Galactolipids from Launaea capitata (Spreng.) Dandy with In Vitro Anti-Inflammatory and Neuroprotective Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Instruments
2.3. Extraction and Purification
2.4. Enzyme Inhibition Assays
2.4.1. BchE Inhibition Assay
2.4.2. COX-2 Inhibition Assay
2.4.3. 5-LOX Inhibition Assay
2.5. Statistical Analysis
2.6. Docking Study
3. Results and Discussion
3.1. Identification of the Isolated Compounds
3.1.1. Identification of Compound 1
3.1.2. Identification of Compound 2
3.2. Enzymes Inhibitory Activities
3.3. Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol. 2018, 9, 976. [Google Scholar] [CrossRef] [Green Version]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A., Jr.; Ikryannikova, L.N. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Kilian, N. Revision of Launaea Cass. (Compositae, Lactuceae, Sonchinae). Englera 1997, 17, 1–478. [Google Scholar] [CrossRef]
- Daur, I. Plant flora in the rangeland of western Saudi Arabia. Pak. J. Bot. 2012, 44, 23–26. [Google Scholar]
- Elsharkawy, E.R. Isolation of phytoconstituents and evaluation of anticancer and Antioxidant potential of Launaea mucronata (Forssk.) Muschl. subsp. Pak. J. Pharm. Sci. 2017, 30, 399–405. [Google Scholar]
- Al-Fatimi, M. Wild edible plants traditionally collected and used in southern Yemen. J. Ethnobiol. Ethnomed. 2021, 17, 49. [Google Scholar] [CrossRef]
- Khalil, H.E.; Aldakheel, T.S.; AlAhmed, A.; Emeka, P.M.; Kandeel, M. Anti-proliferative activity of leaves of Launaea capitata Asteraceae: Phytochemical, cytotoxicity and in silico studies. Trop. J. Pharm. Res. 2020, 19, 2129–2136. [Google Scholar] [CrossRef]
- Mansour, R.M.A.; Ahmed, A.A.; Saleh, N.A.M. Flavone glycosides of some Launaea species. Phytochemistry 1983, 22, 2630–2631. [Google Scholar] [CrossRef]
- Emad, F.; Khalafalah, A.K.; El Sayed, M.A.; Mohamed, A.H.; Stadler, M.; Helaly, S.E. Three new polyacetylene glycosides (PAGs) from the aerial part of Launaea capitata (Asteraceae) with anti-biofilm activity against Staphylococcus aureus. Fitoterapia 2020, 143, 104548. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Parveen, S.; Riaz, N.; Tahir, M.N.; Ashraf, M.; Afzal, I.; Ali, M.S.; Malik, A.; Jabbar, A. New bioactive natural products from Launaea nudicaulis. Phytochem. Lett. 2012, 5, 793–799. [Google Scholar] [CrossRef]
- Cheriti, A.; Belboukhari, M.; Belboukhari, N.N.B.; Djeradi, H.H.D. Phytochemical and biological studies on Launaea Cass. Genus ( Asteracea) from Algerian sahara. Curr. Top. Phytochem. 2012, 11, 67–80. [Google Scholar]
- Hossain, J.S.; El-Sayed, M.; Aoshima, H. Antioxidative and anti-α-amylase activities of four wild plants consumed by pastoral nomads in Egypt. Orient. Pharm. Exp. Med. 2009, 9, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Tariq, M.; Mossa, J.S.; Al-yahya, M.A.; Al-meshal, I.A.; Al-badr, A.A. Phytochemical and Biological Screening of Saudi Medicinal Plants Part-10* A Study on Saudi Plants of Family Compositae. Int. J. Crude Drug Res. 1987, 25, 17–25. [Google Scholar] [CrossRef]
- Nguyen, T.Q.C.; Binh, T.D.; Kusunoki, R.; Pham, T.L.A.; Nguyen, Y.D.H.; Nguyen, T.T.; Kanaori, K.; Kamei, K. Effects of Launaea sarmentosa Extract on Lipopolysaccharide-Induced Inflammation via Suppression of NF-κB/MAPK Signaling and Nrf2 Activation. Nutrients 2020, 12, 2586. [Google Scholar] [CrossRef]
- Asif, M.; Mahrukh; Saadullah, M.; Yaseen, H.S.; Saleem, M.; Yousaf, H.M.; Khan, I.U.; Yaseen, M.; Shams, M.U. Evaluation of in vivo anti-inflammatory and anti-angiogenic attributes of methanolic extract of Launaea spinosa. Inflammopharmacology 2020, 28, 993–1008. [Google Scholar] [CrossRef] [PubMed]
- Akimat, E.K.; Omwenga, G.I.; Moriasi, G.A.; Ngugi, M.P. Antioxidant, Anti-Inflammatory, Acute Oral Toxicity, and Qualitative Phytochemistry of The Aqueous Root Extract of Launaea cornuta (Hochst. Ex Oliv. & Hiern.). J. Evid. Based Complement. Altern. Med. 2021, 26, 2515690X211064585. [Google Scholar] [CrossRef]
- Lamia, S.; Belboukhari, N.; Aminata, K.; Sulaiman, M.; Yakoubi, M.; Sekkoum, K.; Abdelkrim, C. Investigation of The Analgesic and Anti-Inflammatory Activities of Launaea Nudicaulis From Southwest of Algeria. Biomed. J. Sci. Technol. Res. 2021, 23, 17173–17178. [Google Scholar]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Rajendran, P.; Chen, Y.F.; Chen, Y.F.; Chung, L.C.; Tamilselvi, S.; Shen, C.Y.; Day, C.H.; Chen, R.J.; Viswanadha, V.P.; Kuo, W.W. The multifaceted link between inflammation and human diseases. J. Cell. Physiol. 2018, 233, 6458–6471. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Proschak, E.; Steinhilber, D.; Rovati, G.E. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem. Pharmacol. 2018, 158, 161–173. [Google Scholar] [CrossRef]
- Sharma, J.N.; Jawad, N.M. Adverse effects of COX-2 inhibitors. Sci. World J. 2005, 5, 629–645. [Google Scholar] [CrossRef]
- Rainsford, K. Anti-inflammatory drugs in the 21st century. In Inflammation in The Pathogenesis of Chronic Diseases; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–27. [Google Scholar]
- El-Malah, A.A.; Gineinah, M.M.; Deb, P.K.; Khayyat, A.N.; Bansal, M.; Venugopala, K.N.; Aljahdali, A.S. Selective COX-2 inhibitors: Road from success to controversy and the quest for repurposing. Pharmaceuticals 2022, 15, 827. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Hu, C.; Ma, S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. Medchemcomm 2018, 9, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Manju, S.; Ethiraj, K.; Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci. 2018, 121, 356–381. [Google Scholar]
- Meshram, M.A.; Bhise, U.O.; Makhal, P.N.; Kaki, V.R. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR. Eur. J. Med. Chem. 2021, 225, 113804. [Google Scholar] [CrossRef]
- Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets (Formerly Curr. Drug Targets CNS Neurol. Disord.) 2014, 13, 1432–1439. [Google Scholar]
- Ramachandra, G.; Lakshmi, G. Influence of butyrylcholinesterase on the course of COVID-19. Biomed. Rev. 2021, 32, 37–46. [Google Scholar]
- Dighe, S.N.; Deora, G.S.; De la Mora, E.; Nachon, F.; Chan, S.; Parat, M.-O.; Brazzolotto, X.; Ross, B.P. Discovery and structure–activity relationships of a highly selective butyrylcholinesterase inhibitor by structure-based virtual screening. J. Med. Chem. 2016, 59, 7683–7689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, J.; Kiewert, C.; Duysen, E.G.; Lockridge, O.; Greig, N.H.; Klein, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007, 100, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Abdel Bar, F.M.; Sameti, M.; Foudah, A.I.; Haque, A.; Elsbaey, M. In vitro and in silico inhibition of COX-2 and 5-LOX by beta-carboline alkaloids from the seeds of Peganum harmala L. S. Afr. J. Bot. 2022, 147, 926–936. [Google Scholar] [CrossRef]
- Soliman, A.F.; Abdel Bar, F.M.; Sallam, A.; Galala, A.A. New neuroprotective sesquiterpene lactate esters from carotol biotransformation. S. Afr. J. Bot. 2023, 153, 163–171. [Google Scholar] [CrossRef]
- Obregon, A.D.; Schetinger, M.R.; Correa, M.M.; Morsch, V.M.; da Silva, J.E.; Martins, M.A.; Bonacorso, H.G.; Zanatta, N. Effects per se of organic solvents in the cerebral acetylcholinesterase of rats. Neurochem. Res. 2005, 30, 379–384. [Google Scholar] [CrossRef]
- Atatreh, N.; Al Rawashdah, S.; Al Neyadi, S.S.; Abuhamdah, S.M.; Ghattas, M.A. Discovery of new butyrylcholinesterase inhibitors via structure-based virtual screening. J. Enzym. Inhib. Med. Chem. 2019, 34, 1373–1379. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Liao, J.; Chen, S.; Yen, C.; Lee, Y.; Huang, S.; Huang, S.; Lin, C.; Chang, V.H. Fluorine-Modified Rutaecarpine Exerts Cyclooxygenase-2 Inhibition and Anti-inflammatory Effects in Lungs. Front. Pharmacol. 2019, 10, 91. [Google Scholar] [CrossRef]
- Yoon, S.H.; Cho, D.Y.; Choi, S.R.; Lee, J.Y.; Choi, D.K.; Kim, E.; Park, J.Y. Synthesis and biological evaluation of salicylic acid analogues of celecoxib as a new class of selective cyclooxygenase-1 inhibitor. Biol. Pharm. Bull. 2021, 44, 1230–1238. [Google Scholar] [CrossRef]
- Yarla, N.S.; Pathuri, G.; Gali, H.; Terzyan, S.; Panneerselvam, J.; Chandrakesan, P.; Scotti, M.T.; Houchen, C.; Madka, V.; Rao, C.V. Discovery and Development of a Novel mPGES-1/5-LOX Dual Inhibitor LFA-9 for Prevention and Treatment of Chronic Inflammatory Diseases. J. Inflamm. Res. 2020, 13, 1261–1278. [Google Scholar] [CrossRef]
- Shaaban, M.; Kamal, A.; Faggal, S.; Farag, N.; Aborehab, N.; El-Sahar, A.; Mohamed, K. Design, synthesis, and biological evaluation of new pyrazoloquinazoline derivatives as dual COX-2/5-LOX inhibitors. Archiv. Pharm. 2020, 353, 2000027. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Orlando, B.J.; Malkowski, M.G. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone. J. Biol. Chem. 2016, 291, 15069–15081. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, N.C.; Rui, Z.; Neau, D.B.; Waight, M.T.; Bartlett, S.G.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J. 2012, 26, 3222–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberry, T.L.; Brazzolotto, X.; Macdonald, I.R.; Wandhammer, M.; Trovaslet-Leroy, M.; Darvesh, S.; Nachon, F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017, 22, 2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Guella, G.; Frassanito, R.; Mancini, I. A new solution for an old problem: The regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. Rapid. Commun. Mass Spectrom. 2003, 17, 1982–1994. [Google Scholar] [CrossRef]
- Bartels, D.; Dörmann, P. Plant Lipids: Methods and Protocols. In Methods in Molecular Biology; Walker, J.M., Ed.; Springer Nature Humana Press: Bonn, Germany, 2021; Volume 2295. [Google Scholar]
- Dörmann, P. Galactolipids in Plant Membranes; eLS, Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2013; pp. 1–7. [Google Scholar]
- Douce, R.; Joyard, J. Plant galactolipids. In Lipids: Structure and Function; Elsevier: Amsterdam, The Netherlands, 1980; pp. 321–362. [Google Scholar]
- Cateni, F.; Falsone, G.; Zilic, J.; Bonivento, P.; Zacchigna, M.; Žigon, D.; Sosa, S.; Altinier, G. Glyceroglycolipids from Euphorbia nicaeensis All. with antiinflamatory activity. ARKIVOC 2004, 2004, 54–65. [Google Scholar] [CrossRef]
- Wu, J.; Long, L.; Song, Y.; Zhang, S.; Li, Q.; Huang, J.; Xiao, Z. A new unsaturated glycoglycerolipid from a cultured marine dinoflagellate Amphidinium carterae. Chem. Pharm. Bull. 2005, 53, 330–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, M.; Seki, K.; Ohnishi, M.; Ito, S.; Fujino, Y. Structure of novel glyceroglycolipids in Adzuki bean (Vigna angularis) seeds. Biochem. Cell Biol. 1990, 68, 59–64. [Google Scholar] [PubMed]
- Tanaka, R.; Sakano, Y.; Nagatsu, A.; Shibuya, M.; Ebizuka, Y.; Goda, Y. Synthesis of digalactosyl diacylglycerols and their structure-inhibitory activity on human lanosterol synthase. Bioorg. Med. Chem. Lett. 2005, 15, 159–162. [Google Scholar] [CrossRef]
- Christensen, L.P. Galactolipids as potential health promoting compounds in vegetable foods. Recent Pat. Food Nutr. Agric. 2009, 1, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, D.; Kerakawati, R.; Morita, T.; Nakamura, T.; Ueno, K.; Kumamoto, T.; Nakanishi, W.; Ishikawa, T.; Uzawa, J.; Seki, H.; et al. Isolation of β-Sitosterol and Digalactopyranosyl-diacylglyceride from Citrus hystrix, a Thai Traditional Herb, as Pancreatic Lipase Inhibitors. Heterocycles 2009, 78, 1497–1505. [Google Scholar] [CrossRef]
- Fan, G.-j.; Kim, S.; Han, B.H.; Han, Y.N. Glyceroglycolipids, a novel class of platelet-activating factor antagonists from Kalimeris indica. Phytochem. Lett. 2008, 1, 207–210. [Google Scholar] [CrossRef]
- Seo, E.J.; Wu, C.F.; Ali, Z.; Wang, Y.H.; Khan, S.I.; Walker, L.A.; Khan, I.A.; Efferth, T. Both Phenolic and Non-phenolic Green Tea Fractions Inhibit Migration of Cancer Cells. Front. Pharmacol. 2016, 7, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.-m.; Yu, K.; Xia, Y.; Shine, M.B.; Wang, C.; Navarre, D.; Kachroo, A.; Kachroo, P. Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants. Cell Rep. 2014, 9, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sashidhara, K.V.; Singh, S.P.; Misra, S.; Gupta, J.; Misra-Bhattacharya, S. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi. Eur. J. Med. Chem. 2012, 50, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Marcus, J.; Popko, B. Galactolipids are molecular determinants of myelin development and axo–glial organization. Biochim. Biophys. Acta Gen. Subj. 2002, 1573, 406–413. [Google Scholar] [CrossRef]
- Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol. 2020, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Dupree, J.L.; Suzuki, K.; Popko, B. Galactolipids in the formation and function of the myelin sheath. Microsc. Res. Tech. 1998, 41, 431–440. [Google Scholar] [CrossRef]
- Barricklow, J.; Blatnik, M. 2-Arachidonoylglycerol is a substrate for butyrylcholinesterase: A potential mechanism for extracellular endocannabinoid regulation. Arch. Biochem. Biophys. 2013, 536, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Saura, P.; Maréchal, J.D.; Masgrau, L.; Lluch, J.M.; González-Lafont, À. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: Consequences for the positional specificity of oxygenation. Phys. Chem. Chem. Phys. 2016, 18, 23017–23035. [Google Scholar] [CrossRef] [Green Version]
- Sobeh, M.; Mamadalieva, N.Z.; Mohamed, T.; Krstin, S.; Youssef, F.S.; Ashour, M.L.; Azimova, S.S.; Wink, M. Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Med. Chem. Res. 2016, 25, 2304–2315. [Google Scholar] [CrossRef]
- Uzairu, S.M.; Tijani, Y.; Gadaka, M.A.; Modu, B.; Watafua, M.; Ahmad, H.A.; Zakariya, U.A.; Ibrahim, A.; Daja, A.; Zanna, H.; et al. Kinetics and computational study of butyrylcholinesterase inhibition by methylrosmarinate: Relevance to Alzheimer’s disease treatment. Heliyon 2022, 8, e10613. [Google Scholar] [CrossRef]
C/H No. | C Type | 13C (δ, ppm) | 1H (δ, ppm) |
---|---|---|---|
Glycerol moiety | |||
1 | CH2 | 63.9 | Ha: 4.24, dd (11.6, 6.9) Hb: 4.45, d (11.7) |
2 | CH | 71.5 | 5.28, m |
3 | CH2 | 68.6 | Ha: 3.97, m Hb: 3.76, m |
Galactose-1 | |||
1′ | CH | 105.0 | 4.29, brs |
2′ | CH | 72.1 | 3.55, m |
3′ | CH | 74.3 | 3.78, m |
4′ | CH | 70.7 | 3.95, m |
5′ | CH | 74.1 | 3.55, m |
6′ | CH2 | 67.4 | Ha: 3.90, m Hb: 3.72, m |
Galactose-2 | |||
1′′ | CH | 100.4 | 4.92, brs |
2′′ | CH | 71.2 | 3.79, m |
3′′ | CH | 69.6 | 3.96, m |
4′′ | CH | 69.9 | 3.82, m |
5′′ | CH | 72.3 | 3.87, m |
6′′ | CH2 | 62.5 | 3.75, m |
Diacyl (Linolenic acid moieties) | |||
a | CH3 | 14.8 (2C) | 0.97, t (7.6) |
b | CH2 | 21.4 (2C) | 2.06, m, overlapping |
c | CH | 128.1 (2C), 128.7 (2C), 129.0 (2C), 129.1 (2C), 130.9 (2C), 132.6 (2C) | 5.31-5.41, m |
d | CH2 | 26.4, 26.5 | 2.81, m |
e | CH2 | 28.1 (2C) | 2.06, m, overlapping |
f | CH2 | 30.1, 30.1, 30.2, 30.2, 30.3 (2C), 30.6 (2C) | 1.34-1.38, brs |
g | CH2 | 25.9, 25.0 | 1.61, m |
h | CH2 | 34.8, 35.0 | 2.33, m |
i | C=O | 174.3, 174.6 | --- |
C/H No. | C Type | 13C (δ, ppm) | 1H (δ, ppm) |
---|---|---|---|
Glycerol moiety | |||
1 | CH2 | 64.4 | Ha: 4.23, dd (11.5, 6.6) Hb: 4.44, brd (10.9) |
2 | CH | 72.1 | 5.27, brs |
3 | CH2 | 69.2 | Ha: 3.96, m Hb: 3.76, m |
Galactose-1 | |||
1′ | CH | 105.6 | 4.28, d (5.0) |
2′ | CH | 72.8 | 3.53, m |
3′ | CH | 75.0 | 3.53, m |
4′ | CH | 71.4 | 3.92, m |
5′ | CH | 74.9 | 3.77, m |
6′ | CH2 | 68.1 | Ha: 3.91, m Hb: 3.69, m |
Galactose-2 | |||
1′′ | CH | 101.0 | 4.90, brs* |
2′′ | CH | 70.6 | 3.79, m |
3′′ | CH | 70.4 | 3.90, m |
4′′ | CH | 71.8 | 3.74, m |
5′′ | CH | 72.9 | 3.86, m |
6′′ | CH2 | 63.2 | 3.74, m |
Diacyl (Myristic and palmitic acids) | |||
a | CH3 | 15.0 (2C) | 0.90, t (6.3) |
b | CH2 | 24.2 (2C) | 1.31, brs, overlapping |
c | CH2 | 30.5-33.5 (20C) | 1.31-1.36, brs |
d | CH2 | 26.3, 26.4 | 1.62, brs |
e | CH2 | 35.4, 35.5 | 2.34, q (6.7) |
f | C=O | 175.1, 175.5 | --- |
Compound | COX-2 a | 5-LOX a | BchE a |
---|---|---|---|
1 | 110.44 ± 3.75 | 59.01 ± 3.04 | 13.37 ± 0.98 |
2 | 179.63 ± 8.14 | 21.67 ± 1.75 | 24.32 ± 1.29 |
NDGA b | 1.42 ± 0.23 | 1.71 ± 0.27 | --- |
Rivastigmine | --- | --- | 3.52 ± 0.37 |
Donepezil | --- | --- | 2.19 ± 0.23 |
Compound | Binding Energy (kcal/mol) | ||
---|---|---|---|
COX-2 | 5-LOX | BchE | |
1 | −7.360 | −8.124 | −8.313 |
2 | −5.723 | −8.634 | −7.502 |
Co-crystallized ligand * | −8.659 | −5.830 | −8.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel Bar, F.M.; Sherif, A.E.; ElNaggar, M.H. Galactolipids from Launaea capitata (Spreng.) Dandy with In Vitro Anti-Inflammatory and Neuroprotective Activities. Separations 2023, 10, 83. https://doi.org/10.3390/separations10020083
Abdel Bar FM, Sherif AE, ElNaggar MH. Galactolipids from Launaea capitata (Spreng.) Dandy with In Vitro Anti-Inflammatory and Neuroprotective Activities. Separations. 2023; 10(2):83. https://doi.org/10.3390/separations10020083
Chicago/Turabian StyleAbdel Bar, Fatma M., Asmaa E. Sherif, and Mai H. ElNaggar. 2023. "Galactolipids from Launaea capitata (Spreng.) Dandy with In Vitro Anti-Inflammatory and Neuroprotective Activities" Separations 10, no. 2: 83. https://doi.org/10.3390/separations10020083
APA StyleAbdel Bar, F. M., Sherif, A. E., & ElNaggar, M. H. (2023). Galactolipids from Launaea capitata (Spreng.) Dandy with In Vitro Anti-Inflammatory and Neuroprotective Activities. Separations, 10(2), 83. https://doi.org/10.3390/separations10020083