncol. Lett. 2015, 9, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Gooderham, N.J. Mechanisms of Induction of Cell Cycle Arrest and Cell Death by Cryptolepine in Human Lung Adenocarcinoma A549 Cells. Toxicol. Sci. 2006, 91, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.-A.; Sowa, Y.; Murata, H.; Takagi, K.; Nakanishi, R.; Aoki, S.; Yoshikawa, M.; Kobayashi, M.; Sakabe, T.; Kubo, T.; et al. The Plant Alkaloid Cryptolepine Induces P21WAF1/CIP1 and Cell Cycle Arrest in a Human Osteosarcoma Cell Line. Int. J. Oncol. 2007, 31, 915–922. [Google Scholar] [CrossRef]
- Laryea, D.; Isaksson, A.; Wright, C.W.; Larsson, R.; Nygren, P. Characterization of the Cytotoxic Activity of the Indoloquinoline Alkaloid Cryptolepine in Human Tumour Cell Lines and Primary Cultures of Tumour Cells from Patients. Investig. New Drugs 2009, 27, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. Selective Anticancer Activity of Hirsutine against HER2positive Breast Cancer Cells by Inducing DNA Damage. Oncol. Rep 2015, 33, 2072–2076. [Google Scholar] [CrossRef] [Green Version]
- Lou, C.; Takahashi, K.; Irimura, T.; Saiki, I.; Hayakawa, Y. Identification of Hirsutine as an Anti-Metastatic Phytochemical by Targeting NF-ΚB Activation. Int. J. Oncol. 2014, 45, 2085–2091. [Google Scholar] [CrossRef] [Green Version]
- Liew, S.Y.; Looi, C.Y.; Paydar, M.; Cheah, F.K.; Leong, K.H.; Wong, W.F.; Mustafa, M.R.; Litaudon, M.; Awang, K. Subditine, a New Monoterpenoid Indole Alkaloid from Bark of Nauclea Subdita (Korth.) Steud. Induces Apoptosis in Human Prostate Cancer Cells. PLoS ONE 2014, 9, e87286. [Google Scholar] [CrossRef]
- Yang, X.-K.; Xu, M.-Y.; Xu, G.-S.; Zhang, Y.-L.; Xu, Z.-X. In Vitro and in Vivo Antitumor Activity of Scutebarbatine A on Human Lung Carcinoma A549 Cell Lines. Molecules 2014, 19, 8740–8751. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, T.A.; Borralho, P.M.; Dewanjee, S.; Mulhovo, S.; Rodrigues, C.M.P.; Ferreira, M.-J.U. Monoterpene Bisindole Alkaloids, from the African Medicinal Plant Tabernaemontana Elegans, Induce Apoptosis in HCT116 Human Colon Carcinoma Cells. J. Ethnopharmacol. 2013, 149, 463–470. [Google Scholar] [CrossRef]
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow Cytometry: Basic Principles and Applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef]
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Mahasneh, A.M. Antiproliferative Activity of Plant Extracts Used against Cancer in Traditional Medicine. Sci. Pharm. 2010, 78, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krysko, D.V.; Vanden Berghe, T.; D’Herde, K.; Vandenabeele, P. Apoptosis and Necrosis: Detection, Discrimination and Phagocytosis. Methods 2008, 44, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Regulation of Caspase Activation in Apoptosis: Implications in Pathogenesis and Treatment of Disease. Clin. Exp. Pharmacol. Physiol. 1999, 26, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.J.; Jun, D.Y.; Lee, J.Y.; Woo, M.H.; Yang, C.H.; Kim, Y.H. Apoptogenic Activity of 2α,3α-Dihydroxyurs-12-Ene-28-Oic Acid from Prunella Vulgaris Var. Lilacina Is Mediated via Mitochondria-Dependent Activation of Caspase Cascade Regulated by Bcl-2 in Human Acute Leukemia Jurkat T Cells. J. Ethnopharmacol. 2011, 135, 626–635. [Google Scholar] [CrossRef]
- Elkady, A.I.; Abuzinadah, O.A.; Baeshen, N.A.; Rahmy, T.R. Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber Officinale. J. Biomed. Biotechnol. 2012, 2012, 614356. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Yeretssian, G.; Doiron, K.; Hussain, S.N.; Saleh, M. The Caspase-1 Digestome Identifies the Glycolysis Pathway as a Target during Infection and Septic Shock. J. Biol. Chem. 2007, 282, 36321–36329. [Google Scholar] [CrossRef] [Green Version]
- Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 Domains Either Sensitize or Activate Mitochondrial Apoptosis, Serving as Prototype Cancer Therapeutics. Cancer Cell 2002, 2, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Letai, A.; Sorcinelli, M.D.; Beard, C.; Korsmeyer, S.J. Antiapoptotic BCL-2 Is Required for Maintenance of a Model Leukemia. Cancer Cell 2004, 6, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Certo, M.; Del Gaizo Moore, V.; Nishino, M.; Wei, G.; Korsmeyer, S.; Armstrong, S.A.; Letai, A. Mitochondria Primed by Death Signals Determine Cellular Addiction to Antiapoptotic BCL-2 Family Members. Cancer Cell 2006, 9, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and Molecular Targeting Therapy in Cancer. Biomed Res. Int. 2014, 2014, 150845. [Google Scholar] [CrossRef] [Green Version]
- Gerl, R.; Vaux, D.L. Apoptosis in the Development and Treatment of Cancer. Carcinogenesis 2005, 26, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshabi, A.M.; Alkahtani, S.A.; Shaikh, I.A.; Orabi, M.A.A.; Abdel-Wahab, B.A.; Walbi, I.A.; Habeeb, M.S.; Khateeb, M.M.; Hoskeri, J.H.; Shettar, A.K.; et al. Phytochemicals from Corchorus Olitorius Methanolic Extract Induce Apoptotic Cell Death via Activation of Caspase-3, Anti-Bcl-2 Activity, and DNA Degradation in Breast and Lung Cancer Cell Lines. J. King Saud Univ. Sci. 2022, 34, 102238. [Google Scholar] [CrossRef]
- Sawarkar, H.A.; Kashyap, P.P.; Pandey, A.K.; Singh, M.K.; Kaur, C.D. Antimicrobial and Cytotoxic Activities of Barleria Prionitis and Barleria Grandiflora: A Comparative Study. Bangladesh J. Pharmacol. 2016, 11, 802. [Google Scholar] [CrossRef]
- El-Halawany, A.M.; Abdallah, H.M.; Hamed, A.R.; Khalil, H.E.; Almohammadi, A.M. Phenolics from Barleria Cristata Var. Alba as Carcinogenesis Blockers against Menadione Cytotoxicity through Induction and Protection of Quinone Reductase. BMC Complement. Altern. Med. 2018, 18, 163. [Google Scholar] [CrossRef] [PubMed]
- Manapradit, N.; Poeaim, S.; Charoenying, P. Cytotoxicity and Antimicrobial Activities of Leaf Extracts from Barleria Strigosa. Int. J. Agric. Technol 2015, 11, 551–561. [Google Scholar]
Tests | Hexane Extract | Ethyl Acetate Extract | Methanol Extract | Aqueous Extract |
---|---|---|---|---|
Alkaloids | − | − | + | − |
Flavonoids | − | − | + | + |
Glycosides | − | − | + | − |
Phenols | − | − | + | + |
Saponins | − | − | − | + |
Tannins | − | − | − | − |
Terpenoids | − | − | + | + |
Steroids | − | + | + | − |
S. No | Fraction | Total Phenolic Content (µg GAE/g of d. wt.) | Flavonoid Content (µg QE/g of d. wt.) |
---|---|---|---|
1 | Methanolic fraction | 3210 | 1863 |
2 | Aqueous fraction | 2552 | 972 |
S/No | Compound Name | Retention Time | Base m/z | Nature | Uses |
---|---|---|---|---|---|
1 | Beta-Caryophyllene | 17.181 | 91.05 | Primary sesquiterpene | Potent anti-inflammatory, antimicrobial, antibacterial, and antioxidant compound [24] |
2 | 9-Aristolene | 22.432 | 105.10 | Terpenoids | Cosmetics, flavor, and fragrance [25] |
3 | Methyl palmitate | 28.406 | 74.05 | Fatty acid methyl ester | Anti-inflammatory, cytotoxic, and anti-fibrotic properties [26] |
4 | Linolenic acid methyl ester | 31.759 | 79.10 | Methyl ester fatty acid | Cosmetics, flavor, and fragrance [27] |
5 | Iso-Phytol acetate | 31.983 | 71.10 | Aromatic compound | Detergents, cosmetics, and fragrances [28] |
6 | Methyl Iso-stearate | 74.05 | 74.05 | Methyl ester | Non-ionic surfactant, solubilizes chemical species by dispersing clumps and unfolding proteins [29] |
7 | Squalene | 43.234 | 69.10 | Unsaturated hydrocarbon (terpene) | Anti-inflammatory [30] |
8 | Tetraprenol | 44.960 | 69.10 | Di-terpenoid alcohol | Perfume ingredient and a raw material for synthesizing vitamins such as vitamins A and E [31] |
9 | Solanesol | 46.883 | 69.10 | Non-cyclic terpene alcohol | Antimicrobial, anti-tumor, anti-inflammatory, and anti-ulcer activities [32] |
LC–MS based profiling of methanol extract of B. hochstetteri | |||||
S/No | Structure | Name of Compound | Retention Time | Nature | Uses |
1 | 8-Oxypseudopalmatine | 12.160 | Methyl ester | Anti-inflammatory and cytostatic activity in mammary tumor cells [33] | |
2 | N-methyl-metacryloyl-lupinin | 14.296 | Quinolizidine alkaloid | Anti-inflammatory, antioxidant, and anticancer properties [34] |
S/No | Test Sample | IC50 (µg/mL) | ||
---|---|---|---|---|
L929 Cell Line | A549 Cell Line | MCF-7 Cell Line | ||
1 | Hexane extract | 198.17 ± 0.71 | 144.53 ± 0.15 | 180.24 ± 0.075 |
2 | Ethyl acetate extract | 162.03 ± 0.29 | 202.69 ± 0.43 | 247.11 ± 0.04 |
3 | Methanol extract | 266.24 ± 0.41 | 144.30 ± 0.32 | 219.67 ± 0.085 |
4 | Aqueous extract | 323.21 ± 1.02 | 215.90 ± 0.18 | 185.65 ± 0.06 |
5 | Cisplatin (standard) | 10.74 ± 0.12 | 2.75 ± 0.03 | 12.89 ± 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkahtani, S.A.; Alshabi, A.M.; Shaikh, I.A.; Orabi, M.A.A.; Abdel-Wahab, B.A.; Walbi, I.A.; Habeeb, M.S.; Khateeb, M.M.; Shettar, A.K.; Hoskeri, J.H. In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. Separations 2022, 9, 298. https://doi.org/10.3390/separations9100298
Alkahtani SA, Alshabi AM, Shaikh IA, Orabi MAA, Abdel-Wahab BA, Walbi IA, Habeeb MS, Khateeb MM, Shettar AK, Hoskeri JH. In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. Separations. 2022; 9(10):298. https://doi.org/10.3390/separations9100298
Chicago/Turabian StyleAlkahtani, Saad Ahmed, Ali Mohamed Alshabi, Ibrahim Ahmed Shaikh, Mohamed A. A. Orabi, Basel A. Abdel-Wahab, Ismail A. Walbi, Mohammed Shafiuddin Habeeb, Masood Medleri Khateeb, Arun K. Shettar, and Joy H. Hoskeri. 2022. "In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines" Separations 9, no. 10: 298. https://doi.org/10.3390/separations9100298
APA StyleAlkahtani, S. A., Alshabi, A. M., Shaikh, I. A., Orabi, M. A. A., Abdel-Wahab, B. A., Walbi, I. A., Habeeb, M. S., Khateeb, M. M., Shettar, A. K., & Hoskeri, J. H. (2022). In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. Separations, 9(10), 298. https://doi.org/10.3390/separations9100298