Liquid Nuclear Magnetic Resonance (NMR) Spectroscopy in Transition—From Structure Elucidation to Multi-Analysis Method
Abstract
:1. Introduction
2. Practical Aspects of NMR Application
2.1. Sample Preparation
2.2. NMR Spectroscopy
3. Structure Elucidation and Confirmation
4. Quantification and Purity Check for Quality Management
- An: refers to the analyte in the sample;
- Q: refers to the qNMR (quantitative NMR) standard in the internal standard;
- S: refers to the sample;
- ISTD: refers to the internal standard;
- IAn: is the integrated signal area of the analyte in the sample (A);
- IQ: is the integrated signal area of the qNMR standard (Q);
- NAn: is the number of resonating protons causing the analyte’s signal that is integrated;
- NQ: is the number of resonating protons causing the qNMR standard’s signal that is integrated;
- mS: is the mass (weighed portion) of the sample (S);
- mISTD: is the mass (weighed portion) of the internal standard (IS);
- MAn: is the molar mass of the analyte in the sample (A);
- MQ: is the molar mass of the qNMR standard (Q);
- PS: is the purity (mass fraction) of the sample (S);
- PQ: is the purity (mass fraction) of the qNMR standard (Q) in the ISTD;
- subscript i: refers to the i-th signal from the analyte in the sample (A);
- subscript j: refers to the j-th signal from the qNMR standard (Q) in the ISTD.
- fPULCON: is the PULCON factor;
- IRef: is the absolute integral of the reference signal;
- SWRef: is the spectral width (e.g., 20.55 ppm);
- MRef: is the molar mass of the reference standard;
- SIRef: is the no. of data points of the processed reference spectrum (e.g., 131,072 = 128 Ki = 217);
- γRef: is the purity-adjusted mass concentration of the reference substance;
- NH,Ref: is the number of protons per reference molecule causing the evaluated resonance.
- γAn: is the analyte mass concentration (in mg/kg);
- : is the absolute integral of the analyte in the sample;
- SWAn: is the spectral width (e.g., 20.55 ppm);
- MAn: is the molar weight of the analyte;
- Vsolv: is the volume of (deuterated) solvent used in the extraction;
- kAn: is the correction factor (if needed, e.g., isomeric ratio, recovery ratio under the used experimental conditions);
- SIAn: is the number of data points of the processed analyte spectrum (e.g., 131,072 = 128 ki = 217);
- fPULCON: is the mean value PULCON factor from QuantRef;
- NH,An: is the number of protons per analyte molecule giving this resonance;
- mAn: is the weighed portion of the original sample material used in the dissolution or extraction (in kg);
- fdil: is the dilution factor from analyte stock solution to measurement sample, e.g., 0.8, if 20% (v/v) buffer was added;
- PAn: is the excitation pulse length used for the analyte sample;
- PRef: is the excitation pulse length used for the QuantRef solution;
- NSRef: is the number of accumulated scans for the reference spectrum;
- NSAn: is the number of accumulated scans for the analyte spectrum.
5. Chemometric Methods (Multivariate Data Analysis)—Food Fraud and Authenticity Assessment
5.1. Wine
5.2. Edible Oils
5.3. Honey
5.4. Coffee
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NobelPrize.org. The Nobel Prize in Physics 1952. Available online: https://www.nobelprize.org/prizes/physics/1952/summary/ (accessed on 19 September 2023).
- Bloch, F. Nuclear Induction. Phys. Rev. 1946, 70, 460–474. [Google Scholar] [CrossRef]
- Purcell, E.M.; Torrey, H.C.; Pound, R.V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69, 37–38. [Google Scholar] [CrossRef]
- Le Gall, G.; Colquhoun, I.J. NMR spectroscopy in food authentication. In Food Authenticity and Traceability; Lees, M., Ed.; Woodhead: Cambridge, UK, 2003; pp. 131–155. ISBN 9781855735262. [Google Scholar]
- Malz, F.; Jancke, H. Validation of quantitative NMR. J. Pharm. Biomed. Anal. 2005, 38, 813–823. [Google Scholar] [CrossRef] [PubMed]
- ISO 24583:2022; Quantitative Nuclear Magnetic Resonance Spectroscopy: Purity Determination of Organic Compounds Used for Foods and Food Products—General Requirements for 1H NMR Internal Standard Method. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:24583:ed-1:v1:en (accessed on 26 September 2023).
- Wider, G.; Dreier, L. Measuring protein concentrations by NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Akoka, S.; Barantin, L.; Trierweiler, M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal. Chem. 1999, 71, 2554–2557. [Google Scholar] [CrossRef] [PubMed]
- Akoka, S.; Trierweiler, M. Improvement of the Eretic Method by Digital Synthesis of the Signal and Addition of a Broadband Antenna Inside the NMR Probe. Instrum. Sci. Technol. 2002, 30, 21–29. [Google Scholar] [CrossRef]
- Gold, V. (Ed.) Spectroscopy. In The IUPAC Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, USA, 2019. [Google Scholar]
- Sobolev, A.P.; Ingallina, C.; Spano, M.; Di Matteo, G.; Mannina, L. NMR-Based Approaches in the Study of Foods. Molecules 2022, 27, 7906. [Google Scholar] [CrossRef] [PubMed]
- Riley, I.M.; Nivelle, M.A.; Ooms, N.; Delcour, J.A. The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4738–4775. [Google Scholar] [CrossRef]
- Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem. 2021, 342, 128258. [Google Scholar] [CrossRef]
- Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–220. [Google Scholar] [CrossRef]
- Martin, G.J.; Mazure, M.; Jouitteau, C.; Martin, Y.-L.; Aguile, L.; Allain, P. Characterization of the Geographic Origin of Bordeaux Wines by a Combined Use of Isotopic and Trace Element Measurements. Am. J. Enol. Vitic. 1999, 50, 409–417. [Google Scholar] [CrossRef]
- Deming, S.N.; Michotte, Y.; Massart, D.L. Chemometrics: A Textbook; Elsevier: Burlington, NC, USA, 1988; ISBN 9780080868295. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Kowalski, B.R.; Reilly, C.A. Nuclear magnetic resonance spectral interpretation by pattern recognition. J. Phys. Chem. 1971, 75, 1402–1411. [Google Scholar] [CrossRef]
- Indahl, U.G.; Sahni, N.S.; Kirkhus, B.; Næs, T. Multivariate strategies for classification based on NIR-spectra—With application to mayonnaise. Chemom. Intell. Lab. Syst. 1999, 49, 19–31. [Google Scholar] [CrossRef]
- Wold, S. Pattern recognition by means of disjoint principal components models. Pattern Recognit. 1976, 8, 127–139. [Google Scholar] [CrossRef]
- Kessler, W. Multivariate Datenanalyse für die Pharma-, Bio-und Prozessanalytik; Wiley-VCH: Weinheim, Germany, 2007; ISBN 3527312625. [Google Scholar]
- Martens, H.; Næs, T. Multivariate calibration. I. Concepts and distinctions. TrAC Trends Anal. Chem. 1984, 3, 204–210. [Google Scholar] [CrossRef]
- Wold, S. Chemometrics; what do we mean with it, and what do we want from it? Chemom. Intell. Lab. Syst. 1995, 30, 109–115. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Mushtakova, S.P.; Kolesnikova, S.S.; Astakhov, S.A. Chemometrics-assisted spectrophotometric method for simultaneous determination of vitamins in complex mixtures. Anal. Bioanal. Chem. 2010, 397, 1297–1306. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Astakhov, S.A.; Kraskov, A.; Mushtakova, S.P. Independent components in spectroscopic analysis of complex mixtures. Chemom. Intell. Lab. Syst. 2010, 103, 108–115. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Wiley: Hoboken, NJ, USA, 2004; ISBN 9780471464198. [Google Scholar]
- De Juan, A.; Tauler, R. Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications. Crit. Rev. Anal. Chem. 2006, 36, 163–176. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils: Proceedings of a Conference Held at Pite Havsbad, Sweden, 22–24 March 1982; Kågström, B., Ruhe, A., Kågström, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. ISBN 978-3-540-11983-8. [Google Scholar]
- Jolliffe, I.T. A Note on the Use of Principal Components in Regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1982, 31, 300. [Google Scholar] [CrossRef]
- Vershinin, V.I. Chemometrics in the works of Russian analysts. J. Anal. Chem. 2011, 66, 1010–1019. [Google Scholar] [CrossRef]
- Hoffman, R.E.; Levy, G.C. Modern methods of N M R data processing and data evaluation. Prog. Nucl. Magn. Reson. Spectrosc. 1991, 23, 211–258. [Google Scholar] [CrossRef]
- Grahn, H.; Delaglio, F.; Delsuc, M.A.; Levy, G.C. Multivariate data analysis for pattern recognition in two-dimensional NMR. J. Magn. Reson. 1988, 77, 294–307. [Google Scholar] [CrossRef]
- Teipel, J.; Gottstein, V.; Hölzle, E.; Kaltenbach, K.; Lachenmeier, D.; Kuballa, T. An Easy and Reliable Method for the Mitigation of Deuterated Chloroform Decomposition to Stabilise Susceptible NMR Samples. Chemistry 2022, 4, 776–785. [Google Scholar] [CrossRef]
- Le Gall, G.; Puaud, M.; Colquhoun, I.J. Discrimination between orange juice and pulp wash by (1)H Nuclear Magnetic Resonance spectroscopy: Identification of marker compounds. J. Agric. Food Chem. 2001, 49, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Walch, S.G.; Lachenmeier, D.W.; Kuballa, T.; Stühlinger, W.; Monakhova, Y.B. Holistic Control of Herbal Teas and Tinctures Based on Sage (Salvia officinalis L.) for Compounds with Beneficial and Adverse Effects using NMR Spectroscopy. Anal. Chem. Insights 2012, 7, 1–12. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Frank, W.; Humpfer, E.; Schfer, H.; Keller, S.; Mrtter, M.; Spraul, M. Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis. Eur. Food Res. Technol. 2005, 220, 215–221. [Google Scholar] [CrossRef]
- Larsen, F.H.; van den Berg, F.; Engelsen, S.B. An exploratory chemometric study of 1 H NMR spectra of table wines. J. Chemom. 2006, 20, 198–208. [Google Scholar] [CrossRef]
- Rodrigues, J.E.A.; Erny, G.L.; Barros, A.S.; Esteves, V.I.; Brandão, T.; Ferreira, A.A.; Cabrita, E.; Gil, A.M. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods. Anal. Chim. Acta 2010, 674, 166–175. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. Rapid Determination of Total Thujone in Absinthe Using 1 H NMR Spectroscopy. Int. J. Spectro. 2011, 2011, 171684. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Schäfer, H.; Humpfer, E.; Spraul, M.; Kuballa, T.; Lachenmeier, D.W. Application of automated eightfold suppression of water and ethanol signals in 1H NMR to provide sensitivity for analyzing alcoholic beverages. Magn. Reson. Chem. 2011, 49, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Holzgrabe, U. Quantitative NMR spectroscopy in pharmaceutical applications. Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.-N.; Pauli, G.F. Universal quantitative NMR analysis of complex natural samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Lagerquist, L.; Rahkila, J.; Eklund, P. Utilization of 31 P PULCON for Quantitative Hydroxyl Group Determination in Lignin by NMR Spectroscopy. ACS Sustain. Chem. Eng. 2019, 7, 9002–9006. [Google Scholar] [CrossRef]
- Schönberger, T.; Bachmann, R.; Gerhardt, N.; Panzer, J.; Meyer, K.; Romoth, M.; Teipel, J.; Scharinger, A.; Weber, M.; Kuballa, T.; et al. Guide to NMR Method Development and Validation—Part I: Identification and Quantification (Update 2023); EUROLAB: Brussels, Belgium, 2023. [Google Scholar]
- Giraudeau, P.; Silvestre, V.; Akoka, S. Optimizing water suppression for quantitative NMR-based metabolomics: A tutorial review. Metabolomics 2015, 11, 1041–1055. [Google Scholar] [CrossRef]
- Teipel, J.C.; Hausler, T.; Sommerfeld, K.; Scharinger, A.; Walch, S.G.; Lachenmeier, D.W.; Kuballa, T. Application of 1H Nuclear Magnetic Resonance Spectroscopy as Spirit Drinks Screener for Quality and Authenticity Control. Foods 2020, 9, 1355. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Sicker, D. Classics in Spectroscopy: Isolation and Structure Elucidation of Natural Products; Wiley-VCH: Weinheim, Germany, 2009; ISBN 3527325166. [Google Scholar]
- Berger, S.; Braun, S. 200 and More NMR Experiments: A Practical Course; Wiley-VCH: Weinheim, Germany, 2011; ISBN 3527310673. [Google Scholar]
- Jacobsen, N.E. NMR Data Interpretation Explained: Understanding 1D and 2D NMR Spectra of Organic Compounds and Natural Products; Wiley: Hoboken, NJ, USA, 2017; ISBN 9781119176886. [Google Scholar]
- Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy, 5th ed.; Wiley-VCH: Weinheim, Germany, 2011; ISBN 9783527327829. [Google Scholar]
- Keeler, J.J. Understanding NMR Spectroscopy, 2nd ed.; Wiley: Chichester, UK, 2011; ISBN 0470746092. [Google Scholar]
- Ackermann, S.M.; Dolsophon, K.; Monakhova, Y.B.; Kuballa, T.; Reusch, H.; Thongpanchang, T.; Bunzel, M.; Lachenmeier, D.W. Automated Multicomponent Analysis of Soft Drinks Using 1D 1H and 2D 1H-1H J-resolved NMR Spectroscopy. Food Anal. Methods 2017, 10, 827–836. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. TrAC Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories = Exigences Générales Concernant la Compétence des Laboratoires d’Étalonnages et d’Essais. ISO/IEC: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 26 September 2023).
- Choi, K.; Myoung, S.; Seo, Y.; Ahn, S. Quantitative NMR as a Versatile Tool for the Reference Material Preparation. Magnetochemistry 2021, 7, 15. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kohl-Himmelseher, M.; Kuballa, T.; Lachenmeier, D.W. Determination of the purity of pharmaceutical reference materials by 1H NMR using the standardless PULCON methodology. J. Pharm. Biomed. Anal. 2014, 100, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Spraul, M.; Schütz, B.; Humpfer, E.; Mörtter, M.; Schäfer, H.; Koswig, S.; Rinke, P. Mixture analysis by NMR as applied to fruit juice quality control. Magn. Reson. Chem. 2009, 47 (Suppl. S1), S130–S137. [Google Scholar] [CrossRef] [PubMed]
- BVL Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Untersuchung von Lebensmitteln–Bestimmung Verschiedener Inhaltsstoffe, Zusatzstoffe und Verunreinigungen in Alkoholfreien Erfrischungsgetränken Mittels Quantitativer Kernspinresonanzspektrometrie; Beuth-Verlag: Berlin, Germany, 2021; (L 32.00-6); Available online: https://www.beuth.de/en/technical-rule/bvl-l-32-00-6/348221329 (accessed on 26 September 2023).
- Yang, W.-B.; Wang, S.-H.; Chen, Y.-T. qNMR as a Tool for Determination of Six Common Sugars in Foods. In Applications of NMR Spectroscopy; Atta-ur-Rahman, Ed.; Bentham Science Publishers: Singapore, 2020; pp. 1–24. ISBN 9789811439971. [Google Scholar]
- Monakhova, Y.B.; Kuballa, T.; Leitz, J.; Lachenmeier, D.W. Determination of diethyl phthalate and polyhexamethylene guanidine in surrogate alcohol from Russia. Int. J. Anal. Chem. 2011, 2011, 704795. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Leitz, J.; Schoeberl, K.; Kuballa, T.; Straub, I.; Rehm, J. Calidad del alcohol producido en Europa ilegalmente o de forma no regulada: Resultados del proyecto AMPHORA. Adicciones 2011, 23, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Gary, M.; Monakhova, Y.B.; Kuballa, T.; Mildau, G. Rapid NMR screening of total aldehydes to detect oxidative rancidity in vegetable oils and decorative cosmetics. Spectrosc. Eur. 2010, 22, 11–14. [Google Scholar]
- Lachenmeier, D.W.; Mildau, G.; Rullmann, A.; Marx, G.; Walch, S.G.; Hartwig, A.; Kuballa, T. Evaluation of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using 1H NMR spectroscopy. F1000Research 2017, 6, 682. [Google Scholar] [CrossRef] [PubMed]
- Jaki, B.U.; Bzhelyansky, A.; Pauli, G.F. Quantitative NMR (qNMR) for pharmaceutical analysis: The pioneering work of George Hanna at the US FDA. Magn. Reson. Chem. 2021, 59, 7–15. [Google Scholar] [CrossRef]
- Holzgrabe, U.; Wawer, I.; Diehl, B. (Eds.) NMR Spectroscopy in Pharmaceutical Analysis; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 978-0-444-53173-5. [Google Scholar]
- Maiwald, M.; Steinhof, O.; Sleigh, C.; Bernstein, M.; Hasse, H. Quantitative High-Resolution Online NMR Spectroscopy in Pharmaceutical Reaction and Process Monitoring. In NMR Spectroscopy in Pharmaceutical Analysis; Holzgrabe, U., Wawer, I., Diehl, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 471–491. ISBN 978-0-444-53173-5. [Google Scholar]
- Moco, S. Studying Metabolism by NMR-Based Metabolomics. Front. Mol. Biosci. 2022, 9, 882487. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. NMR Metabolomics Methods for Investigating Disease. Anal. Chem. 2023, 95, 83–99. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. Nontargeted NMR Analysis To Rapidly Detect Hazardous Substances in Alcoholic Beverages. Appl. Magn. Reson. 2012, 42, 343–352. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. Rapid Quantification of Ethyl Carbamate in Spirits Using NMR Spectroscopy and Chemometrics. ISRN Anal. Chem. 2012, 2012, 989174. [Google Scholar] [CrossRef]
- Martínez-Sabater, E.; Bustamante, M.A.; Marhuenda-Egea, F.C.; El-Khattabi, M.; Moral, R.; Lorenzo, E.; Paredes, C.; Gálvez, L.N.; Jordá, J.D. Study of the evolution of organic matter during composting of winery and distillery residues by classical and chemometric analysis. J. Agric. Food Chem. 2009, 57, 9613–9623. [Google Scholar] [CrossRef] [PubMed]
- Bodenhausen, G.; Freeman, R.; Morris, G.A. A simple pulse sequence for selective excitation in Fourier transform NMR. J. Magn. Reson. (1969) 1976, 23, 171–175. [Google Scholar] [CrossRef]
- Bernstein, M.A.; King, K.F.; Zhou, X.J. Handbook of MRI Pulse Sequences; Academic Press: Amsterdam, The Netherlands, 2010; ISBN 9780120928613. [Google Scholar]
- Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd ed.; reprinted with corrections; John Wiley & Sons Ltd.: Chichester, UK; Hoboken, NJ, USA; San Francisco, CA, USA, 2008; ISBN 9780470511176. [Google Scholar]
- Conway, T.F.; Cohee, R.F.; Smith, R.J. NMR moisture analyzer shows big potential. J. Food Eng. 1957, 29, 80. [Google Scholar]
- Hoult, D. Solvent peak saturation with single phase and quadrature fourier transformation. J. Magn. Reson. (1969) 1976, 21, 337–347. [Google Scholar] [CrossRef]
- Ross, A.; Schlotterbeck, G.; Dieterle, F.; Senn, H. NMR Spectroscopy Techniques for Application to Metabonomics. In The Handbook of Metabonomics and Metabolomics, 1st ed.; Lindon, J.C., Nicholson, J.K., Holmes, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 337–347. ISBN 9780080468006. [Google Scholar]
- NobelPrize.org. The Nobel Prize in Chemistry 2002. Available online: https://www.nobelprize.org/prizes/chemistry/2002/wuthrich/facts/ (accessed on 26 September 2023).
- Food Fraud|Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/food-fraud-quality/topic/food-fraud_en (accessed on 19 September 2023).
- Monakhova, Y.B.; Godelmann, R.; Kuballa, T.; Mushtakova, S.P.; Rutledge, D.N. Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): Application to NMR fingerprinting of wine. Talanta 2015, 141, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Brereton, R.G.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.M.; Walczak, B.; Tauler, R. Chemometrics in analytical chemistry-part I: History, experimental design and data analysis tools. Anal. Bioanal. Chem. 2017, 409, 5891–5899. [Google Scholar] [CrossRef] [PubMed]
- Brereton, R.G.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.M.; Walczak, B.; Tauler, R. Chemometrics in analytical chemistry-part II: Modeling, validation, and applications. Anal. Bioanal. Chem. 2018, 410, 6691–6704. [Google Scholar] [CrossRef]
- Brereton, R.G. The evolution of chemometrics. Anal. Methods 2013, 5, 3785. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Thomas, F.; Donarski, J.; Ingallina, C.; Circi, S.; Cesare Marincola, F.; Capitani, D.; Mannina, L. Use of NMR applications to tackle future food fraud issues. Trends Food Sci. Technol. 2019, 91, 347–353. [Google Scholar] [CrossRef]
- Aslam, R.; Sharma, S.R.; Kaur, J.; Panayampadan, A.S.; Dar, O.I. A systematic account of food adulteration and recent trends in the non-destructive analysis of food fraud detection. J. Food Meas. Charact. 2023, 17, 3094–3114. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 2018, 91, 100–112. [Google Scholar] [CrossRef]
- Flügge, F.; Kerkow, T.; Kowalski, P.; Bornhöft, J.; Seemann, E.; Creydt, M.; Schütze, B.; Günther, U.L. Qualitative and quantitative food authentication of oregano using NGS and NMR with chemometrics. Food Control 2023, 145, 109497. [Google Scholar] [CrossRef]
- Pacholczyk-Sienicka, B.; Ciepielowski, G.; Albrecht, Ł. The Application of NMR Spectroscopy and Chemometrics in Authentication of Spices. Molecules 2021, 26, 382. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.; Schneider, T.; Rumask, L.; Fischer, M.; Hackl, T. Food Profiling: Determination of the Geographical Origin of Walnuts by 1H NMR Spectroscopy Using the Polar Extract. J. Agric. Food Chem. 2020, 68, 15526–15534. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, Y.B.; Holzgrabe, U.; Diehl, B.W.K. Current role and future perspectives of multivariate (chemometric) methods in NMR spectroscopic analysis of pharmaceutical products. J. Pharm. Biomed. Anal. 2018, 147, 580–589. [Google Scholar] [CrossRef]
- Qu, Q.; Jin, L. Application of nuclear magnetic resonance in food analysis. Food Sci. Technol. 2022, 42, e43622. [Google Scholar] [CrossRef]
- Le Mao, I.; Da Costa, G.; Richard, T. 1H-NMR metabolomics for wine screening and analysis. OENO One 2022, 57, 15–31. [Google Scholar] [CrossRef]
- Kuballa, T.; Oppler, J. Rebsortendifferenzierung von Wein mittels 1H-NMR und chemometrischer Auswertung. Lebensmittelchemie 2023, 77, S3–S101. [Google Scholar] [CrossRef]
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Holzgrabe, U.; Diehl, B. Determination of free fatty acids in edible oils by 1H NMR spectroscopy. Lipid Technol. 2012, 24, 279–281. [Google Scholar] [CrossRef]
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Holzgrabe, U.; Diehl, B. 1H-NMR Spectroscopy as a New Tool in the Assessment of the Oxidative State in Edible Oils. J. Am. Oil Chem. Soc. 2012, 89, 1383–1391. [Google Scholar] [CrossRef]
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Holzgrabe, U.; Diehl, B. 1H NMR approach as an alternative to the classical p-anisidine value method. Eur. Food Res. Technol. 2012, 235, 1101–1105. [Google Scholar] [CrossRef]
- Vigli, G.; Philippidis, A.; Spyros, A.; Dais, P. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. J. Agric. Food Chem. 2003, 51, 5715–5722. [Google Scholar] [CrossRef]
- Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4056–4075. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Godelmann, R.; Andlauer, C.; Kuballa, T.; Lachenmeier, D.W. Identification of Imitation Cheese and Imitation Ice Cream Based on Vegetable Fat Using NMR Spectroscopy and Chemometrics. Int. J. Food Sci. 2013, 2013, 367841. [Google Scholar] [CrossRef] [PubMed]
- Ohmenhaeuser, M.; Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics. ISRN Anal. Chem. 2013, 2013, 825318. [Google Scholar] [CrossRef]
- Schievano, E.; Peggion, E.; Mammi, S. 1H nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 2010, 58, 57–65. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J. Agric. Food Chem. 2008, 56, 6873–6880. [Google Scholar] [CrossRef]
- Zieliński, L.; Deja, S.; Jasicka-Misiak, I.; Kafarski, P. Chemometrics as a tool of origin determination of Polish monofloral and multifloral honeys. J. Agric. Food Chem. 2014, 62, 2973–2981. [Google Scholar] [CrossRef]
- Gerhardt, N.; Birkenmeier, M.; Kuballa, T.; Ohmenhaeuser, M.; Rohn, S.; Weller, P. Differentiation of the botanical origin of honeys by fast, non-targeted 1H-NMR profiling and chemometric tools as alternative authenticity screening tool. MRFS 2016, 16, 33–37. [Google Scholar] [CrossRef]
- Statista Research Department. Coffee Market in Germany: Statistics & Facts. Available online: https://www.statista.com/topics/5363/coffee-market-in-germany/#dossier-chapter1 (accessed on 15 August 2023).
- C2. International Coffee Organisation. Coffee Report and Outlook. Available online: https://icocoffee.org/documents/cy2022-23/Coffee_Report_and_Outlook_April_2023_-_ICO.pdf (accessed on 15 August 2023).
- Bornkessel, S.; Preiß, A.; Stoyke, M.; Lachenmeier, D.W. OPSON VIII—Verfälschungen bei Kaffee europaweit im Fokus. Lebensmittelchemie 2019, 73, S141. [Google Scholar] [CrossRef]
- Gottstein, V.; Lachenmeier, D.W.; Kuballa, T.; Bunzel, M. 1H NMR-based approach to determine the geographical origin and cultivation method of roasted coffee. Food Chem. 2023, 433, 137278. [Google Scholar] [CrossRef] [PubMed]
- Matviychuk, Y.; Haycock, S.; Rutan, T.; Holland, D.J. Quantitative analysis of wine and other fermented beverages with benchtop NMR. Anal. Chim. Acta 2021, 1182, 338944. [Google Scholar] [CrossRef]
- CEN/TC 460 WG 4; CEN/TC 460—Food Authenticity: Project prEN 17992. iTeh Standards: Etobicoke, ON, Canada. Available online: https://standards.cencenelec.eu/dyn/www/f?p=CEN:110:0::FSP_PROJECT,FSP_ORG_ID:74655,2565430&cs=1871FD58D9D584925A4A93DB8AC42D250 (accessed on 26 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuballa, T.; Kaltenbach, K.H.; Teipel, J.; Lachenmeier, D.W. Liquid Nuclear Magnetic Resonance (NMR) Spectroscopy in Transition—From Structure Elucidation to Multi-Analysis Method. Separations 2023, 10, 572. https://doi.org/10.3390/separations10110572
Kuballa T, Kaltenbach KH, Teipel J, Lachenmeier DW. Liquid Nuclear Magnetic Resonance (NMR) Spectroscopy in Transition—From Structure Elucidation to Multi-Analysis Method. Separations. 2023; 10(11):572. https://doi.org/10.3390/separations10110572
Chicago/Turabian StyleKuballa, Thomas, Katja H. Kaltenbach, Jan Teipel, and Dirk W. Lachenmeier. 2023. "Liquid Nuclear Magnetic Resonance (NMR) Spectroscopy in Transition—From Structure Elucidation to Multi-Analysis Method" Separations 10, no. 11: 572. https://doi.org/10.3390/separations10110572
APA StyleKuballa, T., Kaltenbach, K. H., Teipel, J., & Lachenmeier, D. W. (2023). Liquid Nuclear Magnetic Resonance (NMR) Spectroscopy in Transition—From Structure Elucidation to Multi-Analysis Method. Separations, 10(11), 572. https://doi.org/10.3390/separations10110572