Ballota saxatilis from Jordan: Evaluation of Essential Oil Composition and Phytochemical Profiling of Crude Extracts and Their In-Vitro Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Hydrodistillation of Essential Oil
2.4. Extraction and Fractionation
2.5. Profiling Secondary Metabolite Classes by Chemical Methods
2.6. Determination of TPC and TFC
2.7. Evaluation of the Antioxidant Activity
2.7.1. DPPH• Free Radical Scavenging Activity
2.7.2. ABTS•+ Radical Scavenging Assay
2.8. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.9. LC-MS Analysis of Phytochemicals
3. Results and Discussion
3.1. Essential Oil Composition
3.2. Profiling Secondary Metabolite Classes by Chemical Methods
3.3. TPC, TFC and Antioxidant Activity
3.4. LC-MS Profiling of Phenolics, Flavonoids and Other Metabolites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Eisawi, D.M. List of Jordan Vascular Plants. Mitt. Bot. Staatssamml. München 1982, 18, 79–182. [Google Scholar]
- Davis, P.H. Flora of Turkey and the East Aegean Islands, 7th ed.; Edinburgh University Press: Scotland, UK, 1972; pp. 156–165. [Google Scholar]
- Zaghloul, M.; Hamrick, J.; Moustafa, A. Allozymic and morphologic differentiation between three Ballota species (Labiatae) growing in Southern Sinai, Egypt. Catrina Int. J. Environ. Sci. 2014, 9, 53–64. [Google Scholar] [CrossRef]
- Çitoğlu, G.S.; Sever, B.; Antus, S.; Baitz-Gács, E.; Altanlar, N. Antifungal diterpenoids and flavonoids from Ballota inaequidens. Pharm. Biol. 2005, 42, 659–663. [Google Scholar] [CrossRef]
- Abdullah, M.; Al-Khafaji, K.A.; Mouhamad, R.; Hussein, R.R. In-vivo study of the anti-diabetic effect of Ballota saxatilis. DYSONA-Life Sci. 2020, 1, 70–75. [Google Scholar]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K.F. In vitro propagation of Ballota acetabulosa. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 22 March 2016; Volume 1113, pp. 171–174. [Google Scholar]
- Fraternale, D.; Ricci, D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times. Nat. Prod. Commun. 2014, 9, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, T.; Bader, A.; Vassallo, A.; Braca, A.; Morelli, I.; Pizza, C.; De Tommasi, N. Secondary metabolites from Ballota undulata (Lamiaceae). Biochem. Syst. Ecol. 2005, 33, 341–351. [Google Scholar] [CrossRef]
- Meriçli, A.H.; Meriçli, F.; Tuzlaci, E. Flavonoids of Ballota acetabulosa. Acta Pharm. Turc. 2005, 30, 143–144. [Google Scholar]
- Ferreres, F.; Tomas-Barberan, F.A.; Tomas-Lorente, F. Flavonoid compounds from Ballota hirsuta. J. Nat. Prod. 1988, 49, 554–555. [Google Scholar] [CrossRef]
- Citoglu, G.; Tanker, M.; Sever, B. Note Flavonoid Aglycones from Ballota saxatilis subsp. saxatilis. Pharm. Biol. 1999, 37, 158–160. [Google Scholar] [CrossRef]
- Bruno, M.; Bondi, M.L.; Piozzi, F.; Arnold, N.A.; Simmonds, M.S. Occurrence of 18-hydroxyballonigrine in Ballota saxatilis ssp. saxatilis from Lebanon. Biochem. Syst. Ecol. 2001, 29, 429–431. [Google Scholar] [CrossRef]
- Citoğlu, G.S.; Coban, T.; Sever, B.; İşcan, M. Antioxidant properties of Ballota species growing in Turkey. J. Ethnopharmacol. 2004, 92, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Rigano, D.; Marrelli, M.; Formisano, C.; Menichini, F.; Senatore, F.; Bruno, M.; Conforti, F. Phytochemical profile of three Ballota species essential oils and evaluation of the effects on human cancer cells. Nat. Prod. Res. 2017, 31, 436–444. [Google Scholar] [CrossRef]
- Bader, A.; Caponi, C.; Cioni, P.L.; Flamini, G.; Morelli, I. Composition of the essential oil of Ballota undulata, B. nigra ssp. foetida and B. saxatilis. Flavour Fragr. J. 2003, 18, 502–504. [Google Scholar] [CrossRef]
- Fraternale, D.; Bucchini, A.; Giamperi, L.; Ricci, D. Essential oil composition and antimicrobial activity of Ballota nigra L. ssp foetida. Nat. Prod. Commun. 2009, 4, 585–588. [Google Scholar] [CrossRef]
- Vukovic, N.; Sukdolak, S.; Solujic, S.; Niciforovic, N. Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. J. Med. Food 2009, 12, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Couladis, M.; Chinou, I.B.; Tzakou, O.; Loukis, A. Composition and antimicrobial activity of the essential oil of Ballota pseudodictamnus L. Bentham. Phytother. Res. 2002, 16, 723–726. [Google Scholar] [CrossRef]
- Younis, A.; Riaz, A.; Khan, M.A.; Khan, A.A.; Pervez, M.A. Extraction and identification of chemical constituents of the essential oil of Rosa species. Acta Hortic. 2008, 766, 485–492. [Google Scholar] [CrossRef]
- Bicchi, C.; Joulain, D. Techniques for preparing essential oils and aromatic extracts. Flavour Fragr. J. 2018, 33, 133–134. [Google Scholar] [CrossRef]
- Dilworth, L.L.; Riley, C.K.; Stennett, D.K. Pharmacognosy: Fundamentals, Applications and Strategies. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 61–80. [Google Scholar]
- Dobreva, A.; Tintchev, F.; Heinz, V.; Schulz, H.; Toepfl, S. Effect of pulsed electric fields (PEF) on oil yield and quality during distillation of white oil-bearing rose (Rosa alba L.). Z. Für Arznei-Gewürzpflanzen 2010, 15, 127–132. [Google Scholar]
- Rassem, H.H.; Nour, A.H.; Yunus, R.M. Techniques for Extraction of Essential Oils from Plants: A Review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
- Al-Qudah, M.A.; Abu Zarga, M.H. Chemical composition of essential oils from aerial parts of Sisymbrium irio from Jordan. E-J. Chem. 2010, 7, 6–10. [Google Scholar] [CrossRef]
- Al-Qudah, M.A. Antioxidant acitvity and chemical composition of essential oils of fresh and air-dried Jordanian Nepeta curviflora Boiss. J. Biol. Act. Prod. Nat. 2016, 6, 101–111. [Google Scholar]
- Al-Qudah, M.A. Chemical composition of essential oil from Jordanian Lupinus varius L. Arab. J. Chem. 2013, 6, 225–227. [Google Scholar] [CrossRef]
- Alkhatib, R.Q.; Almasarweh, A.B.; Abdo, N.M.; Mayyas, A.S.; Al-Qudah, M.A.; Abu-Orabi, S.T. Chromatographic analysis (LC-MS and GC-MS), antioxidant activity, antibacterial activity, total phenol, and total flavonoid determination of Cleome arabica L. growing in Jordan. Int. J. Food Prop. 2022, 25, 1920–1933. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Migdadi, R.S.; Mayyas, A.S.; Al-Zereini, W.A.; Al-Dalahmeh, Y.; Abu Orabi, F.M.; Abu-Orabi, S.T. Chemical Composition, Cytotoxicity and antioxidant activity of the essential oil from flower buds and leaves of the Pulicaria incisa (Lam.) DC and Pulicaria crispa (Forskel) Oliver. J. Essent. Oil Bear. Plants 2022, 25, 758–772. [Google Scholar] [CrossRef]
- Al-Dalahmeh, Y.; Al-Bataineh, N.; Al-Balawi, S.S.; Lahham, J.N.; Al-Momani, I.F.; Al-Sheraideh, M.S.; Al-Qudah, M.A. LC-MS/MS Screening, Total phenolic, flavonoid and antioxidant Contents of crude extracts from three Asclepiadaceae species growing in Jordan. Molecules 2022, 27, 859. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Lahham, J.N. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Ali, M. Practical Pharmaceutical Chemistry; CBS Publishers & Distributors: Delhi, India, 1997. [Google Scholar]
- Bicchi, C.; Chaintreau, A.; Joulain, D. Identification of flavour and fragrance constituents. Flavour Fragr. J. 2018, 33, 201–202. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
No. | RT (min) | RI a Literature [32,34] | RIExp | Name of Compound | % Area of Peak | Method of Identification |
---|---|---|---|---|---|---|
1 | 3.55 | 859 | 862 | (Z)-3-hexenol | 0.16 | MS b, RI |
2 | 4.31 | 908 | 905 | Santolina triene | 0.08 | MS, RI |
3 | 4.78 | 929 | 924 | Artemisia triene | 0.12 | MS, RI |
4 | 4.94 | 930 | 930 | α-Thujene | 0.17 | MS, RI |
5 | 6.18 | 975 | 978 | trans-Pinane | 1.59 | MS, RI |
6 | 6.57 | 986 | 993 | cis-Pinane | 14.76 | MS, RI, RC c |
7 | 6.62 | 991 | 996 | 3-Octanol | 0.82 | MS, RI |
8 | 6.74 | 1008 | 1000 | dehydroxy-cis-Linalool oxide | 1.45 | MS, RI |
9 | 7.23 | 1017 | 1014 | α-Terpinene | 0.25 | MS, RI, RC |
10 | 7.47 | 1024 | 1021 | ρ-Cymene | 0.15 | MS, RI, RC |
11 | 7.74 | 1029 | 1028 | Limonene | 3.83 | MS, RI |
12 | 7.93 | 1037 | 1034 | (Z)-β-Ocimene | 0.53 | MS, RI |
13 | 8.65 | 1050 | 1055 | (E)-β-Ocimene | 0.43 | MS, RI |
14 | 8.97 | 1059 | 1064 | γ-Terpinene | 0.13 | MS, RI |
15 | 9.06 | 1074 | 1066 | Dihydro myrcenol | 0.57 | MS, RI |
16 | 9.56 | 1083 | 1081 | Artemisia alcohol | 0.32 | MS, RI |
17 | 10.03 | 1088 | 1094 | Terpinolene | 0.16 | MS, RI |
18 | 10.28 | 1096 | 1101 | Linalool | 2.43 | MS, RI, RC |
19 | 10.36 | 1099 | 1103 | α-Pinene oxide | 0.27 | MS, RI |
20 | 11.86 | 1135 | 1140 | dihydro Linalool | 0.19 | MS, RI |
21 | 12.33 | 1149 | 1152 | Myrcenone | 0.27 | MS, RI |
22 | 12.84 | 1169 | 1164 | Borneol | 4.90 | MS, RI |
23 | 12.95 | 1171 | 1167 | neo-iso-Isopulegol | 4.22 | MS, RI |
24 | 13.34 | 1176 | 1176 | trans Linalool oxide (pyranoid) | 0.98 | MS, RI |
25 | 13.67 | 1184 | 1184 | Thuj-3-en-10-al | 0.73 | MS, RI |
26 | 13.93 | 1192 | 1191 | cis-Dihydro carvone | 1.69 | MS, RI |
27 | 14.70 | 1219 | 1209 | β-Cyclocitral | 0.23 | MS, RI |
28 | 15.31 | 1225 | 1224 | Citronellol | 0.23 | MS, RI |
29 | 17.79 | 1285 | 1282 | Bornyl acetate | 0.53 | MS, RI |
30 | 18.12 | 1294 | 1290 | Methyl myrtenate | 0.78 | MS, RI |
31 | 20.85 | 1359 | 1354 | Eugenol | 0.70 | MS, RI |
32 | 21.21 | 1369 | 1363 | dihydro-Eugenol | 0.55 | MS, RI |
33 | 21.96 | 1388 | 1380 | β-Bourbonene | 0.44 | MS, RI |
34 | 23.50 | 1419 | 1417 | β-Caryophyllene | 8.91 | MS, RI, RC |
35 | 24.41 | 1433 | 1433 | β-Gurjunene | 0.34 | MS, RI |
36 | 24.78 | 1451 | 1449 | α-Himachalene | 0.72 | MS, RI |
37 | 24.98 | 1453 | 1453 | trans-Muurola-3,5-diene | 0.54 | MS, RI |
38 | 25.07 | 1454 | 1456 | α-neo-Clovene | 0.67 | MS, RI |
39 | 25.30 | 1460 | 1461 | allo-Aromadendrene | 0.04 | MS, RI |
40 | 25.65 | 1477 | 1470 | β-Chamigrene | 0.53 | MS, RI |
41 | 25.96 | 1479 | 1477 | γ-Muurolene | 3.40 | MS, RI |
42 | 26.13 | 1481 | 1482 | Germacrene D | 1.02 | MS, RI, RC |
43 | 26.51 | 1496 | 1491 | Viridiflorene | 0.48 | MS, RI |
44 | 26.73 | 1500 | 1496 | Bicyclogermacrene | 0.11 | MS, RI |
45 | 27.09 | 1500 | 1553 | α-Muurolene | 0.14 | MS, RI |
46 | 27.26 | 1512 | 1510 | δ-Amorphene | 0.32 | MS, RI |
47 | 27.33 | 1513 | 1511 | γ-Cadinene | 0.28 | MS, RI |
48 | 27.64 | 1523 | 1519 | δ-Cadinene | 0.54 | MS, RI |
49 | 29.39 | 1561 | 1564 | Germacrene B | 3.51 | MS, RI |
50 | 29.92 | 1578 | 1578 | Spathulenol | 1.23 | MS, RI |
51 | 30.30 | 1583 | 1587 | Caryophyllene oxide | 0.31 | MS, RI |
52 | 30.72 | 1600 | 1598 | Rosifoliol | 0.32 | MS, RI |
53 | 30.91 | 1607 | 1603 | β-Oplopenone | 0.47 | MS, RI |
54 | 31.68 | 1616 | 1624 | β-Himachalene oxide | 0.18 | MS, RI |
55 | 31.81 | 1632 | 1627 | γ-Eudesmol | 0.55 | MS, RI |
56 | 32.27 | 1641 | 1640 | allo-Aromadendrene epoxide | 6.39 | MS, RI |
57 | 32.46 | 1645 | 1645 | 2-epi-β-Cedren-3-one | 1.59 | MS, RI |
58 | 32.70 | 1660 | 1651 | Ageratochromene | 0.65 | MS, RI |
59 | 33.50 | 1677 | 1673 | Guaia-3,10(14)-dien-11-ol | 0.38 | MS, RI, |
60 | 33.87 | 1684 | 1683 | epi-α-Bisabolol | 0.33 | MS, RI |
61 | 40.49 | 1864 | 1871 | Cis-Thujopsenic acid | 0.49 | MS, RI |
62 | 40.88 | 1887 | 1883 | (5E,9Z)-Farnesyl acetone | 0.92 | MS, RI |
Monoterpene Hydrocarbons (MH) | 22.2 | |||||
Oxygenated monoterpenes (OM) | 21.04 | |||||
Sesquiterpene Hydrocarbons (SH) | 21.99 | |||||
Oxygenated Sesquiterpenes (OS) | 13.16 | |||||
Aliphatic hydrocarbon compounds (HC) | 0.98 | |||||
Phenolic compounds (PC) | 0.65 | |||||
Total | 80.02 |
BsA | BsB | BsW | |
---|---|---|---|
Alkaloids | + | - | - |
Tannins | + | + | + |
Terpenes | + | + | - |
Flavonoids | + | + | + |
Saponins | + | - | - |
Anthraquinone | - | - | - |
Glycosides | - | + | - |
Extract | TPC | TFC | IC50 (mg/mL) | |
---|---|---|---|---|
DPPH• | ABTS•+ | |||
BsA | 72.21 ± 1.19 | 55.11 ± 2.37 | 0.279 0.003 | 0.122 ± 0.005 |
BsB | 455.79 ± 1.03 | 272.62 ± 8.28 | 0.037 0.001 | 0.037 ± 0.001 |
BsW | 91.17 ± 0.52 | 139.55 ± 2.37 | 0.126 | 0.092 ± 0.002 |
Ascorbis acid | - | - | (1.8 0.06) 10−3 | (1.9 0.06) 10−3 |
-tocopherol | - | - | (2.3 0.04) 10−3 | (1.8 0.01) 10−3 |
# | Rt [min] | Compound Formula | Formula | Structure | Mode | Mwt | Exp. m/z | % Peak Area | |
---|---|---|---|---|---|---|---|---|---|
BsA | BsB | ||||||||
1 | 3.15 | Vanillic acid, | C₈H₈O₄ | [M + H]+ | 168.0417 | 169.0495 | 0.30 | - | |
2 | 3.41 | Salicylic acid | C₇H₆O₃ | [M + H]+ | 138.0287 | 139.0390 | 0.06 | - | |
3 | 3.64 | Sinapoyl malate-1′-methyl ester | C₁₆H₁₈O₉ | [M + H]+ | 354.0951 | 355.1024 | - | 5.98 | |
4 | 4.45 | Syringic acid | C₉H₁₀O₅ | [M + H]+ | 198.0533 | 199.0601 | 0.18 | - | |
5 | 4.46 | Kaempferol-3-O-rutinoside | C₂₇H₃₀O₁₅ | [M + H]+ | 594.1535 | 595.1657 | 1.63 | 30.9 | |
6 | 4.48 | Isoferulic acid | C₁₀H₁₀O₄ | [M − H]− | 194.0536 | 193.0464 | - | 0.43 | |
7 | 4.77 | 3,5-Dimethoxy-4-hydroxyacetophenone | C₁₀H₁₂O₄ | [M + H]+ | 196.0716 | 197.0808 | 0.15 | 0.71 | |
8 | 5.50 | Luteolin-7-O-glucoside | C₂₁H₂₀O₁₁ | [M + H]+ | 448.1003 | 449.1078 | 0.57 | 7.76 | |
9 | 5.65 | Rutin | C₂₇H₃₀O₁₆ | [M + H]+ | 610.1541 | 611.1607 | - | 3.14 | |
10 | 5.73 | Spiraeoside | C₂₁H₂₀O₁₂ | [M − H]− | 464.0942 | 463.0879 | - | 4.36 | |
11 | 5.98 | 3-Rha-7-Rha Kaempferol | C₂₇H₃₀O₁₄ | [M − H]− | 578.1619 | 577.1548 | - | 1.95 | |
12 | 6.08 | Apigenin-7-O-glucoside | C₂₁H₂₀O₁₀ | [M + H]+ | 432.1043 | 433.1129 | - | 3.59 | |
13 | 6.12 | 7-Glu Chrysoeriol | C₂₂H₂₂O₁₁ | [M + H]+ | 462.1147 | 463.1235 | 0.51 | 7.93 | |
14 | 7.52 | Chrysoeriol | C₁₆H₁₂O₆ | [M + H]+ | 300.0612 | 301.0707 | 0.76 | 3.32 | |
15 | 7.67 | Luteolin | C₁₅H₁₀O₆ | [M + H]+ | 286.0482 | 287.0550 | 1.00 | 4.00 | |
16 | 7.81 | 3-O-Methyl Quercetin | C₁₆H₁₂O₇ | [M + H]+ | 316.0583 | 317.0656 | 0.31 | 2.93 | |
17 | 8.43 | Apigenin | C₁₅H₁₀O₅ | [M + H]+ | 270.0602 | 271.0601 | - | 4.90 | |
18 | 8.73 | 5,7-Dihydroxy-3′,4′-dimethoxyflavanone | C₁₇H₁₆O₆ | [M + H]+ | 316.1020 | 317.1020 | 5.29 | - | |
19 | 9.30 | Eupatilin | C₁₈H₁₆O₇ | [M + H]+ | 344.0971 | 345.0969 | 6.42 | - | |
20 | 10.18 | 5,7-Dihydroxy-2′-methoxyflavone | C₁₆H₁₂O₅ | [M + H]+ | 284.0636 | 285.0757 | 0.43 | - | |
21 | 11.38 | Corymbosin | C₁₉H₁₈O₇ | [M + H]+ | 358.1127 | 359.1125 | 9.66 | - | |
22 | 12.00 | 7,4′-Dimethoxy-3-hydroxyflavone | C₁₇H₁₄O₅ | [M + H]+ | 298.0914 | 299.0914 | 34.68 | - | |
23 | 12.12 | α-Linolenic acid | C₁₈H₃₀O₂ | [M + H]+ | 278.2322 | 279.2319 | 2.93 | 5.26 | |
24 | 12.24 | Kaempferol-3,7,4′-trimethyl ether | C₁₈H₁₆O₆ | [M + H]+ | 328.1025 | 329.1020 | 29.17 | 0.65 | |
25 | 12.72 | 9Z, 11E-Linoleic acid | C₁₈H₃₂O₂ | [M + H]+ | 280.2399 | 281.2475 | 1.89 | 4.26 | |
26 | 13.08 | (Z)-3-Hydroxyoctadec-7-enoic acid | C₁₈H₃₄O₃ | [M + H]+ | 298.2508 | 299.2581 | 1.71 | 4.04 | |
27 | 13.89 | 9-trans-Palmitelaidic acid | C₁₆H₃₀O₂ | [M + H]+ | 254.2324 | 255.2319 | 0.33 | 0.76 | |
28 | 14.19 | Arachidonic acid | C₂₀H₃₂O₂ | [M + H]+ | 304.2482 | 305.2475 | 0.29 | - | |
29 | 14.88 | Taraxasterol | C₃₀H₅₀O | [M + H]+ | 426.3932 | 427.3934 | 0.73 | -- | |
30 | 15.00 | Heneicosanoic acid | C₂₁H₄₂O₂ | [M + H]+ | 326.3264 | 327.3258 | - | 0.84 | |
31 | 15.36 | Stearic acid | C₁₈H₃₆O₂ | [M + H]+ | 284.2715 | 285.2788 | 0.46 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bataineh, N.; Algethami, F.K.; Al-Jaber, H.I.; Alhamzani, A.G.; Bataineh, R.M.; Al-Dalahmeh, Y.; Bataineh, T.T.; Abu-Orabi, S.T.; Al-Qudah, M.A. Ballota saxatilis from Jordan: Evaluation of Essential Oil Composition and Phytochemical Profiling of Crude Extracts and Their In-Vitro Antioxidant Activity. Separations 2023, 10, 114. https://doi.org/10.3390/separations10020114
Al-Bataineh N, Algethami FK, Al-Jaber HI, Alhamzani AG, Bataineh RM, Al-Dalahmeh Y, Bataineh TT, Abu-Orabi ST, Al-Qudah MA. Ballota saxatilis from Jordan: Evaluation of Essential Oil Composition and Phytochemical Profiling of Crude Extracts and Their In-Vitro Antioxidant Activity. Separations. 2023; 10(2):114. https://doi.org/10.3390/separations10020114
Chicago/Turabian StyleAl-Bataineh, Nezar, Faisal K. Algethami, Hala I. Al-Jaber, Abdulrahman G. Alhamzani, Rand M. Bataineh, Yousef Al-Dalahmeh, Tareq T. Bataineh, Sultan T. Abu-Orabi, and Mahmoud A. Al-Qudah. 2023. "Ballota saxatilis from Jordan: Evaluation of Essential Oil Composition and Phytochemical Profiling of Crude Extracts and Their In-Vitro Antioxidant Activity" Separations 10, no. 2: 114. https://doi.org/10.3390/separations10020114
APA StyleAl-Bataineh, N., Algethami, F. K., Al-Jaber, H. I., Alhamzani, A. G., Bataineh, R. M., Al-Dalahmeh, Y., Bataineh, T. T., Abu-Orabi, S. T., & Al-Qudah, M. A. (2023). Ballota saxatilis from Jordan: Evaluation of Essential Oil Composition and Phytochemical Profiling of Crude Extracts and Their In-Vitro Antioxidant Activity. Separations, 10(2), 114. https://doi.org/10.3390/separations10020114