Process Mineralogy of Vanadium Titanomagnetite Ore in Panzhihua, China
Abstract
:1. Introduction
2. Ore Characteristics
2.1. Ore Selection
2.2. Ore Composition
2.3. Ore Textures
2.4. Mineral Compositions and Element Distributions
3. Ore Mineral Characteristics
3.1. Ilmenite
3.2. Titanomagnetite
3.3. Gangue and Sulfide Minerals
4. Mineral Grain Sizes
4.1. Particle Size of the Embedded Minerals
4.2. Grinding Particle Size
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Fu, X.; Chu, M.; Liu, Z.; Tang, J. Life cycle assessment of the comprehensive utilisation of vanadium titano-magnetite. J. Clean. Prod. 2015, 101, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fu, G.; Chu, M.; Zhu, M. An effective and cleaner process to recovery iron, titanium, vanadium, and chromium from Hongge vanadium titanomagnetite with hydrogen-rich gases. Ironmak. Steelmak. 2021, 48, 33–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, L.; Wang, L.; Chen, D.; Wang, W.; Liu, Y.; Zhao, H.; Qi, T. A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification-direct reduction coupled process. Int. J. Miner. Metall. Mater. 2017, 24, 504–511. [Google Scholar] [CrossRef]
- Gilligan, R.; Nikoloski, A.N. The extraction of vanadium from titanomagnetites and other sources. Miner. Eng. 2020, 146, 106106. [Google Scholar] [CrossRef]
- Maphutha, M.P.; Goso, X.C. The effect of magnesia and alumina crucible wear on the smelting characteristics of titaniferous magnetite. J. S. Afr. Inst. Min. Metall. 2017, 117, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, W.; Mi, L.; Jiao, Y.; Wang, X. Kinetic Studies on Gas-Based Reduction of Vanadium Titano-Magnetite Pellet. Metals 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Bai, S. Upgrading of raw vanadium titanomagnetite concentrate. J. S. Afr. Inst. Min. Metall. 2019, 119, 957–961. [Google Scholar] [CrossRef]
- Pang, K.; Zhou, M.; Qi, L.; Shellnutt, G.; Wang, C.Y.; Zhao, D. Flood basalt-related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China. Lithos 2010, 119, 123–136. [Google Scholar] [CrossRef]
- Hu, X.; Peng, X.; Kong, L. Mechanism for Photopromoted Release of Vanadium from Vanadium Titano-Magnetite. Environ. Sci. Technol. 2018, 52, 1954–1962. [Google Scholar] [CrossRef]
- Bai, Z.; Zhong, H.; Li, C.; Zhu, W.; Hu, W. Association of cumulus apatite with compositionally unusual olivine and plagioclase in the Taihe Fe-Ti oxide ore-bearing layered mafic-ultramafic intrusion: Petrogenetic significance and implications for ore genesis. Am. Mineral. 2016, 101, 2168–2175. [Google Scholar] [CrossRef]
- She, Y.; Yu, S.; Song, X.; Chen, L.; Zheng, W.; Luan, Y. The formation of P-rich Fe–Ti oxide ore layers in the Taihe layered intrusion, SW China: Implications for magma-plumbing system process. Ore Geol. Rev. 2014, 57, 539–559. [Google Scholar] [CrossRef]
- Zhou, M.; Robinson, P.; Lesher, C.; Keays, R.; Zhang, C.; Malpas, J. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe–Ti–V Oxide Deposits, Sichuan Province, SW China. J. Petrol. 2005, 46, 2253–2280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, F.; Xing, M.; Wan, Q.; Gao, W.; Cao, S.; Chen, Z.; Cai, J. Mineralogical Characteristics of Exsolved Spinel in the Panzhihua V-Ti Magnetite Deposit, Sichuan: Implications for the Mineralization Process. Acta Geol. Sin.-Engl. Ed. 2018, 92, 1784–1797. [Google Scholar] [CrossRef]
- Bai, Z.; Zhong, H.; Li, C.; Zhu, W.; He, D.; Qi, L. Different Parental Magma Compositions of the Hongge and Panzhihua Magmatic Fe-Ti-V Oxide Deposits, Emeishan Large Igneous Province, SW China. Acta Geol. Sin.-Engl. Ed. 2014, 88, 277–278. [Google Scholar] [CrossRef]
- Pêcher, A.; Arndt, N.; Jean, A.; Bauville, A.; Ganino, C.; Athurion, C. Structure of the Panzhihua intrusion and its Fe-Ti-V deposit, China. Geosci. Front. 2013, 4, 571–581. [Google Scholar] [CrossRef]
- Ganino, C.; Arndt, N.T.; Zhou, M.-F.; Gaillard, F.; Chauvel, C. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Miner. Depos. 2008, 43, 677. [Google Scholar] [CrossRef] [Green Version]
- Peng, K.; Zhou, M.-F.; Lindsley, D.; Zhao, D.; Malpas, J. Origin of Fe–Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. J. Petrol. 2008, 49, 295–313. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, F.; Li, Y.; Liu, K.; Zhao, F. Nano-micron exsolved spinels in titanomagnetite and their implications for the formation of the Panzhihua Fe–Ti–V oxide deposit, southwest China. J. Nanosci. Nanotechnol. 2021, 21, 326–342. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Zhou, M.F. Permian peralkaline, peraluminous and metaluminous a-type granites in the panxi district, SW China: Their relationship to the emeishan mantle plume. Chem. Geol. 2007, 243, 286–316. [Google Scholar] [CrossRef]
- Teng, Y.; Yang, J.; Zuo, R.; Wang, J. Impact of urbanization and industrialization upon surface water quality: A pilot study of Panzhihua mining town. J. Earth Sci. 2011, 22, 658. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, Z.; Qiu, K.; Peng, W. Separation of Ilmenite from Vanadium Titanomagnetite by Combining Magnetic Separation and Flotation Processes. Separations 2023, 10, 95. [Google Scholar] [CrossRef]
- Liang, B.; Li, C.; Zhang, C.; Zhang, Y. Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy 2005, 76, 173–179. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, X.; Wang, H.; Li, W. On Comprehensive Utilization of Vanadium-Titanium Magnetite Resources in Panzhihua-Xichang Region of Sichuan Province. Nat. Resour. Econ. China 2017, 4, 9–13. (In Chinese) [Google Scholar]
- Wen, H.; Yang, X.; He, J. Current Situation of Mining and Separating Technologies and Comprehensive Utilization of Vanadium -titanium Magnetite Resource in Panxi. Multipurp. Util. Miner. Resour. 2014, 6, 10–14. (In Chinese) [Google Scholar] [CrossRef]
- Lu, B. Practical Application of Tailings Discarding Technology by Magnetic Pulley in Midi Concentrator. Min. Metall. Eng. 2014, 2, 61–63. (In Chinese) [Google Scholar] [CrossRef]
- YB/T 4031-2015; Titanium Concentrate (Rock Minerals). Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2015. (In Chinese)
- Hao, Z.; Fei, H.; Liu, L.; Turner, S. Comprehensive Utilization of Vanadium-Titanium Magnetite Deposits in China Has Come to a New Level. Acta Geol. Sin.-Engl. Ed. 2012, 87, 286–287. [Google Scholar]
- Liu, P.; Zhou, M.; Chen, W.; Boone, M.; Cnudde, V. Using Multiphase Solid Inclusions to Constrain the Origin of the Baima Fe–Ti–(V) Oxide Deposit, SW China. J. Petrol. 2015, 55, 951–976. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wang, L.; Qu, J.; Qi, T. Process Mineralogical Characteristics and Ore Value of Typical Vanadium Titanium Magnetite in China. J. Northeast. Univ. (Nat. Sci.) 2020, 41, 275–281. (In Chinese) [Google Scholar] [CrossRef]
- Ursula, S.; Dominique, L.; Michael, B.; Ralf, E. The Titanomagnetite–Ilmenite Equilibrium: New Experimental Data and Thermo-oxybarometric Application to the Crystallization of Basic to Intermediate Rocks. J. Petrol. 2008, 49, 1161–1185. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Meng, C.; Fan, Z.; Liang, G. Process Mineralogy of Panzhihua Vanadium-Titanium Magnetite; Sichuan Science Press: Chengdu, China, 1998; pp. 43–79. (In Chinese) [Google Scholar]
- Fu, W.; Xie, H. Progress in Technologies of Vanadium-Bearing Titanomagnetite Smelting in PanGang. Steel Res. Int. 2011, 82, 501–504. [Google Scholar] [CrossRef]
- Pang, Z.; Jiang, Y.; Ling, J.; Lü, X.; Yan, Z. Blast furnace ironmaking process with super high TiO2 in the slag:Density and surface tension of the slag. Int. J. Miner. Metall. Mater. 2022, 29, 1170–1178. [Google Scholar] [CrossRef]
- Zhu, F.; Jiao, Y.; Li, L.; Zhang, D.; Ma, S.; Qiu, K. The status and trends of mineral processing technology for vanadic titanomagnetite in Pan-xi area. Min. Metall. 2021, 4, 26–32. (In Chinese) [Google Scholar] [CrossRef]
- Hu, T.; Sun, T.; Kou, J.; Geng, C.; Wang, X.; Chen, C. Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. Int. J. Miner. Process. 2017, 165, 28–33. [Google Scholar] [CrossRef]
- Du, G.; Li, Z.; Zhang, J.; Mao, H.; Ma, S.; Fan, C.; Zhu, Q. Chlorination behaviors for green and efficient vanadium recovery from tailing of refining crude titanium tetrachloride. J. Hazard. Mater. 2021, 420, 126501. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, S.; Ma, Z.; Qi, L.; Peng, W.; Li, K.; Qiu, K. Preparation of TiCl4 from panzhihua ilmenite concentrate by boiling chlorination. J. Mater. Res. Technol. 2023, 23, 2703–2718. [Google Scholar] [CrossRef]
- Li, R.; Liu, T.; Zhang, Y.; Huang, J.; Xu, C. Efficient Extraction of Vanadium from Vanadium–Titanium Magnetite Concentrate by Potassium Salt Roasting Additives. Minerals 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, D.; Chu, J.; Wang, W.; Li, Y.; Qi, T. Recovery of titanium and vanadium from titanium–vanadium slag obtained by direct reduction of titanomagnetite concentrates. Rare Met. 2022, 5, 1688–1696. [Google Scholar] [CrossRef]
- Li, L.; Zhu, F.; Deng, P.; Zhang, D.; Jia, Y.; Li, K.; Kong, L.; Liu, D. Behavior of magnesium impurity during carbochlorination of magnesium-bearing titanium slag in chloride media. J. Mater. Res. Technol. 2021, 13, 204–215. [Google Scholar] [CrossRef]
- Genshaft, Y.S.; Gapeev, A.K.; Tselmovich, V.A. Characteristic features of the implantation of Al, Mg, and Mn impurity atoms into the titanomagnetite structure. Izv. Phys. Solid Earth 2008, 44, 73–78. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, L.N.; Chen, D.S.; Wang, W.J.; Liu, Y.H.; Zhao, H.X.; Qi, T. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite. Int. J. Miner. Metall. Mater. 2018, 25, 131–144. [Google Scholar] [CrossRef]
- Cai, J.; Deng, J.; Wang, L.; Hu, M.; Xu, H.; Hou, X.; Wu, B.; Li, S. Reagent types and action mechanisms in ilmenite flotation: A review. Int. J. Miner. Metall. Mater. 2022, 29, 1656–1669. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, W.; Ma, X.; Li, J.; Chen, L.; Yao, H. Analysis of the Application Potential of Coffee Oil as an Ilmenite Flotation Collector. Minerals 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, X.; Ye, P. Recovery of vanadium from the precipitate obtained by purifying the wash water formed in refining crude TiCl4. Hydrometallurgy 2011, 110, 40–43. [Google Scholar] [CrossRef]
- Linton, J.A.; Fei, Y.; Navrotsky, A. The MgTiO3-FeTiO3 join at high pressure and temperature. Am. Mineral. 1999, 84, 1595–1603. [Google Scholar] [CrossRef]
- Akaogi, M.; Tajima, T.; Okano, M.; Kojitani, H. High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds. Minerals 2019, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Dai, S.; Wang, Q. Influence of different comminution flowsheets on the separation of vanadium titano-magnetite. Miner. Eng. 2020, 149, 106268. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, J.; Andrew, D.S.; Ai, Y.; Li, Y.; Zhao, L. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos 2009, 113, 369–392. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Deng, J.; Liu, S. Influence of particle size on flotation separation of ilmenite, olivine, and pyroxene. Physicochem. Probl. Miner. Process. 2021, 57, 106–117. [Google Scholar] [CrossRef]
- Lehmann, M.N.; Kaur, P.; Pennifold, R.M.; Dunn, J.G. A comparative study of the dissolution of hexagonal and monoclinic pyrrhotites in cyanide solution. Hydrometallurgy 2000, 55, 255–273. [Google Scholar] [CrossRef]
- Parapari, P.S.; Irannajad, M.; Mehdilo, A. Effect of acid surface dissolution pretreatment on the selective flotation of ilmenite from olivine and pyroxene. Int. J. Miner. Process. 2017, 167, 49–60. [Google Scholar] [CrossRef]
- Chen, Q.; Spetzler, H.A.; Getting, I.C.; Yoneda, A. Selected elastic moduli and their temperature derivatives for olivine and garnet with different Mg/(Mg+Fe) contents: Results from GHz ultrasonic interferometry. Geophys. Res. Lett. 1996, 23, 5–8. [Google Scholar] [CrossRef]
- He, B.; Tian, X.; Sun, Y.; Yang, C.; Zeng, Y.; Wang, Y.; Zhang, S.; Pi, Z. Recovery of iron oxide concentrate from high-sulfur and low-grade pyrite cinder using an innovative beneficiating process. Hydrometallurgy 2010, 104, 241–246. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Y.; Cao, P.; Li, C.; Lai, S.; Wang, X. Process mineralogy characteristics of acid leaching residue produced in low-temperature roasting-acid leaching pretreatment process of refractory gold concentrates. Int. J. Miner. Metall. Mater. 2018, 25, 1132–1139. [Google Scholar] [CrossRef]
- Luganov, V.A.; Shabalin, V.I. Thermal Dissociation of Pyrite During Processing of Pyrite-Containing Raw Materials. Can. Metall. Q. 2013, 29, 169–174. [Google Scholar] [CrossRef]
Batch Number | TiO2 (%) | TFe (%) |
---|---|---|
No. 1 | 11.10 | 27.71 |
No. 2 | 11.18 | 28.07 |
No. 3 | 11.19 | 27.90 |
No. 4 | 11.16 | 27.88 |
No. 5 | 11.15 | 27.06 |
No. 6 | 11.18 | 27.33 |
No. 7 | 10.90 | 27.96 |
No. 8 | 10.82 | 27.43 |
No. 9 | 11.34 | 27.65 |
Average | 11.02 ± 0.16 | 27.67 ± 0.33 |
Chemical Composition | >4.75 mm (%) | 4.75–0.30 mm (%) | 0.30–0.15 mm (%) | 0.15–0.074 mm (%) | <0.074 mm (%) | Mixed Sample (%) |
---|---|---|---|---|---|---|
TiO2 | 10.86 | 11.09 | 11.33 | 11.53 | 9.04 | 11.10 |
TFe | 27 | 28.7 | 29.2 | 29.5 | 21.7 | 27.7 |
V2O5 | 0.255 | 0.268 | 0.261 | 0.243 | 0.172 | 0.223 |
Cr2O3 | — | — | — | — | — | 0.024 |
FeO | 21.44 | 22.51 | 23.18 | 24.66 | 20.37 | 21.04 |
CaO | 7.7 | 7.03 | 6.92 | 6.83 | 7.73 | 7.26 |
MgO | 6.92 | 6.46 | 6.64 | 6.66 | 9.11 | 6.89 |
SiO2 | 24.79 | 22.94 | 22.36 | 21.9 | 27.8 | 23.57 |
Al2O3 | 8.89 | 9.02 | 8.55 | 8.36 | 9.89 | 8.91 |
MnO | 0.288 | 0.281 | 0.293 | 0.303 | 0.236 | 0.288 |
S | 0.528 | 0.568 | 0.623 | 0.664 | 0.871 | 0.592 |
P2O5 | 0.046 | 0.046 | 0.048 | 0.045 | 0.098 | 0.056 |
Na2O | 0.841 | 0.788 | 0.825 | 0.949 | 0.857 | 0.853 |
K2O | 0.072 | 0.061 | 0.082 | 0.086 | 0.087 | 0.075 |
Co | — | — | — | — | — | 0.023 |
Ni | — | — | — | — | — | 0.010 |
Batch Number | Ilmenite (%) | Titanomagnetite (%) | Gangue Minerals (%) | Sulfides (%) |
---|---|---|---|---|
No. 1 | 10.27 | 34.71 | 53.53 | 1.49 |
No. 2 | 10.32 | 33.45 | 54.67 | 1.56 |
No. 3 | 9.79 | 33.56 | 55.14 | 1.51 |
No. 4 | 10.65 | 32.65 | 55.05 | 2.04 |
No. 5 | 10.54 | 33.14 | 54.81 | 1.51 |
No. 6 | 11.33 | 34.72 | 51.86 | 2.09 |
Average | 10.48 ± 0.51 | 33.71 ± 0.84 | 54.18 ± 1.27 | 1.70 ± 0.28 |
Ref. [31] | 11.12 | 40.26 | 47.10 | 1.52 |
Elements | Ilmenite | Titanomagnetite | Gangue Minerals | Sulfides | Apatite |
---|---|---|---|---|---|
Ti (%) | 46.09 ± 3.60 | 44.34 ± 4.46 | balance | 0.1 ± 0.04 | — |
Fe (%) | 12.63 ± 2.41 | 69.44 ± 3.71 | balance | 1.37 ± 0.44 | — |
V (%) | 5.43 ± 1.61 | 91.9 ± 1.70 | balance | — | — |
Mg (%) | 7.73 ± 3.30 | 3.21 ± 1.95 | balance | 0.63 ± 0.28 | — |
Al (%) | — | 4.72 ± 1.55 | balance | 0.49 ± 0.12 | — |
Si (%) | 0.04 ± 0.07 | 2.09 ± 0.92 | balance | 0.07 ± 0.03 | — |
Ca (%) | 0.12 ± 0.06 | 1.67 ± 0.90 | balance | — | 0.35 ± 0.17 |
Na (%) | — | — | 100.00 | — | 0 |
Mn (%) | 44.63 ± 3.96 | 43.87 ± 4.47 | balance | — | 0 |
P (%) | — | — | — | — | 100.00 |
S (%) | — | 1.47 ± 0.38 | balance | 95.72 ± 0.65 | — |
Batch Number | TiO2 (%) | FeO (%) | V2O5 (%) | MgO (%) | MnO (%) | Al2O3 (%) | SiO2 (%) | Na2O (%) | K2O (%) | Cr2O3 (%) | Co (%) | Ni (%) | S (%) | P2O5 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. 1 | 52.684 | 41.464 | 0.446 | 5.219 | 0.681 | 0.082 | — | — | 0.005 | — | 0.082 | — | — | — |
No. 2 | 52.954 | 42.499 | 0.475 | 5.403 | 0.562 | 0.092 | 0.003 | — | — | 0.008 | 0.059 | 0.011 | 0.013 | 0.017 |
No. 3 | 53.344 | 40.854 | 0.53 | 5.407 | 0.628 | 0.086 | — | — | — | — | 0.010 | — | — | — |
No. 4 | 54.137 | 41.364 | 0.552 | 5.745 | 0.687 | 0.005 | — | — | — | 0.005 | 0.054 | — | — | — |
No. 5 | 53.405 | 40.895 | 0.461 | 5.573 | 0.600 | 0.060 | — | — | — | — | 0.075 | — | — | 0.002 |
No. 6 | 53.481 | 40.137 | 0.442 | 5.549 | 0.585 | 0.062 | 0.017 | — | 0.004 | — | 0.024 | — | — | — |
No. 7 | 54.303 | 40.032 | 0.563 | 5.612 | 0.666 | 0.065 | 0.007 | 0.033 | 0.014 | 0.021 | 0.087 | — | — | — |
No. 8 | 53.903 | 40.683 | 0.529 | 5.621 | 0.549 | 0.088 | 0.005 | — | 0.007 | — | 0.038 | — | — | — |
No. 9 | 53.328 | 41.716 | 0.536 | 5.737 | 0.562 | 0.007 | 0.024 | 0.004 | 0.001 | — | 0.050 | — | — | 0.008 |
No. 10 | 53.733 | 41.205 | 0.466 | 5.526 | 0.599 | 0.031 | 0.024 | — | — | 0.051 | 0.069 | — | — | — |
No. 11 | 53.632 | 41.238 | 0.526 | 5.448 | 0.648 | 0.069 | — | — | 0.013 | — | 0.116 | — | 0.012 | — |
No. 12 | 51.458 | 43.512 | 0.570 | 3.334 | 0.892 | 0.070 | 0.028 | 0.017 | — | 0.038 | 0.096 | — | — | — |
No. 13 | 51.173 | 44.447 | 0.580 | 3.311 | 0.786 | 0.077 | — | 0.004 | 0.016 | 0.021 | 0.080 | — | — | 0.010 |
No. 14 | 50.668 | 45.828 | 0.486 | 3.137 | 0.819 | 0.086 | 0.044 | 0.017 | 0.004 | 0.026 | 0.081 | 0.026 | — | 0.023 |
Average | 53.015 | 41.848 | 0.512 | 5.044 | 0.662 | 0.063 | 0.011 | 0.005 | 0.005 | 0.012 | 0.066 | 0.003 | 0.002 | 0.004 |
Batch Number | TiO2 (%) | TFe (%) | V2O5 (%) | MgO (%) | Al2O3 (%) | MnO (%) | SiO2 (%) | Cr2O3 (%) | Co (%) | Na2O (%) | Ni (%) | S (%) | P2O5 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. 1 | 12.916 | 58.948 | 0.724 | 2.282 | 4.458 | 0.363 | — | 0.067 | 0.178 | — | 0.000 | 0.005 | 0.011 |
No. 2 | 12.986 | 60.061 | 0.776 | 1.859 | 3.893 | 0.314 | 0.018 | 0.018 | 0.115 | — | 0.040 | — | — |
No. 3 | 12.320 | 59.507 | 0.707 | 1.869 | 3.756 | 0.360 | 0.034 | 0.034 | 0.131 | 0.034 | — | 0.006 | — |
No. 4 | 12.614 | 56.488 | 0.567 | 2.634 | 4.292 | 0.252 | 0.015 | 0.045 | 0.139 | 0.062 | — | 0.000 | 0.017 |
No. 5 | 13.491 | 55.533 | 0.664 | 3.800 | 5.022 | 0.146 | 0.012 | 0.046 | 0.063 | 0.047 | 0.052 | 0.004 | 0.009 |
No. 6 | 12.252 | 57.283 | 0.648 | 1.685 | 5.768 | 0.263 | — | 0.058 | 0.105 | 0.038 | — | — | — |
No. 7 | 12.694 | 56.977 | 0.657 | 1.546 | 5.078 | 0.408 | 0.033 | 0.038 | 0.064 | 0.037 | — | — | 0.022 |
No. 8 | 12.443 | 56.723 | 0.794 | 1.213 | 4.010 | 0.343 | 0.436 | 0.000 | 0.127 | 0.009 | — | 0.036 | 0.032 |
No. 9 | 14.986 | 59.304 | 0.779 | 1.473 | 3.321 | 0.466 | 0.041 | 0.084 | 0.096 | — | 0.005 | — | — |
No. 10 | 15.519 | 57.805 | 0.920 | 0.525 | 3.004 | 0.401 | 0.207 | 0.087 | 0.109 | 0.005 | — | 0.015 | — |
Average | 13.222 | 57.863 | 0.724 | 1.889 | 4.260 | 0.332 | 0.080 | 0.048 | 0.113 | 0.023 | 0.010 | 0.007 | 0.009 |
Classification | Minerals | No. 1 (%) | No. 2 (%) | No. 3 (%) | No. 4 (%) | Average (%) |
---|---|---|---|---|---|---|
Pyroxenes | Diopside | 18.87 | 20.53 | 17.65 | 26.14 | 20.80 ± 3.75 |
Hornblende | 7.28 | 6.69 | 8.07 | 3.09 | 6.28 ± 2.20 | |
Chlorite | 5.56 | 6.05 | 5.29 | 3.75 | 5.16 ± 0.99 | |
Others | 0.85 | 1.15 | 1.05 | 1.10 | 1.04 ± 0.12 | |
Feldspars | Plagioclase | 14.23 | 12.54 | 16.47 | 13.58 | 14.21 ± 1.66 |
Anorthosite | 3.70 | 4.22 | 3.24 | 4.92 | 4.02 ± 0.72 | |
Albite | 0.50 | 0.65 | 0.48 | 0.42 | 0.51 ± 0.10 | |
Olivines | Chrysolite | 1.62 | 1.89 | 1.10 | 1.67 | 1.57 ± 0.33 |
Forsterite | 0.92 | 0.95 | 0.79 | 0.37 | 0.76 ± 0.27 | |
Sulfides | Pyrrhotite | 1.16 | 1.10 | 1.05 | 1.21 | 1.13 ± 0.07 |
Pyrite | 0.17 | 0.23 | 0.22 | 0.35 | 0.24 ± 0.08 | |
(Fe,Mg)SO4 | 0.16 | 0.23 | 0.24 | 0.48 | 0.28 ± 0.14 |
Gangues | TiO2 (%) | FeO (%) | MgO (%) | Al2O3 (%) | SiO2 (%) | CaO (%) | Na2O (%) | K2O (%) | S (%) |
---|---|---|---|---|---|---|---|---|---|
Diopside | 1.891 | 8.154 | 14.473 | 4.758 | 50.289 | 19.414 | — | — | — |
Plagioclase | — | — | — | 28.331 | 51.610 | 10.920 | 4.677 | — | — |
Hornblende | 4.599 | 10.365 | 13.534 | 13.941 | 40.466 | 10.589 | 3.752 | 1.211 | — |
Chrysolite | — | 21.298 | 38.277 | — | 39.385 | — | — | — | — |
Pyrrhotite | — | 47.417 | — | 4.341 | — | — | — | — | 60.822 |
Pyrite | — | 61.262 | — | 1.277 | — | — | — | — | 51.676 |
Minerals | Classification | >2.0 mm (%) | 2.0–1.0 mm (%) | 1.0–0.5 mm (%) | 0.5–0.2 mm (%) | 0.2–0.1 mm (%) | 0.1–0.074 mm (%) | <0.074 mm (%) |
---|---|---|---|---|---|---|---|---|
Ilmenite | Each stage | 0.51 | 7.14 | 24.33 | 30.51 | 18.47 | 12.32 | 6.72 |
Accumulative total | / | 7.65 | 31.98 | 62.49 | 80.96 | 93.28 | 100.00 | |
Titanomagnetite | Each stage | 1.47 | 13.89 | 33.90 | 28.75 | 16.38 | 3.52 | 2.09 |
Accumulative total | / | 15.36 | 49.26 | 78.01 | 94.39 | 97.91 | 100.00 | |
Pyroxene | Each stage | 29.83 | 54.19 | 12.37 | 3.18 | 0.21 | 0.10 | 0.12 |
Accumulative total | / | 84.02 | 96.39 | 99.57 | 99.78 | 99.88 | 100.00 | |
Feldspar | Each stage | / | 20.39 | 34.87 | 25.92 | 9.60 | 3.17 | 6.06 |
Accumulative total | / | / | 55.26 | 81.17 | 90.77 | 93.94 | 100.00 | |
Olivine | Each stage | / | / | 16.40 | 30.91 | 24.90 | 9.97 | 17.82 |
Accumulative total | / | / | / | 47.31 | 72.21 | 82.18 | 100.00 | |
Sulfides | Each stage | / | / | / | 6.72 | 30.65 | 22.58 | 40.05 |
Accumulative total | / | / | / | / | 37.37 | 59.95 | 100.00 |
Grilling Duration (min) | >0.25 mm (%) | 0.25–0.15 mm (%) | 0.15–0.10 mm (%) | 0.10–0.074 mm (%) | 0.074–0.04 mm (%) | <0.04 mm (%) |
---|---|---|---|---|---|---|
Without ball milling | 38.93 | 24.10 | 14.27 | 9.25 | 9.83 | 3.63 |
30 | 7.93 | 30.06 | 27.90 | 10.63 | 14.27 | 9.21 |
60 | 1.08 | 13.79 | 45.29 | 11.70 | 18.17 | 9.97 |
120 | 0.68 | 6.64 | 44.21 | 12.74 | 24.34 | 11.39 |
240 | 0.28 | 4.17 | 28.15 | 14.81 | 35.07 | 17.52 |
Grilling Duration (min) | Ilmenite (%) | Titanomagnetite (%) | Pyrrhotite (%) |
---|---|---|---|
Before ball milling | 44.45 | 47.07 | 29.35 |
30 | 61.92 | 64.33 | 46.81 |
60 | 86.04 | 87.26 | 57.90 |
120 | 88.13 | 91.55 | 67.04 |
240 | 92.65 | 94.04 | 85.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Ma, Z.; Gao, G.; Qiu, K.; Peng, W. Process Mineralogy of Vanadium Titanomagnetite Ore in Panzhihua, China. Separations 2023, 10, 147. https://doi.org/10.3390/separations10030147
Zhu F, Ma Z, Gao G, Qiu K, Peng W. Process Mineralogy of Vanadium Titanomagnetite Ore in Panzhihua, China. Separations. 2023; 10(3):147. https://doi.org/10.3390/separations10030147
Chicago/Turabian StyleZhu, Fuxing, Zhanshan Ma, Guanjin Gao, Kehui Qiu, and Weixing Peng. 2023. "Process Mineralogy of Vanadium Titanomagnetite Ore in Panzhihua, China" Separations 10, no. 3: 147. https://doi.org/10.3390/separations10030147
APA StyleZhu, F., Ma, Z., Gao, G., Qiu, K., & Peng, W. (2023). Process Mineralogy of Vanadium Titanomagnetite Ore in Panzhihua, China. Separations, 10(3), 147. https://doi.org/10.3390/separations10030147