Isolation and Characterization of Compounds from Ochreinauclea maingayi (Hook. f.) Ridsd. (Rubiaceae) with the Aid of LCMS/MS Molecular Networking
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction
2.4. Purification of Compounds
2.5. Data-Dependent LCMS Analysis, FBMN, and MS2LDA Parameters
2.5.1. Data-Dependent LCMS Orbitrap MS/MS Analysis
2.5.2. Feature-Based Molecular Networking
2.5.3. Molecular Networking Parameters
2.5.4. MS2LDA Unsupervised Substructure Annotation
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connor, S.E.; Maresh, J.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 2006, 23, 532–547. [Google Scholar] [CrossRef] [PubMed]
- Szabó, L.F. Rigorous Biogenetic Network for a Group of Indole Alkaloids Derived from Strictosidine. Molecules 2008, 13, 1875–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škubník, J.; Pavlíčková, V.S.; Ruml, T.; Rimpelová, S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology 2021, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Shamon, S.D.; Perez, M. Blood pressure-lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst. Rev. 2016, 12, Cd007655. [Google Scholar] [CrossRef]
- Rtibi, K.; Grami, D.; Selmi, S.; Amri, M.; Sebai, H.; Marzouki, L. Vinblastine, an anticancer drug, causes constipation and oxidative stress as well as others disruptions in intestinal tract in rat. Toxicol. Rep. 2017, 4, 221–225. [Google Scholar] [CrossRef]
- Dalal, N.; Ravishankar, R. In vitro propagation of Ochreinauclea missionis (Wall. EX G. Don), an ethnomedicinal endemic and threatened tree. Vitr. Cell. Dev. Biol. Plant 2001, 37, 820–823. [Google Scholar] [CrossRef]
- Ravishankar, R. Genetic fidelity in micropropagated plantlets of Ochreinauclea missionis an endemic, threatened and medicinal tree using ISSR markers. Afr. J. Biotechnol. 2009, 8, 2933–2938. [Google Scholar]
- Ridsdale, C.E. A revision of the tribe Naucleeae s.s. (Rubiaceae). Blumea Biodivers. Evol. Biogeogr. Plants 1978, 24, 307–366. [Google Scholar]
- Lim, S.C.; Gan, K.S.; Choo, K.T. Identification and utilisation of lesser-known commercial timbers in Peninsular Malaysia 1: Ara, Bangkal, Bebusok and Bekoi. Timber Technology Centre (TTC), FRIM, Kuala Lumpur. Timber Tech. Bull. 2004, 29, 139–258. [Google Scholar]
- Mukhtar, M.R.; Osman, N.; Awang, K.; Hazni, H.; Qureshi, A.K.; Hadi, A.H.; Zaima, K.; Morita, H.; Litaudon, M. Neonaucline, a new indole alkaloid from the leaves of Ochreinauclea maingayii (Hook. f.) Ridsd. (Rubiaceae). Molecules 2011, 17, 267–274. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Der Hooft, J.J.; Wandy, J.; Barrett, M.P.; Burgess, K.E.; Rogers, S. Topic modeling for untargeted substructure exploration in metabolomics. Proc. Natl. Acad. Sci. USA 2016, 113, 13738–13743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Wandy, J.; Zhu, Y.; van der Hooft, J.; Daly, R.; Barrett, M.P.; Rogers, S. Ms2lda.org: Web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics 2017, 34, 317–318. [Google Scholar] [CrossRef] [Green Version]
- Repke, D.B.; Jahangir; Clark, R.D.; Nelson, J.T.; MacLean, D.B. Synthesis of naucléfine, angustidine, angustine, (±)-13b,14-dihydro-angustine and naulafine. Tetrahedron 1989, 45, 2541–2550. [Google Scholar] [CrossRef]
- Parameswaran, P.S.; Naik, C.G.; Hegde, V.R. Secondary Metabolites from the Sponge Tedania anhelans: Isolation and Characterization of Two Novel Pyrazole Acids and Other Metabolites. J. Nat. Prod. 1997, 60, 802–803. [Google Scholar] [CrossRef]
- Seki, H.; Hashimoto, A.; HIno, T. The 1H- and 13C-Nuclear Magnetic Resonance Spectra of Harman. Reinvestigation of the Assignments by One- and Two-Dimensional Methods. Chem. Pharm. Bull. 1993, 41, 1169–1172. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.-Q.; Liu, W.-H.; Ip, S.-P.; Liao, H.-J.; Yi, Y.-Y.; Qin, Z.; Lai, X.-P.; Su, Z.-R.; Lin, Z.-X. Seven Alkaloids from Picrasma quassioides and Their Cytotoxic Activities. Chem. Nat. Compd. 2014, 50, 884–888. [Google Scholar] [CrossRef]
- Yuan, H.-L.; Zhao, Y.-L.; Qin, X.-J.; Liu, Y.-P.; Yu, H.-F.; Zhu, P.-F.; Jin, Q.; Yang, X.-W.; Luo, X.-D. Anti-inflammatory and analgesic activities of Neolamarckia cadamba and its bioactive monoterpenoid indole alkaloids. J. Ethnopharmacol. 2020, 260, 113103. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-D.; Wang, L.; He, J.; Li, X.-Y.; Dong, L.-B.; Gong, X.; Gao, X.; Song, L.-D.; Li, Y.; Peng, L.-Y.; et al. Two New Indole Alkaloids fromEmmenopterys henryi. Helvetica Chim. Acta 2013, 96, 2207–2213. [Google Scholar] [CrossRef]
- Gai, Y.; Chen, H.; Wu, C.; Feng, F.; Wang, Y.; Liu, W.; Wang, S. Analysis of the traditional medicine YiGan San by the fragmentation patterns of cadambine indole alkaloids using HPLC coupled with high-resolution MS. J. Sep. Sci. 2013, 36, 3723–3732. [Google Scholar] [CrossRef] [PubMed]
- Albinsson, B.; Norden, B. Excited-state properties of the indole chromophore: Electronic transition moment directions from linear dichroism measurements: Effect of methyl and methoxy substituents. J. Phys. Chem. 1992, 96, 6204–6212. [Google Scholar] [CrossRef]
Peak No | Compound Identifications | Precursor Ion Mass (m/z) | Molecular Formula | RT Means (min) | Ion Type | Predicted Fractions (Figure 2) | Experimental Fraction | Key Fragment (m/z) |
---|---|---|---|---|---|---|---|---|
IA (Cluster A, non-prioritized cluster and self-loops) | ||||||||
2 | Methyl 9H-β-carboline-4-carboxylate b | 227.176 | C13H11N2O2 | 7.03 | [M + H]+ | F10,F8,F9,F7,F5,F6 | F8 | 209,100 |
3 | Norharmane ab | 169.076 | C11H9N2 | 8.88 | [M + H]+ | F10,F9,F8,F5 | F7 | 142,115 |
4 | Harmane bc | 183.091 | C12H11N2 | 10.41 | [M + H]+ | F6,F7,F8,F9,F10,F1,F2,F3,F4 | F7 | 142,115 |
6 | Deglycocadambine d | 383.161 | C21H23N2O5 | 11.15 | [M + H]+ | F8,F9,F10,F7,F6,F4 | 365,337,305,183 | |
7 | Dehydrodeglycocadambine b | 385.177 | C21H25N2O5 | 11.23 | [M + H]+ | F8,F9,F10 | F10 | 367,227,183,170,144 |
9 | Cadambine b | 545.215 | C27H23N2O10 | 11.43 | [M + H]+ | F9,F10 | F10 | 383,365,227,170,139 |
10 | Naucledine bc | 306.124 | C18H16N3O2 | 11.75 | [M + H]+ | F10,F9,F8,F6 | F9 | 189,163,144 |
13 | Cadamine c | 364.167 | C21H22N3O | 13.2 | [M + H]+ | F6,F7,F5 | 346,317,285,233,144 | |
15 | Neonaucline bc | 346.119 | C20H16N3O2 | 14.39 | [M + H]+ | F4,F5,F2,F7,F6 | F5 | 314,286,271,231 |
16 | 1,2,3,4-tetranorharmane-1-one ab | 187.087 | C11H11N2O | 15.21 | [M + H]+ | F2,F8,F9,F10,F6,F4,F3 | F5 | 158,142,130,115 |
17 | Geissoschizine methyl ether a | 367.203 | C22H26N2O3 | 15.62 | [M + H]+ | F8,F9,F10 | 170,144,130,108,75 | |
19 | Naulafine b | 312.114 | C20H14N3O | 17.15 | [M + H]+ | F5,F6,F4,F8,F9,F10,F2,F4 | F6 | 269,242,187,170,159,141, 116 |
Triterpene (Cluster B and Self-loops) | ||||||||
23 | Glycyrrhetic acid a | 471.348 | C30H47O4 | 26.57 | [M + H]+ | F6,F7,F5,F4,F1 | 189,175,133,119,107,95 | |
25 | Betulinic acid a | 439.358 | C30H46O2 | 28.72 | [M + H]+-H2O | F9,F10, F7,F8,F6 | 393,259,243,213,179,137,95 | |
27 | Oleanolic acid a | 439.358 | C30H46O2 | 30.47 | [M + H]+-H2O | F7,F8,F9,F10 | 215,203,189,147,133,119,107,95,81,69 | |
Coumarine (Self-loops) | ||||||||
5 | Scopoletine ab | 193.050 | C10H9O4 | 10.75 | [M + H]+ | F4,F3 | F3 | 150,133,122,94,77,66 |
12 | Scoparone b | 207.065 | C11H11O4 | 12.73 | [M + H]+ | F1,F2,F3,F4,F5,F6,F7,F8,F9 | F2 | 163,151,146,135,118,107,91 |
14 | Di-O-methylfraxetin a | 237.076 | C10H9O5 | 13.98 | [M + H]+ | F4,F3,F5,F7,F8 | 207,179,147,133,123,91 | |
Phenolic (Cluster B) | ||||||||
20 | Hexyl-p coumarate b | 249.184 | C15H20O3 | 20.58 | [M + H]+ | F1,F2,F3,F4,F5,F6,F7,F10 | F1 | 175,163,153,147,125,109,95,69 |
26 | Trans ferulic acid a | 177.055 | C10H11O4 | 29.60 | [M + H]+ | F8,F9,F10 | 117,89,78 | |
Fatty acid (Cluster B) | ||||||||
24 | 9(10)-EpOME a | 279.232 | C18H33O3 | 26.59 | [M + H]+-H2O | F8,F9,F10,F7,F1,F4,F5,F6 | 135,123,109,95,81,67 | |
Lipid (Cluster B) | ||||||||
22 | Phytosphingosine a | 318.301 | C18H40NO3 | 25.11 | [M + H]+ | F6,F7,F2,F4,F5 | 300,282,270,252,95,83 | |
Organic acid (Self-loops) | ||||||||
11 | cyclo(L-Phe-D-Pro) a | 245.128 | C14H17N2O2 | 11.90 | [M + H]+ | F3, F2,F1,F6,F5,F7,F8,F9,F4 | 154,120,98,70 | |
18 | 2-Methoxy-6-methyl benzoic acid b | 167.060 | C9H11O3 | 17.11 | [M + H]+ | F1,F2,F3,F4,F5,F6,F7,F10 | F2 | 140,113 |
Amide (Self-loops) | ||||||||
1 | Benzamide bc | 122.060 | C7H8NO | 6.15 | [M + H]+ | F5,F1,F8,F10 | F4 | 105,95,77 |
8 | Cinnamide bc | 148.076 | C9H10NO | 11.28 | [M + H]+ | F4,F8,F10,F10 | F5 | 131,103 |
Polyketides | ||||||||
21 | Decarboxyportentol acetate b | 331.188 | C18H28O4 | 22.96 | [M+Na]+ | F1,F2,F3,F5,F8,F10 | F2 | 173,147,137,109,95,83,69 |
Dihydrodeglycocadambine 7 | Cadambine 9 | Cadambine [21] | ||||
---|---|---|---|---|---|---|
Position | δH (m, J in Hz) in Pyridine, C5D5N | δC in Pyridine, C5D5N | δH (m, J in Hz) in Pyridine, C5D5N | δC in Pyridine, C5D5N | δH (m, J in Hz) in CD3OD | δC in CD3OD |
NH | 12.48 (br s) | |||||
2 | 135.1 | 134.6 | 133.2 | |||
3 | 92.3 | 92.1 | 93.0 | |||
5 | 2.83 (m) overlap 3.18 (d, J = 8.1) | 53.2 | 3.01 (m) 2.74 (m) | 53.0 | 3.16 (m) 2.79 (m) | 53.9 |
6 | 2.83 (m) overlap | 22.8 | 2.80 (m) 4.63 (dd, J = 3.0, 12.2) | 22.8 | 2.80 brs | 22.8 |
7 | 111.1 | 110.8 | 111.6 | |||
8 | 127.2 | 127.0 | 127.0 | |||
9 | 7.74 (d, J = 7.6) | 119.9 | 7.69 (d, J = 7.7) | 119.9 | 7.47 (d, J = 7.8) | 120.2 |
10 | 7.28 (t, J = 7.6) | 119.7 | 7.23 (t, J = 7.7) | 119.9 | 7.00 (t, J = 7.8) | 120.1 |
11 | 7.34 (t, J = 7.6) | 122.7 | 7.27 (t, J = 7.7) | 122.8 | 7.11 (t, J = 7.8) | 123.4 |
12 | 7.67 (d, J = 7.6) | 111.4 | 7.51 (d, J = 7.7) | 112.6 | 7.33 (d, J = 7.8) | 112.6 |
13 | 138.4 | 138.4 | 136.3 | |||
14a 14b | 2.28 (dd, J = 12.0,12.0) 2.09 (dd, J = 12.0, 4.7) | 47.9 | 2.38 (dd, J = 5.9, 12.7) 2.33 (t, J = 12.7) | 44.1 | 2.06 (m) | 43.1 |
15 | 2.83 (m) overlap | 29.8 | 3.48 (m) | 26.41 | 3.26 (m) | 26.9 |
16 | 2.65 (m) | 48.9 | 110.8 | 111.3 | ||
17a 17b | 4.33 (dd, J = 11.2,4.3) 3.97 (t, J = 11.2) | 67.8 | 7.65 (s) | 153.4 | 7.57 s | 154.4 |
18a 18b | 2.83 (m) overlap 2.62 (d, J = 10.1) | 57.3 | 3.14 (d J = 10.2) 2.86 (m) | 59.4 | 3.51 (brd J = 10.8) 3.02 (dd J = 10.8,7.3) | 59.4 |
19 | 5.22 (dd, J = 6.2, 2.0) | 74.8 | 5.10 (d J = 7.0) | 73.8 | 4.94 (brd J = 7.3) | 74.6 |
20 | 2.20 (m) | 50.3 | 1.78 (t J = 7.0) | 40.9 | 1.76 (m) | 41.1 |
21 | 5.04 (d, J = 8.6) | 97.1 | 5.82 (d J = 9.2) | 98.2 | 5.84 (d J = 9.3) | 97.6 |
22-C=O | 173.0 | 167.6 | 168.9 | |||
23-OCH3 | 3.49 (s) | 52.0 | 3.60 (bs) | 51.5 | 3.65 s | 51.9 |
1′ | 5.19 (d J = 7.8) | 103.0 | 4.80 d J = 7.9 | 101.7 | ||
2′ | 4.16 (m) | 75.4 | 3.30 (m) | 74.9 | ||
3′ | 4.30 (t J = 8.9) | 78.0 | 3.42 t J = 9.0 | 78.1 | ||
4′ | 4.20 (m) | 72.4 | 3.28 (m) | 71.7 | ||
5′ | 3.97 (dddd J = 2.4, 7.0) | 79.0 | 3.34 (m) | 78.5 | ||
6′ | 4.48 (dd J = 11.8, 2.4) 4.17 (m) overlapp | 63.6 | 3.87 (dd J = 12.1, 2.3) 3.61 (dd J = 12.1, 6.4) | 62.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, N.; Zahari, A.; Hazni, H.; Wan Othman, W.N.N.; Rasol, N.E.; Ismail, N.H.; Champy, P.; Beniddir, M.A.; Litaudon, M.; Awang, K. Isolation and Characterization of Compounds from Ochreinauclea maingayi (Hook. f.) Ridsd. (Rubiaceae) with the Aid of LCMS/MS Molecular Networking. Separations 2023, 10, 74. https://doi.org/10.3390/separations10020074
Osman N, Zahari A, Hazni H, Wan Othman WNN, Rasol NE, Ismail NH, Champy P, Beniddir MA, Litaudon M, Awang K. Isolation and Characterization of Compounds from Ochreinauclea maingayi (Hook. f.) Ridsd. (Rubiaceae) with the Aid of LCMS/MS Molecular Networking. Separations. 2023; 10(2):74. https://doi.org/10.3390/separations10020074
Chicago/Turabian StyleOsman, Norfaizah, Azeana Zahari, Hazrina Hazni, Wan Nurul Nazneem Wan Othman, Nurulfazlina Edayah Rasol, Nor Hadiani Ismail, Pierre Champy, Mehdi A. Beniddir, Marc Litaudon, and Khalijah Awang. 2023. "Isolation and Characterization of Compounds from Ochreinauclea maingayi (Hook. f.) Ridsd. (Rubiaceae) with the Aid of LCMS/MS Molecular Networking" Separations 10, no. 2: 74. https://doi.org/10.3390/separations10020074
APA StyleOsman, N., Zahari, A., Hazni, H., Wan Othman, W. N. N., Rasol, N. E., Ismail, N. H., Champy, P., Beniddir, M. A., Litaudon, M., & Awang, K. (2023). Isolation and Characterization of Compounds from Ochreinauclea maingayi (Hook. f.) Ridsd. (Rubiaceae) with the Aid of LCMS/MS Molecular Networking. Separations, 10(2), 74. https://doi.org/10.3390/separations10020074