Spatial Variation in Educational Quality in Colombia Based on the Phenomena of Agglomeration and Academic Segregation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Descriptive Analysis
2.3. Existence of Agglomeration
2.4. Proposed Model
3. Results
4. Discussion
- Gender: this is attributed to the process of socialization to which young people are subjected from the moment they are born. When they grow up, they make their own decisions based on what is expected of them because of their gender identity [25,26]. Stereotypes are generated that impact their formal educational process [27,28,29]
- The level of school competencies is also defined as school segregation. It is caused by the distribution of students due to their individual or personal characteristics. This has an impact on social inequality and limits the development possibilities of the student body, particularly the most vulnerable students [33,34], leading them to poor school performance [35].
- Social discrimination in which the student body is “separated” by their origins or social classes. At this point, findings show that private schools concentrate on upper and upper-middle-class students and have even more qualified teachers, which reflects higher academic performance in students, widening educational inequalities between public and private schools, and negatively affects the most vulnerable groups [12,36,37,38,39].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Global | Mathematics | Critical Reading | Social Science | Natural Science | English | |
---|---|---|---|---|---|---|
R2 | 0.4839 | 0.4138 | 0.5471 | 0.5060 | 0.4143 | 0.5256 |
Breusch–Pagan test (p-value) | 0.00030 | 0.00000 | 0.00000 | 0.00247 | 0.00038 | 0.35307 |
Significance of spatial dependence | 0.00000 | 0.00000 | 0.00045 | 0.00012 | 0.00000 | 0.00000 |
References
- Ministry of National Education of Colombia. Al tablero. 30 May 2006. Available online: https://www.mineducacion.gov.co/1621/article-107321.html (accessed on 1 June 2022).
- Castro, G.; Giménez, G.; Pérez, D. Estimación de los factores condicionantes de la adquisición de competencias académicas en América Latina en presencia de endogenidad. Rev. CEPAL 2018, 124, 35–59. [Google Scholar] [CrossRef] [Green Version]
- Ayala, J.; Marrugo, S.; Bernardo, L.; Ricardo, S. Antecedentes familiares y rendimiento académico en los colegios oficiales de Cartagena. Econ. Y Región 2011, 5, 45–85. [Google Scholar]
- Sánchez, A. Etnia y Desempeño Académico en Colombia; Documentos de Trabajo sobre Economía Regional; Institutional Repository of the Banco de la Republica: Cartagena, Colombia, 2011; No. 156. [Google Scholar]
- Castro, G.; Giménez, G.; Pérez, D. Educational Inequalities in Latin America, 2012 PISA: Causes of Differences in School Performance between Public and Private Schools. Rev. De Educ. 2017, 376, 33–61. [Google Scholar]
- Cárcamo, C.; Mola, J.A. Diferencias por sexo en el desempeño académico en Colombia: Un análisis regional. Econ. Y Región 2012, 6, 133–169. [Google Scholar]
- OECD. Education in Colombia. Reviews of National Policies for Education; OECD: Paris, France, 2016. [Google Scholar]
- Fujita, M.; Krugman, P.; Venables, A. The Spatial Economy Cities, Regions, and International Trade; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Merton, R.; Kitt, A. The American Soldier. In Continuities in Social Research: Studies in the Scope and Method of “The American Soldier”; Merton, R.K., Lazersfeld, P.F., Eds.; Free Press: New York, NY, USA, 1950; Volume 16, p. 791. [Google Scholar]
- Arcidiácono, M.; Cruces, G.A.; Gasparini, L.; Jaume, D.; Serio, M.; Vázquez, E. La Segregación Escolar Público-Privada en América Latina; CEPAL: Santiago de Chile, Chile, 2014; No. 195. [Google Scholar]
- Gaviria, A.; Barrientos, J.H. Determinantes de la Calidad de la Educación en Colombia; Fedesarrollo: Bogotá, Colombia, 2001; Volume 88, No. 159. [Google Scholar]
- Giménez, G.; Castro, G. Por qué los estudiantes de colegios puéblicos y privados de Costa Rica obtienen distintos resultados acadeémicos. Perf. Latinoam. 2017, 49, 195–223. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, G.; Ciobanu, D.; Barrado, B. A Proposal of Spatial Measurement of Peer Effect through Socioeconomic Indices and Unsatisfied Basic Needs. Economies 2021, 9, 72. [Google Scholar] [CrossRef]
- Gimenez, G.; Martín-Oro, Á.; Sanaú, J. The effect of districts’ social development on student performance. Stud. Educ. Eval. 2018, 58, 80–96. [Google Scholar] [CrossRef]
- Rodríguez, S.; Valle, A.; Gironelli, L.M.; Guerrero, E.; Regueiro, B.; Estévez, I. Performance and well-being of native and immigrant students. Comparative analysis based on PISA 2018. J. Adolesc. 2020, 85, 96–105. [Google Scholar] [CrossRef]
- Sullivan, K.; Perry, L.B.; McConney, A. How do school resources and academic performance differ across Australia’s rural, regional and metropolitan communities? Aust. Educ. Res. 2013, 40, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Montoya, M.S.; Loaiza-Aguirre, M.I.; Zúñiga-Ojeda, A.; Portuguez-Castro, M. Characterization of the Teaching Profile within the Framework of Education 4.0. Future Internet 2021, 13, 91. [Google Scholar] [CrossRef]
- Gimenez, G.; Barrado, B.; Arias, R. El papel del profesorado y el entorno de aprendizaje en el rendimiento de los estudiantes costarricenses: Un análisis a partir de PISA. Rev. Complut. Educ. 2019, 30, 1127–1145. [Google Scholar] [CrossRef]
- Gimenez, G.; Barrado, B. Exposure to crime and academic achievement: A case study for Costa Rica using PISA data. Stud. Educ. Eval. 2020, 65, 100867. [Google Scholar] [CrossRef]
- Gimenez, G.; Tkacheva, L.; Barrado, B. Are homicide and drug trafficking linked to peer physical victimization in Costa Rican schools? Psychol. Violence 2021, 11, 188–198. [Google Scholar] [CrossRef]
- ICFES. SABER en Breve, 5th ed.; Instituto Colombiano para la Evaluación de la Educación, ICFES: Bogotá, Colombia, 2016. [Google Scholar]
- Anselin, L.; le Gallo, J.; Jayet, H. Spatial Panel Econometrics. In The Econometrics of Panel Data; Mátyás, L., Sevestre, P., Eds.; Springer: Berlin, Germany, 2006; pp. 625–660. [Google Scholar]
- Lajaunie, C. Local Risk Estimation for a Rare Noncontagious Disease Based on Observed Frequencies, 1st ed.; Centre de Geostatistique, École des Mines de Paris: Fontainebleu, France, 1991. [Google Scholar]
- Arango, D.; Farkas, V.; Castillo, M.; Castro, G. Georeferencing educational quality in Cali, Colombia in 2018, with a focus on academic agglomeration and segregation. Cuad. Econ. 2022, 41, 109–128. [Google Scholar]
- Aguado, J.A.; Cano, F.J.; Sánchez, M.J. Segregación por género y Formación Profesional: Aportaciones al debate sobre la situación actual. Rev. Sociol. Educ. 2020, 13, 308–327. [Google Scholar]
- Fernández, A.B.; Ibáñez, M. Más mujeres en los estudios de Informática: Una propuesta desde el departamento de formación y orientación laboral. Rev. Sociol. Educ. 2018, 1, 116–134. [Google Scholar] [CrossRef] [Green Version]
- Mariño, R.; Rial, A. Balance de las necesidades formativas demandadas por mujeres que cursan o que han cursado ciclos de FP en familias profesionales masculinizadas: El caso de Galicia. Educar 2019, 51, 251–272. [Google Scholar]
- Urrea, M.E.; Fernández, A.; Aparicio, M.D.; Hernández-Amorós, M.J. La cultura de género del alumnado de Formación Profesional en el ámbito laboral. Int. J. Dev. Educ. Psychol. 2018, 2, 23–32. [Google Scholar]
- Rial, A.F.; Mariño, R.; Rego, L. La situación de la mujer como alumna de formación profesional inicial y como profesional en el mercado laboral. Rev. Iberoam. Educ. 2011, 54, 1–13. [Google Scholar]
- Murillo, F.; Martínez-Garrido, C. Estimación de la magnitud de la segregación escolar en América Latina. Rev. Int. De Investig. En Educ. 2017, 9, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Murillo, F. Midiendo la segregación escolar en América Latina. Un análisis metodológico utilizando el TERCE. Rev. Iberoam. Sobre Calid. Efic. Y Cambio En Educ. 2016, 14, 33–60. [Google Scholar]
- Alegre, M. Casi-mercados, segregación escolar y desigualdad educativa: Una trilogía con final abierto. Educ. Soc. 2010, 31, 1157–1178. [Google Scholar]
- Martínez, L.; Ferrer, A. Mézclate Conmigo. De la Segregación Socioeconómica a la Educación; Save the Children España: Madrid, Spain, 2018. [Google Scholar]
- Valenzuela, J.P.; Bellei, C.; Ríos, D.L. Fin de ciclo? Cambios en la gobernanza del sistema educativo chileno. In Segregación Escolar en Chile; OREALC/UNESCO, S. Martinic y G. Elacqua: Santiago de Chile, Chile, 2010; pp. 257–284. [Google Scholar]
- Gorard, S.; Siddiqui, N. Understanding school segregation. In Redefining Measures of Poverty and Their Impact on Student Progress in England; X. Bonal and C. Bellei: London, UK, 2018; pp. 85–102. [Google Scholar]
- Krüger, N. La segregación por nivel socioeconómico como dimensión de la exclusión educativa: 15 años de evolución en América Latina. Arch. Analíticos Políticas Educ. 2019, 27, 1–37. [Google Scholar] [CrossRef] [Green Version]
- OECD. Balancing School Choice and Equity. An International Perspective Based on PISA; OECD: Paris, France, 2019. [Google Scholar]
- Krüger, N. An evaluation of the intensity and impacts of socio-economic school segregation in Argentina. In Understanding School Segregation. Patterns, Causes and Consequences of Spatial Inequalities in Education; Bonal, X.X., Bellei, C., Eds.; Bloomsbury Academic: London, UK, 2019; pp. 103–122. [Google Scholar]
- Vazquez, E. Segregación escolar por nivel socioeconómico. Midiendo el fenómeno y explorando sus determinantes. Económica 2016, 62, 121–184. [Google Scholar]
- Bonilla, L. Causas de las Diferencias Regionales en la Distribucioén del Ingreso en Colombia, un Ejercicio de Micro-Descomposicioén; Banco de la República: Cartagena, Colombia, 2009; No. 111. [Google Scholar]
- Gimenez, G. The human capital endowment of Latin America and the Caribbean. CEPAL Rev. 2005, 86, 97–116. Available online: https://repositorio.cepal.org/handle/11362/11094 (accessed on 1 June 2022). [CrossRef]
Variables | Percentage/Average | [95% CI] | Spearman Coefficient |
---|---|---|---|
Test scores (By area) | |||
Global Score | 238.31 | [237.13–239.50] | |
Mathematics Score | 47.96 | [47.68–48.25] | |
Critical Reading Score | 49.91 | [49.70–50.13] | |
Natural Science Score | 47.46 | [47.22–47.70] | |
Social Science Score | 45.51 | [45.27–45.75] | |
English score | 47.03 | [46.80–47.26] | |
Gender | |||
Male | 46.06%% | [45.93–46.19] | −0.0169 |
Female | 53.93% | [53.80–54.06] | −0.0062 |
Strata | |||
Stratum 1 | 33.25% | [33.12–33.38] | −0.1008 |
Stratum 2 | 37.23% | [37.10–37.36] | 0.1878 |
Stratum 3 | 21.12% | [21.01–21.23] | −0.0102 |
Stratum 4 | 5.21% | [5.151–5.273] | −0.1433 |
Stratum 5 | 2.00% | [1.967–2.044] | −0.1613 |
Stratum 6 | 1.17% | [1.143–1.202] | −0.1734 |
Education of the mother | |||
None | 2.29% | [2.256–2.337] | −0.3046 |
Incomplete primary schooling | 15.41% | [15.32–15.51] | −0.0414 |
Complete primary schooling | 10.98% | [10.90–11.06] | 0.0868 |
Incomplete high school | 15.01% | [14.92–15.11] | −0.0244 |
Complete high school | 25.61% | [25.49–25.73] | 0.0277 |
Incomplete technical or technological | 2.98% | [2.936–3.027] | 0.0532 |
Complete technical or technological | 9.99% | [9.911–10.07] | 0.0290 |
Incomplete undergraduate studies | 2.40% | [2.364–2.447] | 0.0941 |
Complete undergraduate studies | 10.89% | [10.81–10.97] | 0.0281 |
Graduate studies | 2.42% | [2.382–2.465] | 0.2097 |
Not applicable | 0.16% | [0.158–0.180] | −0.0160 |
Does not know | 1.80% | [1.765–1.837] | 0.0189 |
Education of the father | |||
None | 3.59% | [3.539–3.639] | −0.2759 |
Incomplete primary schooling | 19.59% | [19.47–19.69] | −0.0007 |
Complete primary schooling | 10.96% | [10.87–11.04] | 0.1195 |
Incomplete high school | 13.95% | [13.85–14.03] | −0.0239 |
Complete high school | 22.06% | [21.94–22.16] | −0.0021 |
Incomplete technical or technological | 2.01% | [1.978–2.053] | 0.0537 |
Complete technical or technological | 6.76% | [6.696–6.831] | 0.0264 |
Incomplete undergraduate studies | 1.93% | [1.901–1.976] | 0.0671 |
Complete undergraduate studies | 9.48% | [9.406–9.564] | 0.0014 |
Variables | Percentage/Average | [95% CI] | Spearman correlation coefficient |
Graduate studies | 2.21% | [2.178–2.258] | 0.1558 |
Not applicable | 1.03% | [1.006–1.061] | 0.1071 |
Does not know | 6.38% | [6.314–6.446] | 0.0843 |
Characteristics of the household | |||
Household size | |||
1 to 2 | 7.46% | [7.399–7.539] | 0.0166 |
3 to 4 | 48.39% | [48.26–48.52] | 0.1026 |
5 to 6 | 32.06% | [31.93–32.18] | −0.0235 |
7 to 8 | 8.59% | [8.524–8.673] | −0.1885 |
9 or more | 3.58% | [3.425–3.522] | −0.2552 |
Has access to the internet | 59.72% | [59.58–59.85] | 0.1141 |
Does not have access to the internet | 40.27% | [40.14–40.41] | −0.0848 |
Has a TV | 77.25% | [77.13–77.36] | 0.0033 |
Does not have a TV | 22.74% | [22.63–22.86] | −0.0289 |
Has a computer | 58.78% | [58.65–58.91] | 0.1294 |
Does not have a computer | 41.21% | [41.08–41.34] | −0.1143 |
Characteristics of the municipality | |||
Homicides | 14.62 | [10.48–18.77] | −0.0247 |
Urbanization Rate | 0.41 | [0.396–0.425] | 0.1091 |
Quality of life index | 61.40 | [60.75–62.05] | 0.4404 |
Fiscal Performance Index | 56.91 | [56.22–57.60] | 0.3371 |
Unsatisfied Basic Needs | 31.95 | [30.74–33.17] | −0.5554 |
Global | Mathematics | Critical Reading | Social Science | Natural Science | English | |
---|---|---|---|---|---|---|
Spatial lag | 0.0944 *** | 0.1367 *** | 0.0596 *** | 0.0784 *** | 0.1362 *** | 0.0905 *** |
URBR | −9.330 *** | −2.0311 * | −1.5246 *** | −2.1885 ** | −2.1392 ** | 0.0800 |
QLI | 0.8073 *** | 0.1594 *** | 0.1715 *** | 0.1730 *** | 0.1394 *** | 0.1452 *** |
UBN | −0.254 *** | −0.0585 *** | −0.0431 *** | −0.0519 *** | −0.0501 *** | −0.0479 *** |
Homicides | 0.00465 | −0.00017 | 0.00127 | 0.00152 | 0.00065 | 0.00269 |
FPI | 0.1684 *** | 0.0354 *** | 0.0276 *** | 0.0331 ** | 0.0323 ** | 0.0493 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Aristizabal, G.; Giménez-Esteban, G.; Arango-Londoño, D.; Moreno-Cediel, E.; Castillo-Caicedo, M. Spatial Variation in Educational Quality in Colombia Based on the Phenomena of Agglomeration and Academic Segregation. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 1006-1020. https://doi.org/10.3390/ejihpe12080072
Castro-Aristizabal G, Giménez-Esteban G, Arango-Londoño D, Moreno-Cediel E, Castillo-Caicedo M. Spatial Variation in Educational Quality in Colombia Based on the Phenomena of Agglomeration and Academic Segregation. European Journal of Investigation in Health, Psychology and Education. 2022; 12(8):1006-1020. https://doi.org/10.3390/ejihpe12080072
Chicago/Turabian StyleCastro-Aristizabal, Geovanny, Gregorio Giménez-Esteban, David Arango-Londoño, Esteban Moreno-Cediel, and Maribel Castillo-Caicedo. 2022. "Spatial Variation in Educational Quality in Colombia Based on the Phenomena of Agglomeration and Academic Segregation" European Journal of Investigation in Health, Psychology and Education 12, no. 8: 1006-1020. https://doi.org/10.3390/ejihpe12080072
APA StyleCastro-Aristizabal, G., Giménez-Esteban, G., Arango-Londoño, D., Moreno-Cediel, E., & Castillo-Caicedo, M. (2022). Spatial Variation in Educational Quality in Colombia Based on the Phenomena of Agglomeration and Academic Segregation. European Journal of Investigation in Health, Psychology and Education, 12(8), 1006-1020. https://doi.org/10.3390/ejihpe12080072