Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. MedDiet and Fatty Liver Management
3. Multi-Ingredient Nutritional Approaches for the Treatment of NAFLD and NASH
3.1. Vitamin E and Silybin
3.2. Vitamin Mixtures
3.3. PUFAs and Vitamins
3.4. Natural Extracts
3.5. Synbiotics
4. Application of Omics Technologies in Liver Diseases
4.1. Role of Omics Technologies in Evaluating the Pathogenesis of NAFLD and NASH
4.2. Omics Technologies for Nutritional Interventions against NAFLD and NASH
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
References
- Abenavoli, L.; Milic, N.; Di Renzo, L.; Preveden, T.; Medic-Stojanoska, M.; De Lorenzo, A. Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 7006–7016. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Blissett, D.; Blissett, R.; Henry, L.; Stepanova, M.; Younossi, Y.; Racila, A.; Hunt, S.; Beckerman, R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 2016, 64, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Farrell, G.C.; Wong, V.W.-S.; Chitturi, S. NAFLD in Asia—As common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Neuschwander-tetri, B.A. Hepatic Lipotoxicity and the Pathogenesis of Nonalcoholic Steatohepatitis: The Central Role of Nontriglyceride Fatty Acid Metabolites. Hepatology 2010, 52, 774–788. [Google Scholar] [CrossRef] [PubMed]
- Day, C.P.; James, O.F.W.; Macdonald, G.; Cowley, L.; Walker, N.; Ward, P.; Jazwinska, E.; Powell, L.; Fromenty, B.; Pessayre, D. Steatohepatitis: A tale of two “hits”? Gastroenterology 1998, 114, 842–845. [Google Scholar] [CrossRef]
- Alkhouri, N. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications. Gastroenterology 2012, 142, 711–725.e6. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Kozlitina, J.; Smagris, E.; Stender, S.; Nordestgaard, B.G.; Zhou, H.H.; Tybjærg-Hansen, A.; Vogt, T.F.; Hobbs, H.H.; Cohen, J.C. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The Diagnosis and Management of Non-alcoholic Fatty Liver Disease: Practice Guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012, 142, 1592–1609. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P.; Patel, K. Biopsy and Noninvasive Methods to Assess Progression of Nonalcoholic Fatty Liver Disease. Gastroenterology 2016, 150, 1811–1822.e4. [Google Scholar] [CrossRef] [PubMed]
- Burt, A.; Lackner, C.; Tiniakos, D. Diagnosis and Assessment of NAFLD: Definitions and Histopathological Classification. Semin. Liver Dis. 2015, 35, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, E.; Dhawan, A. Noninvasive biomarkers in non-alcoholic fatty liver disease: Current status and a glimpse of the future. World J. Gastroenterol. 2014, 20, 10851–10863. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, D.; Andreou, E. Role of diet on non-alcoholic fatty liver disease: An updated narrative review. World J. Hepatol. 2015, 7, 575. [Google Scholar] [CrossRef] [PubMed]
- Vizuete, J.; Camero, A.; Malakouti, M.; Garapati, K.; Gutierrez, J. Perspectives on Nonalcoholic Fatty Liver Disease: An Overview of Present and Future Therapies. J. Clin. Transl. Hepatol. 2017, 5, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, G.; Luccarini, J.-M.; Poekes, L.; Faye, P.; Kupkowski, F.; Adarbes, V.; Defrêne, E.; Estivalet, C.; Gawronski, X.; Jantzen, I.; et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 2017, 1, 524–537. [Google Scholar] [CrossRef]
- Haczeyni, F.; Wang, H.; Barn, V.; Mridha, A.R.; Yeh, M.M.; Haigh, W.G.; Ioannou, G.N.; Choi, Y.-J.; McWherter, C.A.; Teoh, N.C.-H.; et al. The selective peroxisome proliferator-activated receptor-delta agonist seladelpar reverses nonalcoholic steatohepatitis pathology by abrogating lipotoxicity in diabetic obese mice. Hepatol. Commun. 2017, 1, 663–674. [Google Scholar] [CrossRef]
- Klebanoff, M.J.; Corey, K.E.; Chhatwal, J.; Kaplan, L.M.; Chung, R.T.; Hur, C. Bariatric surgery for nonalcoholic steatohepatitis: A clinical and cost-effectiveness analysis. Hepatology 2017, 65, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.E.; Hackett, D.A.; George, J.; Johnson, N.A. Exercise and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2012, 57, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H. Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance. Nutrients 2015, 7, 9127–9138. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.; Gluud, C.; Franzmann, M.B.; Christoffersen, P. Hepatic effects of dietary weight loss in morbidly obese subjects. J. Hepatol. 1991, 12, 224–229. [Google Scholar] [CrossRef]
- Marchesini, G.; Montesi, L.; El Ghoch, M.; Brodosi, L.; Calugi, S.; Dalle Grave, R. Long-term weight loss maintenance for obesity: A multidisciplinary approach. Diabetes Metab. Syndr. Obes. Targets Ther. 2016, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Bjermo, H.; Iggman, D.; Kullberg, J.; Dahlman, I.; Johansson, L.; Persson, L.; Berglund, J.; Pulkki, K.; Basu, S.; Uusitupa, M.; et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nälsén, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M.; et al. KANWU Study Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Kastorini, C.-M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The Effect of Mediterranean Diet on Metabolic Syndrome and its Components: A Meta-Analysis of 50 Studies and 534,906 Individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Kastorini, C.-M.; Panagiotakos, D.B.; Giugliano, D. Mediterranean diet and metabolic syndrome: An updated systematic review. Rev. Endocr. Metab. Disord. 2013, 14, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Lavine, J.E.; Schwimmer, J.B.; Van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.; Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Nonalcoholic Steatohepatitis Clinical Research Network Effect of Vitamin E or Metformin for Treatment of Nonalcoholic Fatty Liver Disease in Children and Adolescents. JAMA 2011, 305, 1659. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. NASH CRN Pioglitazone, Vitamin E, or Placebo for Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- He, X.-X.; Wu, X.-L.; Chen, R.-P.; Chen, C.; Liu, X.-G.; Wu, B.-J.; Huang, Z.-M. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2016, 11, e0162368. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.Y.N.; Wareham, N.J.; Khaw, K.-T.; Imamura, F.; Forouhi, N.G. Prospective association of the Mediterranean diet with cardiovascular disease incidence and mortality and its population impact in a non-Mediterranean population: The EPIC-Norfolk study. BMC Med. 2016, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. PREDIMED Study Investigators Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef] [PubMed]
- Romaguera, D.; Norat, T.; Mouw, T.; May, A.M.; Bamia, C.; Slimani, N.; Travier, N.; Besson, H.; Luan, J.; Wareham, N.; et al. Adherence to the Mediterranean Diet Is Associated with Lower Abdominal Adiposity in European Men and Women. J. Nutr. 2009, 139, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Beunza, J.-J.; Toledo, E.; Hu, F.B.; Bes-Rastrollo, M.; Serrano-Martinez, M.; Sanchez-Villegas, A.; Martinez, J.A.; Martinez-Gonzalez, M.A. Adherence to the Mediterranean diet, long-term weight change, and incident overweight or obesity: The Seguimiento Universidad de Navarra (SUN) cohort. Am. J. Clin. Nutr. 2010, 92, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Benetou, V.; Trichopoulou, A.; Orfanos, P.; Naska, A.; Lagiou, P.; Boffetta, P.; Trichopoulos, D. Greek EPIC cohort Conformity to traditional Mediterranean diet and cancer incidence: The Greek EPIC cohort. Br. J. Cancer 2008, 99, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Trovato, F.M.; Martines, G.F.; Brischetto, D.; Trovato, G.; Catalano, D. Neglected features of lifestyle: Their relevance in non-alcoholic fatty liver disease. World J. Hepatol. 2016, 8, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Manios, Y.; Papatheodoridis, G. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Izaola, O.; De La Fuente, B.; De Luis, D. Mediterranean diet is associated with liver histology in patients with non alcoholic fatty liver disease. Nutr. Hosp. 2015, 32, 2518–2524. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Katsagoni, C.N.; Egkomiti, A.; Papageorgiou, M.; Ioannidou, P.; Fragopoulou, E.; Papatheodoridis, G.; Kontogianni, M. Improvement in liver function after an intervention based on the Mediterranean diet in patients with non alcoholic fatty liver disease (NAFLD). Clin. Nutr. ESPEN 2016, 13, e57. [Google Scholar] [CrossRef] [PubMed]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef] [PubMed]
- Trovato, F.M.; Catalano, D.; Martines, G.F.; Patrizia, P.; Trovato, G.M. Mediterranean diet and non-alcoholic fatty liver disease. The need of extended and comprehensive interventions. Clin. Nutr. 2015, 34, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Misciagna, G.; Del Pilar Diaz, M.; Caramia, D.V.; Bonfiglio, C.; Franco, I.; Noviello, M.R.; Chiloiro, M.; Abbrescia, D.I.; Mirizzi, A.; Tanzi, M.; et al. Effect of a low glycemic index mediterranean diet on non-alcoholic fatty liver disease. J. Nutr. Heal. Aging 2017, 21, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guisado, J.; Muñoz-Serrano, A. The Effect of the Spanish Ketogenic Mediterranean Diet on Nonalcoholic Fatty Liver Disease: A Pilot Study. J. Med. Food 2011, 14, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.; Mosca, A.; Vania, A.; Alterio, A.; Iasevoli, S.; Nobili, V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: The results of an Italian Study. Nutrition 2017, 39–40, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Papamiltiadous, E.S.; Roberts, S.K.; Nicoll, A.J.; Ryan, M.C.; Itsiopoulos, C.; Salim, A.; Tierney, A.C. A randomised controlled trial of a Mediterranean Dietary Intervention for Adults with Non Alcoholic Fatty Liver Disease (MEDINA): Study protocol. BMC Gastroenterol. 2016, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Greco, M.; Nazionale, I.; Peta, V.; Milic, N.; Accattato, F.; Foti, D.; Gulletta, E.; Luzza, F. Effects of Mediterranean diet supplemented with silybin-vitaminE-phospholipid complex in overweight patients with non-alcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2015, 1–9, 519–527. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, B.; Tang, J.; Li, D. Fatty acid and non-alcoholic fatty liver disease: Meta-analyses of case-control and randomized controlled trials. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Prinster, A.; Annuzzi, G.; Costagliola, L.; Mangione, A.; Vitelli, A.; Mazzarella, R.; Longobardo, M.; Mancini, M.; Vigorito, C.; et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 2012, 35, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Errazuriz, I.; Dube, S.; Slama, M.; Visentin, R.; Nayar, S.; O’Connor, H.; Cobelli, C.; Das, S.K.; Basu, A.; Kremers, W.K.; et al. Randomized Controlled Trial of a MUFA or Fiber-Rich Diet on Hepatic Fat in Prediabetes. J. Clin. Endocrinol. Metab. 2017, 102, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Cantero, I.; Abete, I.; Monreal, J.; Martinez, J.; Zulet, M. Fruit Fiber Consumption Specifically Improves Liver Health Status in Obese Subjects under Energy Restriction. Nutrients 2017, 9, 667. [Google Scholar] [CrossRef] [PubMed]
- Scribner, K.B.; Pawlak, D.B.; Ludwig, D.S. Hepatic Steatosis and Increased Adiposity in Mice Consuming Rapidly vs. Slowly Absorbed Carbohydrate. Obesity 2007, 15, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Valtueña, S.; Pellegrini, N.; Ardigò, D.; Del Rio, D.; Numeroso, F.; Scazzina, F.; Monti, L.; Zavaroni, I.; Brighenti, F. Dietary glycemic index and liver steatosis. Am. J. Clin. Nutr. 2006, 84, 136–142. [Google Scholar] [PubMed]
- Dongiovanni, P.; Lanti, C.; Riso, P.; Valenti, L. Nutritional therapy for nonalcoholic fatty liver disease. J. Nutr. Biochem. 2016, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ni, Y.; Nagata, N.; Xu, L.; Ota, T. Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2016, 17, 1379. [Google Scholar] [CrossRef] [PubMed]
- Sawangjit, R.; Chongmelaxme, B.; Phisalprapa, P.; Saokaew, S.; Thakkinstian, A.; Kowdley, K.V.; Chaiyakunapruk, N. Comparative efficacy of interventions on nonalcoholic fatty liver disease (NAFLD): A PRISMA-compliant systematic review and network meta-analysis. Medicine 2016, 95, e4529. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cordero, P.; Nguyen, V.; Oben, J.A. The Role of Vitamins in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Integr. Med. Insights 2016, 11, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2015, 16, 25168–25198. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Qiao, Y.-J.; Zhao, Y.-L.; Tao, X.-F.; Xu, L.-N.; Yin, L.-H.; Qi, Y.; Peng, J.-Y. Herbal medicines and nonalcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 6890–6905. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High serum carotenoids are associated with lower risk for developing elevated serum alanine aminotransferase among Japanese subjects: The Mikkabi cohort study. Br. J. Nutr. 2016, 115, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, R.; Carbajo-Pescador, S.; Mauriz, J.L.; Gonzalez-Gallego, J. Understanding nutritional interventions and physical exercise in non-alcoholic fatty liver disease. Curr. Mol. Med. 2015, 15, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Houghton, D.; Stewart, C.J.; Day, C.P.; Trenell, M. Gut Microbiota and Lifestyle Interventions in NAFLD. Int. J. Mol. Sci. 2016, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Lytle, K.A.; Wong, C.P.; Jump, D.B. Docosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese Ldlr-/- mice. PLoS ONE 2017, 12, e0173376. [Google Scholar] [CrossRef] [PubMed]
- De Castro, G.S.; Calder, P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Costabile, G.; Luongo, D.; Naviglio, D.; Cicala, V.; Piantadosi, C.; Patti, L.; Cipriano, P.; Annuzzi, G.; Rivellese, A.A. Reduction in liver fat by dietary MUFA in type 2 diabetes is helped by enhanced hepatic fat oxidation. Diabetologia 2016, 59, 2697–2701. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Cooper, J.A. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur. J. Nutr. 2014, 53, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Rivellese, A.A.; Giacco, R.; Annuzzi, G.; De Natale, C.; Patti, L.; Di Marino, L.; Minerva, V.; Costabile, G.; Santangelo, C.; Masella, R.; et al. Effects of monounsaturated vs. saturated fat on postprandial lipemia and adipose tissue lipases in type 2 diabetes. Clin. Nutr. 2008, 27, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Summers, L.K.; Barnes, S.C.; Fielding, B.A.; Beysen, C.; Ilic, V.; Humphreys, S.M.; Frayn, K.N. Uptake of individual fatty acids into adipose tissue in relation to their presence in the diet. Am. J. Clin. Nutr. 2000, 71, 1470–1477. [Google Scholar] [PubMed]
- Pachikian, B.D.; Essaghir, A.; Demoulin, J.-B.; Catry, E.; Neyrinck, A.M.; Dewulf, E.M.; Sohet, F.M.; Portois, L.; Clerbaux, L.-A.; Carpentier, Y.A.; et al. Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways. Mol. Nutr. Food Res. 2013, 57, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.A.; Raman, M.; Rioux, K.P.; Reimer, R.A. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012, 32, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.C.; Holt, S.H.A.; Pawlak, D.B.; McMillan, J. Glycemic index and obesity. Am. J. Clin. Nutr. 2002, 76, 281S–285S. [Google Scholar] [PubMed]
- Jenkins, D.J.A.; Josse, A.R.; Labelle, R.; Marchie, A.; Augustin, L.S.A.; Kendall, C.W.C. Nonalcoholic fatty liver, nonalcoholic steatohepatitis, ectopic fat, and the glycemic index. Am. J. Clin. Nutr. 2006, 84, 3–4. [Google Scholar] [PubMed]
- Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proc. Nutr. Soc. 2016, 75, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Zhuge, F.; Nagashimada, M.; Ota, T. Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis. Nutrients 2016, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Zeng, D.; Wang, H.; Ni, X.; Yi, D.; Pan, K.; Jing, B. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl. Microbiol. Biotechnol. 2014, 98, 6817–6829. [Google Scholar] [CrossRef] [PubMed]
- Ritze, Y.; Bárdos, G.; Claus, A.; Ehrmann, V.; Bergheim, I.; Schwiertz, A.; Bischoff, S.C. Lactobacillus rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE 2014, 9, e80169. [Google Scholar] [CrossRef] [PubMed]
- Peluso, I.; Romanelli, L.; Palmery, M. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: Diet or supplementation for metabolic syndrome prevention? Int. J. Food Sci. Nutr. 2014, 65, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Takaki, A.; Kawai, D.; Yamamoto, K. Multiple Hits, Including Oxidative Stress, as Pathogenesis and Treatment Target in Non-Alcoholic Steatohepatitis (NASH). Int. J. Mol. Sci. 2013, 14, 20704–20728. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, C.; Andreone, P.; Brisc, C.; Cristina, M.; Bugianesi, E.; Chiaramonte, M.; Cursaro, C.; Danila, M.; De Sio, I.; Floreani, A.; et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: A randomized controlled trial. Free Radic. Biol. Med. 2012, 52, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, F.; Scognamiglio, A.; Palumbo, R.; Forte, R.; Cacciapuoti, F. Silymarin in non alcoholic fatty liver disease. World J. Hepatol. 2013, 5, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Izaola, O.; Tafur, C.; Berroa, E.; Mora, N.; Luis, D.A.D.E. Effect of silymarin plus vitamin E in patients with non-alcoholic fatty liver disease. A randomized clinical pilot study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3118–3124. [Google Scholar] [PubMed]
- Sorrentino, G.; Crispino, P.; Coppola, D.; De Stefano, G. Efficacy of Lifestyle Changes in Subjects with Non-Alcoholic Liver Steatosis and Metabolic Syndrome May Be Improved with an Antioxidant Nutraceutical: A Controlled Clinical Study. Drugs R D 2015, 15, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Kawanaka, M.; Nishino, K.; Nakamura, J.; Suehiro, M.; Goto, D.; Urata, N.; Oka, T.; Kawamoto, H.; Nakamura, H.; Yodoi, J.; et al. Treatment of nonalcoholic steatohepatitis with vitamins E and C: A pilot study. Hepatic Med. Evid. Res. 2013, 5, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, G.; Günsar, F.; Karasu, Z.; Akay, S.; Batur, Y.; Akarca, U.S. Management of fatty liver disease with vitamin E and C compared to ursodeoxycholic acid treatment. Turk. J. Gastroenterol. 2005, 16, 124–128. [Google Scholar] [PubMed]
- Ebrahimi-Mameghani, M.; Jamali, H.; Mahdavi, R.; Kakaei, F.; Abedi, R.; Kabir-Mamdooh, B. Conjugated linoleic acid improves glycemic response, lipid profile, and oxidative stress in obese patients with non-alcoholic fatty liver disease: A randomized controlled clinical trial. Croat. Med. J. 2016, 57, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.; Carpino, G.; De Vito, R.; De Stefanis, C.; Alisi, A.; Cianfarani, S.; Overi, D.; Mosca, A.; Stronati, L.; Cucchiara, S.; et al. Docosahexanoic Acid Plus Vitamin D Treatment Improves Features of NAFLD in Children with Serum Vitamin D Deficiency: Results from a Single Centre Trial. PLoS ONE 2016, 11, e0168216. [Google Scholar] [CrossRef] [PubMed]
- Abidov, M.; Ramazanov, Z.; Seifulla, R.; Grachev, S. The effects of XanthigenTM in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab. 2010, 12, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Del Ben, M.; Polimeni, L.; Baratta, F.; Pastori, D.; Angelico, F. The role of nutraceuticals for the treatment of non-alcoholic fatty liver disease. Br. J. Clin. Pharmacol. 2017, 83, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Trappoliere, M.; Caligiuri, A.; Schmid, M.; Bertolani, C.; Failli, P.; Vizzutti, F.; Novo, E.; di Manzano, C.; Marra, F.; Loguercio, C.; et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J. Hepatol. 2017, 50, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Torgerson, S.; Hayashi, P.; Ward, J.; Schenker, S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am. J. Gastroenterol. 2003, 98, 2485–2490. [Google Scholar] [CrossRef] [PubMed]
- Alba, L.M.; Lindor, K. Non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2003, 17, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.; Budoff, M.; Saab, S.; Ahmadi, N.; Gordon, C.; Guerci, A. Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease: The St Francis Heart Study randomized clinical trial. Am. J. Gastroenterol. 2011, 106, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Alisi, A.; Musso, G.; Scorletti, E.; Philip, C.; Byrne, C.D.; Nobili, V.; Alisi, A.; Musso, G.; Scorletti, E.; et al. Omega-3 fatty acids: Mechanisms of benefit and therapeutic effects in pediatric and adult NAFLD Omega-3 fatty acids: Mechanisms of benefit and therapeutic effects in pediatric and adult NAFLD. Crit. Rev. Clin. Lab. Sci. 2016, 8363, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, S.K.; Abrams, S.; Yates, K.; Pfeifer, K.; Torbenson, M.; Murray, K.; Roth, C.L.; Kowdley, K. The Relationship between Vitamin D Status and Non-alcoholic Fatty Liver Disease in Children. J. Pediatr Gastroenterol. Nutr. 2016, 60, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Barchetta, I.; Carotti, S.; Labbadia, G.; Gentilucci, U.V.; Muda, A.O.; Angelico, F.; Silecchia, G.; Leonetti, F.; Fraioli, A.; Picardi, A.; et al. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: Relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology 2012, 56, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Lorvand Amiri, H.; Agah, S.; Tolouei Azar, J.; Hosseini, S.; Shidfar, F.; Mousavi, S.N. Effect of daily calcitriol supplementation with and without calcium on disease regression in non-alcoholic fatty liver patients following an energy-restricted diet: Randomized, controlled, double-blind trial. Clin. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Bedogni, G.; Alisi, A.; Pietrobattista, A.; Risé, P.; Galli, C.; Agostoni, C. Docosahexaenoic acid supplementation decreases liver fat content in children with non-alcoholic fatty liver disease: Double-blind randomised controlled clinical trial. Arch. Dis. Child. 2011, 96, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Mah, X.; Garcia, M.C.; Antonypillai, C.; Van Der Poorten, D.; Gupta, V.; Mah, X.; Garcia, M.C.; Antonypillai, C.; Van Der Poorten, D. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease. World J. Gastroenterol. 2015, 21, 10621–10635. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, Z.; Gibson, D. L.; Hekmatdoost, A. Nonalcoholic Fatty Liver Disease, the Gut Microbiome, and Diet. Adv. Nutr. Int. Rev. J. 2017, 15, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Lara, M.J.; Robles-Sanchez, C.; Ruiz-Ojeda, F.J.; Plaza-Diaz, J.; Gil, A. Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. Int. J. Mol. Sci. 2016, 13, 928. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, T.; Llopis, M.; Lepage, P.; Bruneau, A.; Rabot, S.; Bevilacqua, C.; Martin, P.; Philippe, C.; Walker, F.; Bado, A.; et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 2013, 62, 1784–1794. [Google Scholar]
- Eslamparast, T.; Poustchi, H.; Zamani, F.; Sharafkhah, M.; Malekzadeh, R.; Hekmatdoost, A. Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Am. J. Clin. Nutr. 2014, 99, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Mofidi, F.; Poustchi, H.; Yari, Z.; Nourinayyer, B.; Merat, S.; Sharafkhah, M.; Malekzadeh, R.; Hekmatdoost, A. Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: A pilot, randomised, double-blind, placebo-controlled, clinical trial. Br. J. Nutr. 2017, 117, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, A.; Askari, G.; Esmailzade, A.; Feizi, A.; Mohammadi, V. The Effect of Symbiotic Supplementation on Liver Enzymes, C-reactive Protein and Ultrasound Findings in Patients with Non-alcoholic Fatty Liver Disease: A Clinical Trial. Int. J. Prev. Med. 2016, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Ekhlasi, G.; Zarrati, M.; Agah, S.; Hosseini, A.F.; Hosseini, S. Effects of symbiotic and vitamin E supplementation on blood pressure, nitric oxide and inflammatory factors in non-alcoholic fatty liver disease. EXCLI J. 2017, 20, 278–290. [Google Scholar]
- Ekhlasi, G.; Kolahdouz Mohammadi, R.; Agah, S.; Zarrati, M.; Hosseini, A.; Arabshahi, S.; Shidfar, F. Do symbiotic and Vitamin E supplementation have favorite effects in nonalcoholic fatty liver disease? A randomized, double-blind, placebo-controlled trial. J. Res. Med. Sci. 2016, 21, 106. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, M.; Vacante, M.; Antic, T.; Giordano, M.; Chisari, G.; Acquaviva, R.; Mastrojeni, S.; Malaguarnera, G.; Mistretta, A.; Volti, G.L.; et al. Bifidobacterium longum with Fructo-Oligosaccharides in Patients with Non Alcoholic Steatohepatitis. Dig. Dis. Sci. 2012, 57, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Ferolla, S.M.; Couto, C.A.; Costa-silva, L.; Armiliato, G.N.A.; Pereira, C.A.S.; Martins, F.S.; Ferrari, M.D.L.A.; Vilela, E.G.; Torres, H.O.G.; Cunha, A.S.; et al. Beneficial Effect of Synbiotic Supplementation on Hepatic Steatosis and Anthropometric Parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis. Nutrients 2016, 8, 397. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.; Kang, D.; Johnson, R. Uric acid and cardiovascular risk. N. Engl. J. Med. 2009, 359, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Targher, G. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E. Nonalcoholic Fatty Liver Disease. JAMA 2015, 313, 2263. [Google Scholar] [CrossRef] [PubMed]
- Martel, C.; Esposti, D.D.; Bouchet, A.; Brenner, C.; Lemoine, A. Non-alcoholic steatohepatitis: New insights from OMICS studies. Curr. Pharm. Biotechnol. 2012, 13, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Liu, P. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease. Protein Cell 2017, 8, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Dongiovanni, P.; Romeo, S.; Valenti, L. Genetic Factors in the Pathogenesis of Nonalcoholic Fatty Liver and Steatohepatitis. Biomed. Res. Int. 2015, 2015, 460190. [Google Scholar] [CrossRef] [PubMed]
- Ravi Kanth, V.V.; Sasikala, M.; Sharma, M.; Rao, P.N.; Reddy, D.N. Genetics of non-alcoholic fatty liver disease: From susceptibility and nutrient interactions to management. World J. Hepatol. 2016, 8, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Dillon, J.; Miller, M. Proteomic and genomic studies of non-alcoholic fatty liver disease-clues in the pathogenesis. World J. Gastroenterol. 2014, 20, 8325–8340. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Day, C.P. The genetics of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Wruck, W.; Graffmann, N.; Kawala, M.-A.; Adjaye, J. Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells 2017, 35, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Moylan, C.A.; Pang, H.; Dellinger, A.; Suzuki, A.; Garrett, M.E.; Guy, C.D.; Murphy, S.K.; Ashley-Koch, A.E.; Choi, S.S.; Michelotti, G.A.; et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology 2014, 59, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Lădaru, A.; Bălănescu, P.; Stan, M.; Codreanu, I.; Anca, I.A. Candidate proteomic biomarkers for non-alcoholic fatty liver disease (steatosis and non-alcoholic steatohepatitis) discovered with mass-spectrometry: A systematic review. Biomarkers 2016, 21, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhu, Y.; Cong, Q.; Wu, C. Metabonomics Research Progress on Liver Diseases. Can. J. Gastroenterol. Hepatol. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Mello, V.D.; Matte, A.; Perfilyev, A.; Männistö, V.; Rönn, T.; Nilsson, E.; Käkelä, P.; Ling, C.; Pihlajamäki, J. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action. Epigenetics 2017, 12, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.; Friso, S.; Choi, S.-W. Epigenetics in non-alcoholic fatty liver disease. Mol. Asp. Med. 2017, 54, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Durán, R.; Romero-Gómez, M. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field. World J. Hepatol. 2015, 7, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Bashiardes, S.; Shapiro, H.; Rozin, S.; Shibolet, O.; Elinav, E. Non-alcoholic fatty liver and the gut microbiota. Mol. Metab. 2016, 5, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A.; Guo, W.; Go, J.; Shi, H.; Downey, P.; Elliott, P.; Green, J.; Landray, M. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover genotype–phenotype interactions. Nat. Rev. Genet. 2015, 16, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.C.; Chu, X.; Argyropoulos, G.; Benotti, P.; Rolston, D.; Mirshahi, T.; Petrick, A.; Gabrielson, J.; Carey, D.J.; DiStefano, J.K.; et al. A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains. Sci. Rep. 2017, 7, 43238. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Bjornson, E.; Zhang, C.; Klevstig, M.; Söderlund, S.; Ståhlman, M.; Adiels, M.; Hakkarainen, A.; Lundbom, N.; Kilicarslan, M.; et al. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 2017, 13, 916. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.K.C.; Zhang, X.; Yu, J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J. Pathol. 2017, 241, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Cordero, P.; Campion, J.; Milagro, F.I.; Martinez, J.A. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: Effect of dietary methyl donor supplementation. Mol. Genet. Metab. 2013, 110, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, W.; Yao, L.; Zhang, X.; Zhang, X.; Ye, C.; Jiang, H.; He, J.; Zhu, Y.; Ai, D. Hydroxyeicosapentaenoic acids and epoxyeicosatetraenoic acids attenuate early occurrence of nonalcoholic fatty liver disease. Br. J. Pharmacol. 2017, 174, 2358–2372. [Google Scholar] [CrossRef] [PubMed]
- Stiuso, P.; Scognamiglio, I.; Murolo, M.; Ferranti, P.; De Simone, C.; Rizzo, M.R.; Tuccillo, C.; Caraglia, M.; Loguercio, C.; Federico, A. Serum oxidative stress markers and lipidomic profile to detect NASH patients responsive to an antioxidant treatment: A pilot study. Oxid. Med. Cell. Longev. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Joyce, A.; Yates, K.; Aouizerat, B.; Sanyal, A.J. Metabolomic Profiling to Identify Predictors of Response to Vitamin E for Non-Alcoholic Steatohepatitis (NASH). PLoS ONE 2012, 7, e44106. [Google Scholar] [CrossRef] [PubMed]
Aim | Design | Dietary Composition | Main Results | Reference |
---|---|---|---|---|
To evaluate the relationship of neglected features of lifestyle with NAFLD and obesity in patients with and without NAFLD. | - 1199 Volunteers (532 with NAFLD and 667 without NAFLD), age 21–60 years. - NAFLD was evaluated by ultrasound (US bright liver score). No liver biopsy during the study. - AMDS assessed based on a 1-week recall computerized questionnaire including physical activity reports. Other lifestyle assessments: western dietary profile score, sun exposure score and a sleep habits questionnaires. | * | - BMI, HOMA-IR and AMDS were revealed as the most potent predictors of liver disease by multiple linear regression analysis although physical activity, western diet and sun exposure were also significant effects. - NAFLD was characterized by increased BMI, HOMA-IR and TAGs, reduced AMDS, sedentary habits, minor sun exposure and higher adherence to western diet. | [40] |
To identify associations between the characteristics of patients with NAFLD and the adherence to the MedDiet. Furthermore, the involvement MedDiet in NAFLD was also evaluated. | - 73 adult patients with NAFLD diagnosed by ultrasounds and/or liver histology. - Adherence to the MedDiet estimated with MedDietScore. - Demographic and anthropometric data, body composition analysis and several biochemical and inflammatory markers were determined. | * | - MedDietScore was positively correlated to circulating adiponectin levels while ALT, insulin levels, insulin resistance index and severity of steatosis were negatively correlated. - NASH patients had lower adherence to MedDiet compared to those with simple fatty liver. - One unit increase in the MedDietScore was associated with 36% lower likelihood of having NASH. | [41] |
To determine associations between histological characteristics of patients with NAFLD and adherence to the MedDiet. | - Cross sectional study of 82 patients with NAFLD. - The 14-Item Mediterranean Diet Assessment Tool was used to determine the adherence to the MedDiet. - Liver biopsy in all patients. | * | - MedDiet was associated with a reduced probability of having steatohepatitis and steatosis. - HOMA-IR was associated with increased probability of having steatosis and liver fibrosis. | [42] |
To evaluate if MedDiet improves insulin sensitivity and reduces steatosis to a greater extent than the currently recommended diet in individuals with NAFLD. | - 12 non-diabetic subjects with biopsy-proven NAFLD volunteers. - Randomized, crossover, 6-week dietary intervention. All the volunteers followed both the MedDiet and a control diet (low fat, high carbohydrate) with a 6-week wash-out period in-between. - Steatosis assessed by magnetic resonance spectroscopy. | - MedDiet: 40% CHO, 40% fat and 20% protein (% of energy). High in MUFAs and n-3 PUFAs. Based on a traditional Cretan MedDiet. - Control diet: 50% CHO, 30% fat and 20% protein. Low in saturated and unsaturated fat and high in whole grain foods. | - Insulin sensitivity improved with the MedDiet, while after the control diet remained unchanged. - ↓ Hepatic steatosis after the MedDiet treatment compared with the control diet. | [43] |
To determine if weight loss induced by a MedDiet improves liver function in patients with NAFLD. | - 28 obese patients with NAFLD determined by ultrasonography and elevated levels liver enzymes. - Distributed in 2 groups: MedDiet or control group. - Volunteers of MedDiet group attended to 7 intensive counseling sessions for 6 months to increase their adherence to the MedDiet. The patients of the control group only received relevant written recommendations. - The level of adherence to the MedDiet was assessed by MedDietScore. | Not reported. | - Increased MedDietScore and weight loss in volunteers of the MedDiet group. - ↓ ALT (a trend in AST), insulin levels and HOMA-IR only in the MedDiet group. - No similar changes were observed in the control group. | [44] |
To evaluate the effectiveness of MedDiet counseling on NAFLD, weight loss, metabolic and liver enzymes. | - 46 patients with NAFLD determined by ultrasound analysis. - Patients received clinical and dietary intervention (based on MedDiet) during 6 months. The counseling was based on monthly meetings (about 45 min each). - The effectiveness was evaluated by liver enzymes, metabolic parameters, cardiovascular risk indexes, NAFLD severity and related indexes. | - MedDiet: 55-60% CHO, 25–30% fat and 10–15% protein (% of energy). | - The number of patients with steatosis grade equal or higher than 2 was reduced from 93% at baseline to 48% at the end of the treatment. Steatosis regressed in 9 patients. - ↓ AST, ALT and GGT during the treatment. - BMI, waist circumference, waist-to-hip ratio, HDL-C, serum glucose, TC/HDL-C, LDL-C/HDL-C, TAGs/HDL-C, AIP, HOMA, FLI, Kotronen index, VAI, NAFLD liver fat score and LAP showed a significant improvement. | [45] |
To determine the effectiveness of an increase in the AMDS and the level of physical exercise, evaluating the factors associated with failure. | - 90 adult, obese non-diabetic patients, with NAFLD determined by ultrasound. - 6 months of counseling intervention, based on cognitive-behavioral strategies. - Clinical, laboratory and dietary controls each month. | Not reported. | - ↓ BMI from the first month of intervention. - No significant change of transaminases was observed throughout the study (although levels were already normal at baseline). - ↓ BLS at the end of the study. - AMDS and BMI changes independently explained the variance of decrease of NAFLD. | [46] |
To estimate the effect of a Low Glycemic Index MedDiet (LGIMD) on NAFLD. | - Double-Blind RCT composed of 98 patients with moderate or severe NAFLD. - Patients were divided in 2 intervention groups: LGIMD or a control diet during 6 months. - Evaluation of NAFLD score, defined by liver ultrasonography. | - LGIMD: ≤10% saturated fat, high in MUFAs and n-3 PUFAs. Only included low glycemic index foods. - Control diet (based on INRAN guidelines): rich in complex CHO and fibre, low in fat and salt. | - Negative interaction between the effect of the LGIMD and time on the NAFLD score - ↓ FLI at six months especially for the LGIMD group. - ↓ TAGs and glycemia were found in both groups after six months. - ↓ GGT and HDL-C were also observed, but only in the LGIMD group. | [47] |
To evaluate the therapeutic properties under free living conditions of the Spanish Ketogenic MedDiet (SKMD) in patients with MetS and NAFLD. | - Prospective study using 14 obese men with MetS and NAFLD during 3 months. - Liver disease determined by ALT levels (higher than 40 U/L) and abdominal ultrasonography. | - SKMD: ≤ 30g CHO/day (vegetables), ≥ 30mL virgin olive oil, 200-400 mL wine, unlimited protein (mainly fish). Rich in n-3 PUFAs. Included a polyvitamin-mineral supplement. | - ↓ In body weight, LDL-C, ALT, and AST. - ↓ Steatosis degree (complete regression in 21.4% of the patients). - ↓ in all the parameters associated with the MetS: BMI, waist circumference, fasting plasma glucose, TAGs, HDL-C, and blood pressure. | [48] |
To analyze the association between adherence to the MedDiet and NAFLD in children and adolescents with obesity. | - 243 young obese patients (age 10–17) with and without liver damage. - NAFLD determined by either abdominal ultrasound or liver biopsy. - Level of adherence to the MedDiet evaluated by the KIDMED. | * | - Low KIDMED score in patients with NASH. - Poor adherence to the MedDiet correlated with liver disease, NAFLD activity score > 5, and grade 2 fibrosis. - Low adherence to the MedDiet correlated with higher values of CRP, fasting insulin and HOMA-IR. | [49] |
Ingredients | Design | Main Results | Reference |
---|---|---|---|
Silybin (94 mg) + phosphatidylcholine (194 mg) + vitamin E acetate 50% (89.28 mg) (Realsil®) | - 138 adult patients with histologically diagnosed NAFLD. HCV-positive patients were included in the trial. - Double-bind, 12 months of supplementation twice daily. - Liver histology during the study. | - ↓ Liver enzyme plasma levels. - ↓ HOMA-IR. - Improvement in liver histology. - BMI normalized in 15% of the patients. - HCV-patients improve fibrogenesis biomarkers. | [85] |
Vitamin E + l-gluthatione + l-cysteine + l-methionine + Silybin | - 72 adult patients with NAFLD. - 6 months of treatment twice daily after 3-months of restricted diet. - Ultrasonography to monitor liver damage. | - ↓ Circulating levels of ALT, AST and GGT but AST/ALT unchanged. - ↓ Levels of the steato test. - ↓ The hepatorenal brightness ratio, as an index of hepatic steatosis. | [86] |
Vitamin E (30 UI) + (Silybin 125 mg) (Eurosil 85®, 210 mg/Tablet; MEDAS SL) | - 36 adult patients with NAFLD based on liver biopsy. - 3 months treatment. - Group I: treated twice daily with the blend and following a hypocaloric diet (1520 kcal, 52% of carbohydrates, 25% of lipids and 23% of proteins) and exercise. Group II: only the hypocaloric diet. | - ↓ Anthropometric parameters in both groups. - ↓ GGT levels in both groups. - ↓ AST and ALT levels only in Group II. - ↓ In both groups of FLI index and NAFLD-FS index. - Only in Group I patients who did not reach a 5% loss of weight also displayed decreased GGT levels, and in the FLI and NAFLD-FS indexes. | [87] |
Vitamin E (30 UI) + (Silybin 125 mg) (Eurosil 85®, 210 mg/Tablet; MEDAS SL) | - 78 patients with MetS and NAFLD determined by ultrasound. - 3 months of standard MedDiet and exercise (e.g., 15 min walking/day). Group A received 2 tablets daily of Eurosil. Group B only followed the diet and exercise. | - Group A had higher absolute changes from baseline in the biometric parameters (↓ abdominal circumference, BMI, ultrasound measurement of right liver lobe). - Better results of Hepatic Steatosis Index (HSI) and the LAP observed in Group A. | [88] |
Vitamin E (300 mg/day) + vitamin C (300 mg/day) | - 23 patients with NASH for 12 months. - BMI measured during therapy. Serum levels of ALT, TRX and hs-CRP measured before and after treatment. - 10 out of the 23 patients underwent liver biopsy before and after treatment. | - BMI unchanged during treatment. - ↓ Serum ALT, TRX and hs-CRP levels after treatment with vitamins. - Improvement in liver biopsies (necro-inflammatory activity in eight cases and fibrosis staging in 4). | [89] |
Vitamin E (600 IU/day) + vitamin C (500 mg/day) | - Open-labeled, prospective, randomized study - 57 patients with histologically proven NAFLD and elevated ALT, despite a 3-month reducing diet. - Patients randomized in 2 groups: Group 1 received vitamin E plus vitamin C; Group 2 received ursodeoxycholic acid (UDCA; 10 mg/kg/day). Trial lasted 6 months. | - BMI unchanged after the treatment in both groups. - ↓ ALT and AST in both treatments - Vitamin combination was more effective on ALT levels than UDCA but it was not significant. - ↓ GGT by UDCA but not by vitamins. | [90] |
Conjugated Linoleic Acid (CLA; 3000 mg) + vitamin E (400 IU) | - 38 obese NAFLD patients were randomly divided in 2 groups. Intervention group received 3 × 1000 mg softgel of CLA daily with a weight loss diet and 400 IU vitamin E; Control group, received only 400 IU vitamin E weight and the loss diet. Trial extended during eight weeks. | - ↓ BMI, serum oxidative stress, insulin, and improved lipid profile in both groups. - ↓ LDL-C/HDL-C and ALT/AST ratios only in the treated group. | [91] |
Docosahexanoic Acid (DHA; 500 mg) + vitamin D (800 IU) | - 41 children and adolescents with NAFLD biopsy-proven followed a 24 weeks treatment. - All patients were included in a lifestyle intervention program: hypocaloric diet (25 ± 30 Kcal/kg/day) and regular physical exercise (twice weekly 1-h physical activity). | - ↓ NAS in the treatment group. - Fibrosis score unchanged but reduction of the activation of HSC and fibrillar collagen content. - ↓ TAG, ALT and HOMA-IR with treatment. | [92] |
Pomegranate seed oil (PSO) + brown seaweed extract containing fucoxanthin (Xanthigen) | - Sixteen-week, double-blind, randomized, placebo-controlled study. - 151 non-diabetic obese premenopausal patients (only 41 with NAFLD) - Different doses of PSO and seaweed extract were evaluated in NAFLD and NFL groups. | - The dose of 300 mg PSO + 300 mg brown seaweed extract containing 2.4 mg fucoxanthin ↓ BMI and body and liver fat content in both groups. - ↓ Waist circumference and liver enzymes in NAFLD group. - Weight loss and reduction in body and liver fat content occurred earlier in patients with NFL than in patients with NAFLD. | [93] |
Synbiotic | Design | Main Results | Reference |
---|---|---|---|
L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS | - 52 adult overweight and obese patients with NAFLD based on transient elastography and ALT > 60 U/L. - 28 weeks of supplementation (synbiotic or placebo; n = 26 per group) twice daily plus lifestyle modification (energy-balanced diet and physical exercise). - No liver biopsy during the study. | - ↓ Fibrosis score (transient elastography) - ↓ Circulating levels of ALT, AST and GGT. - ↓ Blood levels of TNFα and CRP. - ↓ NF-kB p65 in PBMCs. - ↓ HOMA-IR and glucose. | [108] |
L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS | - 42 adult subjects with BMI ≤ 25 and with NAFLD based on transient elastography and ALT > 60 U/L. - 28 weeks of supplementation (synbiotic or placebo; n = 21 per group) twice daily plus lifestyle modification (energy-balanced diet and physical exercise). - No liver biopsy during the study. | - ↓ Steatosis and fibrosis (transient elastography). - ↓ Circulating levels of glucose, TAGs, AST and CRP. - ↓ NF-kB p65 in PBMCs. | [109] |
L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS | - 74 adult individuals with NAFLD based on ultrasonography. - 8 weeks of supplementation (synbiotic, n = 38 or placebo, n = 36) once daily. - No liver biopsy during the study. - No dietary and physical exercise programs. | - ↓ Steatosis severity (ultrasonography) in synbiotic group compared to baseline but not in comparison with the placebo group. - ↓Body weight compared to baseline. - No effects on circulating levels of ALT, AST and CRP. | [110] |
L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS | - 60 adult overweight and obese subjects and with NAFLD based on ultrasonography and ALT > 30 mg/dL - 8 weeks of supplementation (VitE, synbiotic, symbiotic + VitE or placebo; n = 15 per group) twice daily. - No liver biopsy or ultrasonography during the study. - No dietary and physical exercise programs. | - ↓ Circulating levels of ALT, AST, ALP. - ↓ Blood levels of TNFα, leptin. - ↓ Circulating levels of TAGs, TC, LDL-C, APOB100/APOA1. - ↓ Circulating levels of glucose, insulin. - Synbiotic +Vit E produced a greater drop of the circulating levels of LDL-C, TNFα, ALT, AST, ALP, leptin, insulin and glucose than the symbiotic. | [111,112] |
B. longum and FOS | - 66 adult patients with biopsy-proven NASH, abnormal serum transferase levels and steatosis based on ultrasonography. - 4 initial weeks of lifestyle modification (energy-balanced diet and physical exercise). - 24 weeks of supplementation (synbiotic, n = 34 or placebo, n = 32) twice daily plus lifestyle modification. - Liver biopsy also performed at the end of the study. | - ↓ Steatosis severity and NASH activity index (liver biopsy). - ↓ Circulating levels of AST, TNFα, CRP and LDL-C. - ↓ HOMA-IR. - ↓ Serum endotoxin. | [113] |
L. reuteri plus inulin and guar gum | - 50 adult patients with MetS and biopsy-proven NASH. - 3 months of supplementation (synbiotic, n = 27 or placebo, n = 23) twice daily plus lifestyle modification (hypocaloric diet). - No physical exercise program. - No liver biopsy during the study. | - ↓ Steatosis severity (PDFF) in synbiotic group compared to baseline but not in comparison with the placebo group. - ↓Body weight, waist circumference and BMI compared to baseline. - ↑ Circulating levels of LPS (in both placebo and synbiotic groups). - ↓ Serum levels of uric acid - No effects on circulating levels of ALT, AST, ALP, GGT, glucose and lipids. | [114] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, M.; Boqué, N.; Del Bas, J.M.; Mayneris-Perxachs, J.; Arola, L.; Caimari, A. Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 1052. https://doi.org/10.3390/nu9101052
Suárez M, Boqué N, Del Bas JM, Mayneris-Perxachs J, Arola L, Caimari A. Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients. 2017; 9(10):1052. https://doi.org/10.3390/nu9101052
Chicago/Turabian StyleSuárez, Manuel, Noemí Boqué, Josep M. Del Bas, Jordi Mayneris-Perxachs, Lluís Arola, and Antoni Caimari. 2017. "Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease" Nutrients 9, no. 10: 1052. https://doi.org/10.3390/nu9101052
APA StyleSuárez, M., Boqué, N., Del Bas, J. M., Mayneris-Perxachs, J., Arola, L., & Caimari, A. (2017). Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients, 9(10), 1052. https://doi.org/10.3390/nu9101052