Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tayyebi, M.; Alizadeh, M. Thermal and wear properties of Al/Cu functionally graded metal matrix composite produced by severe plastic deformation method. J. Manuf. Process. 2023, 85, 515–526. [Google Scholar] [CrossRef]
- Ye, Q.; Li, X.; Tayyebi, M.; Assari, A.H.; Polkowska, A.; Lech, S.; Polkowski, W.; Tayebi, M. Effect of heat treatment parameters on microstructure evolution, tensile strength, wear resistance, and fracture behavior of Ni–Ti multilayered composites produced by cross-accumulative roll bonding. Arch. Civ. Mech. Eng. 2023, 23, 27. [Google Scholar] [CrossRef]
- Mohazzab, B.F.; Jaleh, B.; Fattah-alhosseini, A.; Mahmoudi, F.; Momeni, A. Laser surface treatment of pure titanium: Micro-structural analysis, wear properties, and corrosion behavior of titanium carbide coatings in Hank’s physiological solution. Surf. Interfaces 2020, 20, 100597. [Google Scholar] [CrossRef]
- Xu, M.; Yu, X.; Zhang, S.; Yan, S.; Tarbokov, V.; Remnev, G.; Le, X. Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing. Materials 2023, 16, 3028. [Google Scholar] [CrossRef] [PubMed]
- Gloc, M.; Przybysz-Gloc, S.; Wachowski, M.; Kosturek, R.; Lewczuk, R.; Szachogłuchowicz, I.; Paziewska, P.; Maranda, A.; Ciupiński, Ł. Research on Explosive Hardening of Titanium Grade 2. Materials 2023, 16, 847. [Google Scholar] [CrossRef] [PubMed]
- Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Luca, D.; Istrate, B. The influence of ZrO2/20%Y2O3 and Al2O3 deposited coatings to the behavior of an aluminum alloy subjected to mechanical shock. Appl. Surf. Sci. 2015, 352, 169–177. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Sandu, A.V.; Nabialek, M.; Vizureanu, P.; Ciobanu, G. Biomimetic Deposition of Hydroxyapatite Layer on Titanium Alloys. Micromachines 2021, 12, 1447. [Google Scholar] [CrossRef]
- Wang, Y.; Tayyebi, M.; Assari, A. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process. Arch. Civ. Mech. Eng. 2022, 22, 49. [Google Scholar] [CrossRef]
- Yumusak, G.; Leyland, A.; Matthews, A. The effect of pre-deposited titanium-based PVD metallic thin films on the nitrogen diffusion efficiency and wear behaviour of nitrided Ti alloys. Surf. Coat. Technol. 2020, 394, 125545. [Google Scholar] [CrossRef]
- Genc, O.; Unal, R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review. J. Alloys Compd. 2022, 929, 167262. [Google Scholar] [CrossRef]
- Guo, A.X.; Cheng, L.; Zhan, S.; Zhang, S.; Xiong, W.; Wang, Z.; Wang, G.; Cao, S.C. Biomedical applications of the powder-based 3D printed titanium alloys: A review. J. Mater. Sci. Technol. 2022, 125, 252–264. [Google Scholar] [CrossRef]
- Chirico, C.; Romero, A.V.; Gordo, E.; Tsipas, S. Improvement of wear resistance of low-cost powder metallurgy β-titanium alloys for biomedical applications. Surf. Coat. Technol. 2022, 434, 128207. [Google Scholar] [CrossRef]
- Yumusak, G.; Leyland, A.; Matthews, A. A microabrasion wear study of nitrided α-Ti and β-TiNb PVD metallic thin films, pre-deposited onto titanium alloy substrates. Surf. Coat. Technol. 2022, 442, 128423. [Google Scholar] [CrossRef]
- Zhao, S.; Meng, F.; Fan, B.; Dong, Y.; Wang, J.; Qi, X. Evaluation of wear mechanism between TC4 titanium alloys and self-lubricating fabrics. Wear 2023, 512–513, 204532. [Google Scholar] [CrossRef]
- Wen, K.; Zhang, C.; Gao, Y. Influence of gas pressure on the low-temperature plasma nitriding of surface-nanocrystallined TC4 titanium alloy. Surf. Coat. Technol. 2022, 436, 128327. [Google Scholar] [CrossRef]
- Tarnowski, M.; Borowski, T.; Skrzypek, S.; Kulikowski, K.; Wierzchoń, T. Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processes. J. Alloys Compd. 2021, 864, 158896. [Google Scholar] [CrossRef]
- Mohan, L.; Anandan, C. Effect of gas composition on corrosion behavior and growth of apatite on plasma nitrided titanium alloy Beta-21S. Appl. Surf. Sci. 2013, 268, 288–296. [Google Scholar] [CrossRef]
- Bacci, T.; Borgioli, F.; Tesi, B. Surface modification of Ti–6Al–4V alloy by means of combined plasma nitriding and oxidising treatments. Surf. Eng. 1998, 14, 500–504. [Google Scholar] [CrossRef]
- Kikuchi, S.; Ota, S.; Akebono, H.; Omiya, M.; Komotori, J.; Sugeta, A.; Nakai, Y. Formation of nitrided layer using atmospheric-controlled IH-FPP and its effect on the fatigue properties of Ti-6Al-4V alloy under four-point bending. Procedia Struct. Integr. 2016, 2, 3432–3438. [Google Scholar] [CrossRef]
- Takesue, S.; Kikuchi, S.; Akebono, H.; Morita, T.; Komotori, J. Characterization of surface layer formed by gas blow induction heating nitriding at different temperatures and its effect on the fatigue properties of titanium alloy. Results Mater. 2020, 5, 100071. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Formation, tribological and corrosion properties of thicker Ti-N layer produced by plasma nitriding of titanium in a N2-NH3 mixture gas. Surf. Coat. Technol. 2020, 393, 125846. [Google Scholar] [CrossRef]
- She, D.; Yue, W.; Fu, Z.; Wang, C.; Yang, X.; Liu, J. Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium. Surf. Coat. Technol. 2015, 264, 32–40. [Google Scholar] [CrossRef]
- Hacısalihoğlu, İ.; Kaya, G.; Ergüder, T.O.; Mandev, E.; Manay, E.; Yıldız, F. Tribological and thermal properties of plasma nitrided Ti45Nb alloy. Surf. Interfaces 2021, 22, 100893. [Google Scholar] [CrossRef]
- Borisyuk, Y.; Oreshnikova, N.; Berdnikova, M.; Tumarkin, A.; Khodachenko, G.; Pisarev, A. Plasma Nitriding of Titanium Alloy Ti5Al4V2Mo. Phys. Procedia 2015, 71, 105–109. [Google Scholar] [CrossRef]
- Fu, Y.-D.; Zhu, X.-S.; Li, Z.-F.; Leng, K. Properties and microstructure of Ti6Al4V by deformation accelerated low temperature plasma nitriding. Trans. Nonferr. Met. Soc. China 2016, 26, 2609–2616. [Google Scholar] [CrossRef]
- Farokhzadeh, K.; Edrisy, A.; Pigott, G.; Lidster, P. Scratch resistance analysis of plasma-nitrided Ti–6Al–4V alloy. Wear 2013, 302, 845–853. [Google Scholar] [CrossRef]
- Zhecheva, A.; Sha, W.; Malinov, S.; Long, A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 2005, 200, 2192–2207. [Google Scholar] [CrossRef]
- Chen, K.; Jaung, G.D.c. diode ion nitriding behavior of titanium and Ti-6Al-4V. Thin Solid Films 1997, 303, 226–231. [Google Scholar] [CrossRef]
- Sun, B.; Wang, L.; Sun, Y.; Gao, J.; Cao, H.; Ren, J.; Cui, J.; Yuan, X.; Li, A.; Wang, C. Enhanced thermal stability of Mo film with low infrared emissivity by a TiN barrier layer. Appl. Surf. Sci. 2021, 571, 151368. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.; Chen, M.; Chen, D.; Yang, K.; Wang, F. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 °C. J. Mater. Sci. Technol. 2020, 45, 125–132. [Google Scholar] [CrossRef]
- Rizzo, A.; Signore, M.A.; Mirenghi, L.; Di Luccio, T. Synthesis and characterization of titanium and zirconium oxynitride coatings. Thin Solid Films 2009, 517, 5956–5964. [Google Scholar] [CrossRef]
- Pohrelyuk, I.; Morgiel, J.; Tkachuk, O.; Szymkiewicz, K. Effect of temperature on gas oxynitriding of Ti-6Al-4V alloy. Surf. Coat. Technol. 2019, 360, 103–109. [Google Scholar] [CrossRef]
- Dong, H.; Li, X. Oxygen boost diffusion for the deep-case hardening of titanium alloys. Mater. Sci. Eng. A 2000, 280, 303–310. [Google Scholar] [CrossRef]
- Jadhav, P.S.; Jadhav, T.; Bhosale, M.; Jadhav, C.; Pawar, V. Structural and optical properties of N-doped TiO2 nanomaterials. Mater. Today Proc. 2021, 43, 2763–2767. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Q.; Huang, B. Synthesis and properties of novel N/Ta-co-doped TiO2 coating on titanium in simulated PEMFC environment. J. Alloys Compd. 2021, 879, 160470. [Google Scholar] [CrossRef]
- Sayegh, S.; Abid, M.; Tanos, F.; Cretin, M.; Lesage, G.; Zaviska, F.; Petit, E.; Navarra, B.; Iatsunskyi, I.; Coy, E.; et al. N-doped TiO2 nanotubes synthesized by atomic layer deposition for acetaminophen degradation. Colloids Surf. A 2022, 655, 130213. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z. (Eds.) 6—Tribological degradation at elevated temperature. In Developments in High Temperature Corrosion and Protection of Materials; Woodhead Publishing: Cambridge, UK, 2008; pp. 117–163. [Google Scholar]
- Allahyarzadeh, M.; Aliofkhazraei, M.; Rouhaghdam, A.S.; Alimadadi, H.; Torabinejad, V. Mechanical properties and load bearing capability of nanocrystalline nickel-tungsten multilayered coatings. Surf. Coat. Technol. 2020, 386, 125472. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.B.; Liu, Y.F.; Wang, G.; Wang, Y.; Meng, Y.; Liang, J. Development and characterization of Co-Cu/Ti3SiC2 self-lubricating wear resistant composite coatings on Ti6Al4V alloy by laser cladding. Surf. Coat. Technol. 2021, 424, 127664. [Google Scholar] [CrossRef]
- Huang, Z.P.; Zhao, W.J. Coupling hybrid of HBN nanosheets and TiO2 to enhance the mechanical and tribological properties of composite coatings. Prog. Org. Coat. 2020, 148, 105881. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Bhakhri, V.; Giuliani, F.; Atkinson, A. Nanoindentation of porous bulk and thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ. Acta Mater. 2013, 61, 5720–5734. [Google Scholar] [CrossRef]
- Chen, W.; Wang, H. Reduced strain rate sensitivity by structural rejuvenation in metallic glass under nanoindentation. Mater. Lett. 2021, 298, 130037. [Google Scholar] [CrossRef]
Sample | First Oxy-Nitriding Course | Second Oxy-Nitriding Course | ||||
---|---|---|---|---|---|---|
O2:N2 | Pressure (Pa) | Time (h) | O2:N2 | Pressure (Pa) | Time (h) | |
PN3h | \ | \ | \ | 100% N2 | 40 | 3 |
PON3h-30Pa | 1:4 | 15 | 1 | 1:9 | 30 | 2 |
PON3h-35Pa | 1:4 | 15 | 1 | 1:11 | 35 | 2 |
PON3h-40Pa | 1:4 | 15 | 1 | 1:13 | 40 | 2 |
PON4h-40Pa | 1:4 | 15 | 2 | 1:13 | 40 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, H.; Wang, S.; Yang, Y.; Niu, Y.; Zhu, S.; Wang, F. Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding. Materials 2023, 16, 3609. https://doi.org/10.3390/ma16103609
Li H, Wang H, Wang S, Yang Y, Niu Y, Zhu S, Wang F. Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding. Materials. 2023; 16(10):3609. https://doi.org/10.3390/ma16103609
Chicago/Turabian StyleLi, Haidong, Haifeng Wang, Shijie Wang, Yange Yang, Yunsong Niu, Shenglong Zhu, and Fuhui Wang. 2023. "Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding" Materials 16, no. 10: 3609. https://doi.org/10.3390/ma16103609
APA StyleLi, H., Wang, H., Wang, S., Yang, Y., Niu, Y., Zhu, S., & Wang, F. (2023). Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding. Materials, 16(10), 3609. https://doi.org/10.3390/ma16103609