Enzymatic Process for Cystoseira barbata Valorization: Ethanol Production and Additional By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment and Analysis Methods
2.3. Pre-Treatment Process
2.4. Enzymatic Hydrolysis for Polysaccharides Saccharification
2.5. Bioethanol Production through Alcoholic Fermentation
2.6. Experiment Design
3. Results and Discussion
3.1. FT-IR Spectrum of Cystoseira Barbata Powder
3.2. Fiber Analysis Results
3.3. Statistical Model for the Alcoholic Fermentation
3.4. Bioactive Compounds Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramachandra, T.; Hebbale, D. Bioethanol from macroalgae: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 117, 109479. [Google Scholar] [CrossRef]
- Anto, S.; Mukherjee, S.S.; Muthappa, R.; Mathimani, T.; Deviram, G.; Kumar, S.S.; Verma, T.N.; Pugazhendhi, A. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020, 242, 125079. [Google Scholar] [CrossRef]
- Sirajunnisa, A.R.; Surendhiran, D. Algae—A quintessential and positive resource of bioethanol production: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 248–267. [Google Scholar] [CrossRef]
- Dave, N.; Selvaraj, R.; Varadavenkatesan, T.; Vinayagam, R. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 2019, 42, 101606. [Google Scholar] [CrossRef]
- Tîrpan, D.R.C.; Koncsag, C.I.; Ciufu, A.G.; Pârvulescu, O.C.; Dobre, T. Bioethanol production from dry ulva lactuca algae by alcoholic fermentation. Cellul. Chem. Technol. 2019, 53, 341–346. [Google Scholar] [CrossRef]
- Alfonsín, V.; Maceiras, R.; Gutiérrez, C. Bioethanol production from industrial algae waste. Waste Manag. 2019, 87, 791–797. [Google Scholar] [CrossRef]
- Trifan, A.; Vasincu, A.; Luca, S.V.; Neophytou, C.; Wolfram, E.; Opitz, S.E.; Sava, D.; Bucur, L.; Cioroiu, B.I.; Miron, A.; et al. Unravelling the potential of seaweeds from the Black Sea coast of Romania as bioactive compounds sources. Part I: Cystoseira barbata (Stackhouse) C. Agardh. Food Chem. Toxicol. 2019, 134, 110820. [Google Scholar] [CrossRef] [PubMed]
- Trica, B.; Delattre, C.; Gros, F.; Ursu, A.V.; Dobre, T.; Djelveh, G.; Michaud, P.; Oancea, F. Extraction and Characterization of Alginate from an Edible Brown Seaweed (Cystoseira barbata) Harvested in the Romanian Black Sea. Mar. Drugs 2019, 17, 405. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Wijesinghe, W.; Jeon, Y.-J. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia 2012, 83, 6–12. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Sellimi, S.; Maalej, H.; Rekik, D.M.; Benslima, A.; Ksouda, G.; Hamdi, M.; Sahnoun, Z.; Li, S.; Nasri, M.; Hajji, M. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int. J. Biol. Macromol. 2018, 119, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.K.; Lee, E.Y. Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 2016, 92, 70–75. [Google Scholar] [CrossRef]
- Adams, J.M.; Gallagher, J.A.; Donnison, I.S. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Environ. Boil. Fishes 2008, 21, 569–574. [Google Scholar] [CrossRef]
- Bittkau, K.S.; Neupane, S.; Alban, S. Initial evaluation of six different brown algae species as source for crude bioactive fu-coidans. Algal Res. 2020, 45, 101759. [Google Scholar] [CrossRef]
- Fasahati, P.; Liu, J.J. Process simulation of bioethanol production from brown algae. In Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes, Singapore, 10–13 July 2012; pp. 597–602. [Google Scholar]
- Fasahati, P.; Woo, H.C.; Liu, J.J. Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Appl. Energy 2015, 139, 175–187. [Google Scholar] [CrossRef]
- Song, M.; Pham, H.D.; Seon, J.; Woo, H.C. Marine brown algae: A conundrum answer for sustainable biofuels production. Renew. Sustain. Energy Rev. 2015, 50, 782–792. [Google Scholar] [CrossRef]
- Marin, O.A.; Timofte, F. Atlasul Macrofitelor de la Litoralul Românesc (The Atlas of Macrophytes from the Romanian Seashore); Boldas Publisher: Constanța, Romania, 2011. [Google Scholar]
- Sellimi, S.; Benslima, A.; Hajji, M. Polyphenolic-protein-polysaccharide ternary conjugates from Cystoseira barbata Tunisian seaweed as potential bio preservatives: Chemical, antioxidant and antimicrobial properties. Int. J. Biol. Macromol. 2017, 105, 1375–1383. [Google Scholar] [CrossRef]
- de Sousa, C.B.; Gangadhar, K.N.; Macridachis, J.; Pavão, M.; Morais, T.R.; Campino, L.; Varela, J.; Lago, J.H.G. Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities. Tetrahedron Asymmetry 2017, 28, 1486–1505. [Google Scholar] [CrossRef]
- Bouzidi, N.; Viano, Y.; Ortalo-Magné, A.; Seridi, H.; Alliche, Z.; Daghbouche, Y.; Culioli, G.; El Hattab, M. Sterols from the brown alga Cystoseira foeniculacea: Degradation of fucosterol into saringosterol epimers. Arab. J. Chem. 2019, 12, 1474–1478. [Google Scholar] [CrossRef] [Green Version]
- Chia, S.R.; Ong, H.C.; Chew, K.W.; Show, P.L.; Phang, S.-M.; Ling, T.C.; Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Sustainable approaches for algae utilisation in bioenergy production. Renew. Energy 2018, 129, 838–852. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jeon, Y.-J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction of biomolecules from seaweeds. In Seaweed Sustainability; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 243–269. [Google Scholar]
- Suzuki, N. Studies on the manufacture of algin from brown algae. Mem. Fac. Fish. Hokkaido Univ. 1955, 3, 93–158. [Google Scholar]
- Wang, Y.; Han, F.; Hu, B.; Li, J.; Yu, W. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr. Res. 2006, 26, 597–603. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, M.; Yin, H.; Du, Y.; Ning, L. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase. Mar. Drugs 2016, 14, 108. [Google Scholar] [CrossRef]
- Heyraud, A.; Gey, C.; Leonard, C.; Rochas, C.; Girond, S.; Kloareg, B. NMR spectroscopy analysis of oligoguluronates and oligo-mannuronates prepared by acid or enzymatic hydrolysis of homopolymeric blocks of alginic acid. Application to the de-termination of the substrate specificity of Haliotis tuberculata alginate lyase. Carb. Res. 1996, 289, 11–23. [Google Scholar] [CrossRef]
- Phwan, C.K.; Ong, H.C.; Chen, W.-H.; Ling, T.C.; Ng, E.P.; Show, P.L. Overview: Comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Convers. Manag. 2018, 173, 81–94. [Google Scholar] [CrossRef]
- Ndubisi, C.F.; Okafor, E.T.; Amadi, O.C.; Nwagu, T.N.; Okolo, B.N.; Moneke, A.N.; Odibo, F.J.C.; Okoro, P.M.; Agu, R.C. Effect of malting time, mashing temperature and added commercial enzymes on extract recovery from a Nigerian malted yellow sorghum variety. J. Inst. Brew. 2016, 122, 156–161. [Google Scholar] [CrossRef]
- Cioroiu, D.R.; Koncsag, C.I.; Dobre, T. Red and green algae as an alternative for ethanol production. Preliminary study. Bull. Rom. Chem. Eng. Soc. 2015, 2, 33–40. [Google Scholar]
- Workman, J. Chapter 1: Introduction to Infrared Spectroscopy. In The Concise Handbook of Analytical Spectroscopy: Theory, Applications and Reference Materials; World Scientific: Singapore, 2016; pp. 1–44. [Google Scholar]
- Cioroiu, D.R.; Koncsag, C.I.; Gudovan, D.; Dobre, T. Fresh Ulva Lactuca Alcoholic Fermentation Products and yields. Rev. Chim. 2018, 69, 1226–1228. [Google Scholar] [CrossRef]
- Khan, A.M.; Noreen, S. Bioethanol from Sargassum tenerrimum and Cystoseira indica. J. Biobased Mater. Bioenergy 2015, 9, 396–402. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Hussein, M.H.; El-Naggar, N.E.-A. Potential value of red and brown seaweed for sustainable bioethanol production. Bangladesh J. Bot. 2018, 44, 565–570. [Google Scholar] [CrossRef]
- Greetham, D.; Zaky, A.; Makanjuola, O.; Du, C. A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Curr. Opin. Green Sustain. Chem. 2018, 14, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-X.; Wijesekara, I.; Kim, S.-K. Phlorotannins as bioactive agents from brown algae. Process. Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology; U.S. Department of Commerce. NIST Chemistry Webbook, SRD 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 19 April 2021).
- PubChem; National Institute of Health; National Library of Medicine; Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Azimexon (accessed on 19 April 2021).
- Mruthyunjayawamy, B.H.M.; Shanthaveerappa, B.K. Synthesis and pharmacological activity of malonoyl/oxaloyl hydrazones of 5-substituted indole-3-carboxaldehydes, 3-terephthaloyl bis-1-(5′-substituted-2′-phenyl inbol-3′-yl)-3-thioureas and their derivatives. Indian J. Heterocy Ch. 1998, 8, 31–38. [Google Scholar]
- Löscher, W. Basic Pharmacology of Valproate: A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 2002, 16, 669–694. [Google Scholar] [CrossRef] [PubMed]
- Owen, O.E.; Morgan, A.P.; Kemp, H.G.; Sullivan, J.M.; Herrera, M.G.; Cahill, G.F., Jr. Brain Metabolism during Fasting. J. Clin. Investig. 1967, 46, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Haidar, E.A.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 2016, 5, e15092. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Iizuka, Y.; Lee, T.; Kim, C.Y.; Seong, G.J. Neuroprotective and neurite outgrowth effects of maltol on retinal ganglion cells under oxidative stress. Mol. Vis. 2014, 20, 1456–1462. [Google Scholar] [PubMed]
- Badiceanu, C.D.; Missir, A.-V. Synthesis and characterization of some new thiourides of 2-thiophenecarboxilic acid with potential pharmacological activity. Rev. Roum Chim. 2009, 54, 27–31. [Google Scholar]
- Liu, Y.; Li, A.; Feng, X.; Sun, X.; Zhu, X.; Zhao, Z. Pharmacological Investigation of the Anti-Inflammation and Anti-Oxidation Activities of Diallyl Disulfide in a Rat Emphysema Model Induced by Cigarette Smoke Extract. Nutrients 2018, 10, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem. 2019, 164, 678–688. [Google Scholar] [CrossRef]
- Movrin, M.; Maysinger, D. Biologically active N-Mannich bases of isatin-3-(phenyl)-imines (author’s transl). Die Pharm. 1979, 34, 535–536. [Google Scholar]
- Hildebrandt, J.; Trautwein, R.; Kritsch, D.; Häfner, N.; Görls, H.; Dürst, M.; Runnebaum, I.B.; Weigand, W.; Haefner, N.; Duerst, M. Synthesis, characterization and biological investigation of platinum(ii) complexes with asparagusic acid derivatives as ligands. Dalton Trans. 2018, 48, 936–944. [Google Scholar] [CrossRef]
- Mohareb, R.M.; Abdo, N.Y.M. Synthesis and Cytotoxic Evaluation of Pyran, Dihydropyridine and Thiophene Derivatives of 3-Acetylcoumarin. Chem. Pharm. Bull. 2015, 63, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Chilakapati, J.; Mehendale, H.M.; Rezvani, N.; Bolduc, D.L. Methyl-CCNU (Semustine), Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 277–280. [Google Scholar]
- Mumtaz, A.; Fatima, N.; Dawood, M.; Rafique, H.; Iqbal, J.; Saeed, A. Imidazole and its derivatives as potential candidates for drug development. Bangladesh J. Pharmacol. 2016, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- DrugBank (Database). Available online: https://go.drugbank.com/drugs/DB01215 (accessed on 19 April 2021).
- U.S. National Center for Advancing Translational Sciences (Database). Available online: https://drugs.ncats.io/substances?q=%22IBUPROFEN%20PICONOL%20%5BJAN%5D%22 (accessed on 19 April 2021).
- Phatak, N.M.; Emerson, G.A. Toxicity and local anesthetic activity of alkylesters of 2-furoic acid. J. Pharmacol. Exp. Ther. 1936, 58, 174–177. [Google Scholar]
- Meusel, M.; Ambrozak, A.; Hecker, T.K.; Gütschow, M. The Aminobarbituric Acid−Hydantoin Rearrangement. J. Org. Chem. 2003, 68, 4684–4692. [Google Scholar] [CrossRef] [PubMed]
- NIST Chemistry WebBook, SRD 69 (Database), National Institute of Standards and Technology, USA. Available online: https://webbook.nist.gov/cgi/inchi/InChI=1S/C6H8O6/c7-3-10-1-6(12-5-9)2-11-4-8/h3-6H,1-2H2 (accessed on 19 April 2021).
- DrugBank (Database). Available online: https://go.drugbank.com/drugs/DB13180 (accessed on 19 April 2021).
- Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic Acid: Properties, Applications and Microbial Production. Food Technol. Biotechnol. 2006, 44, 185–195. [Google Scholar]
- DrugBank (Database). Available online: https://go.drugbank.com/drugs/DB00553 (accessed on 19 April 2021).
- DrugBank (Database). Available online: https://go.drugbank.com/drugs/DB02083 (accessed on 19 April 2021).
- Lin, J.-C.; Chan, M.-H.; Lee, M.-Y.; Chen, Y.-C.; Chen, H.-H. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 71, 7–13. [Google Scholar] [CrossRef] [PubMed]
- DrugBank (Database). Available online: https://go.drugbank.com/drugs/DB00149 (accessed on 19 April 2021).
- Wang, Y.; Li, J.; Guo, J.; Wang, Q.; Zhu, S.; Gao, S.; Yang, C.; Wei, M.; Pan, X.; Zhu, W.; et al. Cytotoxic and antitumor effects of curzene from Curcuma longa. Planta Med. 2017, 83. [Google Scholar] [CrossRef]
Components | Concentration, % (wt/wt) |
---|---|
Lipids | 8.20 |
Alginates | 14.93 |
Extractibles in NaOH sol. 0.5M | 32.08 |
Extractibles in HCl sol 5% (v/v) | 28.97 |
Cellulose fibers | 15.82 |
Run # | Parameter | V (g/g d.m.) | E (g/g d.m.) | ||||
---|---|---|---|---|---|---|---|
t (°C) | S/L ratio | U/mg d.m. | Experimental | Predicted | Experimental | Predicted | |
1 | 25 | 0.083 | 8 | 0.1152 | 0.1089 | 0.0061 | 0.0058 |
2 | 25 | 0.083 | 16 | 0.1476 | 0.1452 | 0.0082 | 0.0083 |
3 | 25 | 0.0415 | 8 | 0.1392 | 0.1386 | 0.0076 | 0.0072 |
4 | 25 | 0.0415 | 16 | 0.1656 | 0.1749 | 0.0091 | 0.0096 |
5 | 35 | 0.083 | 8 | 0.1992 | 0.2154 | 0.0111 | 0.0110 |
6 | 35 | 0.083 | 16 | 0.2592 | 0.2517 | 0.0133 | 0.0135 |
7 | 35 | 0.0415 | 8 | 0.2544 | 0.2451 | 0.0117 | 0.0124 |
8 | 35 | 0.0415 | 16 | 0.2808 | 0.2814 | 0.0158 | 0.0149 |
Coefficients | Standard Error | p-Value | Lower 95% | Upper 95% | |
---|---|---|---|---|---|
Intercept | −0.13425 | 0.03040 | 0.01155 | −0.21866 | −0.04983 |
Variable x1 (t) | 0.01065 | 0.00081 | 0.00020 | 0.00837 | 0.01292 |
Variable x2 (S) | −0.71566 | 0.19757 | 0.02231 | −1.26422 | −0.16710 |
Variable x3 (U) | 0.00453 | 0.00102 | 0.01144 | 0.00169 | 0.00738 |
Coefficients | Standard Error | p-Value | Lower 95% | Upper 95% | |
---|---|---|---|---|---|
Intercept | −0.00696 | 0.00183 | 0.01929 | −0.01206 | −0.00186 |
Variable x1 (t) | 0.00052 | 4 × 10−5 | 0.00045 | 0.00038 | 0.00066 |
Variable x2 (S) | −0.03313 | 0.01194 | 0.05010 | −0.06628 | 2 × 10−5 |
Variable x3 (U) | 0.00030 | 6 × 10−5 | 0.00752 | 0.00013 | 0.00048 |
Nr. | Name | m/z | Chemical Formula | Retention Time (min) | Relative Abundance, % |
---|---|---|---|---|---|
1. | Malonic acid | 103.00 | C3H4O4 | 2.625 | 29.3 |
2.807 | 32.0 | ||||
2. | β-hydroxybutyric acid | 113.00 | C4H2O4 | 0.061 | 30.6 |
2.625 | 29.3 | ||||
2.807 | 32.0 | ||||
2.906 | 47.1 | ||||
3.142 | 29.0 | ||||
3.247 | 16.0 | ||||
3.907 | 23.9 | ||||
4.348 | 26.0 | ||||
16.812 | 62.2 | ||||
21.358 | 38.8 | ||||
3. | Maltol/Phloroglucinol | 125.02 | C6H6O3 | 3.142 | 29.6 |
4. | Thiophenecarboxilic acid | 127.0 | C5H4O2S | 3.247 | 15.2 |
5. | Diallyl disulphide | 145.01 | C6H10S2 | 2.807 | 8.7 |
6. | Phenyliminoacetate | 147.02 | C8H6NO2 | 2.906 | 19.5 |
7. | Asparagusic acid | 149.1 | C4H6O2S2 | 3.247 | 17.7 |
4.348 | 48.0 | ||||
8. | S-Propyl 2- propene-1-sulfinothioate | 163.02 | C6H12OS2 | 2.807 | 11.7 |
9. | 3-Acetylcoumarin | 187.11 | C11H8O3 | 3.907 | 35.4 |
10. | Semustine | 247.00 | C10H18ClN3O2 | 3.142 | 11.5 |
3.247 | 34.8 | ||||
11. | 2-Undecyl-1H-imidazole- carbothioic acid | 265.16 | C15H26N2S2 | 21.358 | 40.4 |
12. | Estazolam | 293.2 | C6H11ClN4 | 0.061 | 39.9 |
Nr. | Name | m/z | Chemical Formula | Retention Time (min) | Relative Abundance, % |
---|---|---|---|---|---|
1. | 3-Mercaptopropionic acid | 107.09 | C6H6O2S | 4.473 | 21.6 |
2. | Nicotinyl alcohol | 110.2 | C6H7NO | 2.668 | 33.3 |
58.8 | |||||
3. | Furoic acid | 113.0 | C5H4O3 | 2.668 | 25.6 |
4. | Maltol/ Phloroglucinol | 127.06 | C6H6O3 | 3.609 | 32.3 |
5. | 5-Aminobarbituric acid | 144.02 | C4H5N3O3 | 4.088 | 17.8 |
4.369 | 18.0 | ||||
4.473 | 23.5 | ||||
4.913 | 25.4 | ||||
5.491 | 24.0 | ||||
6. | Glycerol triformate | 177.17 | C6H8O6 | 3.609 | 32.3 |
7. | Gluconic acid | 197.13 | C6H12O6 | 4.088 | 52.8 |
8. | Methoxalen | 217.13 | C12H8O4 | 4.913 | 19.5 |
5.491 | 22.7 | ||||
10.306 | 21.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioroiu Tirpan, D.-R.; Sterpu, A.E.; Koncsag, C.I.; Ciufu, A.G.; Dobre, T. Enzymatic Process for Cystoseira barbata Valorization: Ethanol Production and Additional By-Products. Processes 2021, 9, 741. https://doi.org/10.3390/pr9050741
Cioroiu Tirpan D-R, Sterpu AE, Koncsag CI, Ciufu AG, Dobre T. Enzymatic Process for Cystoseira barbata Valorization: Ethanol Production and Additional By-Products. Processes. 2021; 9(5):741. https://doi.org/10.3390/pr9050741
Chicago/Turabian StyleCioroiu Tirpan, Doinita-Roxana, Ancaelena Eliza Sterpu, Claudia Irina Koncsag, Alina Georgiana Ciufu, and Tănase Dobre. 2021. "Enzymatic Process for Cystoseira barbata Valorization: Ethanol Production and Additional By-Products" Processes 9, no. 5: 741. https://doi.org/10.3390/pr9050741