Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactobacillus Isolation
2.2. Biochemical Screening, PCR Reaction
2.3. The Regression Model Analysis
2.4. Lag Phase Determination
2.5. Determination of 0.5 OD600
3. Result and Discussion
3.1. Lactobacillus Identification
3.2. Lactobacilli Growth Curve
3.3. Lag Phase Determination
3.4. Applied of Regression Model in Determining Lag Phase of Lactobacillus
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yew, G.Y.; Tham, T.C.; Show, P.-L.; Ho, Y.-C.; Ong, S.K.; Law, C.L.; Song, C.; Chang, J.-S. Unlocking the Secret of Bio-additive Components in Rubber Compounding in Processing Quality Nitrile Glove. Appl. Biochem. Biotechnol. 2020, 191, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Yeang, C.-H. Integration of Metabolic Reactions and Gene Regulation. Mol. Biotechnol. 2011, 47, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Ji, Y.; Teng, L.; Zhang, H. Using Raman spectroscopy and chemometrics to identify the growth phase of Lactobacillus casei Zhang during batch culture at the single-cell level. Microb. Cell Factories 2017, 16, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranyi, J. Stochastic modelling of bacterial lag phase. Int. J. Food Microbiol. 2002, 73, 203–206. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Zwietering, M.; De Koos, J.; Hasenack, B.; De Witt, J.; Van’t Riet, K. Modeling of bacterial growth as a function of temperature. Appl. Environ. Microbiol. 1991, 57, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Zwietering, M.; Jongenburger, I.; Rombouts, F.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Padre, A.T.; Sato, C.; Shiono, H.; Hattori, S.; Kajihara, A.; Aoyama, M.; Tawaraya, K.; Kumagai, K. Changes in the soil C and N contents, C decomposition and N mineralization potentials in a rice paddy after long-term application of inorganic fertilizers and organic matter. Soil Sci. Plant Nutr. 2016, 62, 212–219. [Google Scholar] [CrossRef] [Green Version]
- García, C.; Rendueles, M.; Díaz, M. Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess Biosyst. Eng. 2017, 40, 1111–1122. [Google Scholar] [CrossRef]
- Martín, R.; Jiménez, E.; Olivares, M.; Marín, M.; Fernández, L.; Xaus, J.; Rodríguez, J. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair. Int. J. Food Microbiol. 2006, 112, 35–43. [Google Scholar] [CrossRef]
- Martín, R.; Olivares, M.; Marín, M.L.; Fernández, L.; Xaus, J.; Rodríguez, J.M. Probiotic potential of 3 lactobacilli strains isolated from breast milk. J. Hum. Lact. 2005, 21, 8–17. [Google Scholar] [CrossRef]
- Vitale, S.G.; Laganà, A.S.; Muscatello, M.R.A.; La Rosa, V.L.; Currò, V.; Pandolfo, G.; Zoccali, R.A.; Bruno, A. Psychopharmacotherapy in pregnancy and breastfeeding. Obstet. Gynecol. Surv. 2016, 71, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Lagana, A.S.; Triolo, O.; D’Amico, V.; Cartella, S.M.; Sofo, V.; Salmeri, F.M.; Bokal, E.V.; Spina, E. Management of women with epilepsy: From preconception to post-partum. Arch. Gynecol. Obstet. 2016, 293, 493–503. [Google Scholar] [CrossRef]
- Rinne, M.; Kalliomaki, M.; Arvilommi, H.; Salminen, S.; Isolauri, E. Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J. Pediatr. 2005, 147, 186–191. [Google Scholar] [CrossRef]
- Ram, D.; Gowdappa, B.; Ashoka, H.; Eiman, N. Psychopharmacoteratophobia: Excessive fear of malformation associated with prescribing psychotropic drugs during pregnancy: An Indian perspective. Indian J. Pharmacol. 2015, 47, 484. [Google Scholar] [CrossRef]
- Anandharaj, M.; Sivasankari, B. Isolation of potential probiotic Lactobacillus oris HMI68 from mother’s milk with cholesterol-reducing property. J. Biosci. Bioeng. 2014, 118, 153–159. [Google Scholar] [CrossRef]
- Huang, H.; Song, X.; Yang, S. Development of a RecE/T-Assisted CRISPR–Cas9 Toolbox for Lactobacillus. Biotechnol. J. 2019, 14, 1800690. [Google Scholar] [CrossRef]
- Li, F.; Zhou, H.; Zhou, X.; Yi, R.; Mu, J.; Zhao, X.; Liu, W. Lactobacillus plantarum CQPC05 Isolated from Pickled Vegetables Inhibits Constipation in Mice. Appl. Sci. 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Todorov, S.D.; Dicks, L.M.T. Parameters affecting the adsorption of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423 isolated from sorghum beer. Biotechnol. J. 2006, 1, 405–409. [Google Scholar] [CrossRef]
- Splechtna, B.; Nguyen, T.-H.; Zehetner, R.; Lettner, H.P.; Lorenz, W.; Haltrich, D. Process development for the production of prebiotic galacto-oligosaccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnol. J. 2007, 2, 480–485. [Google Scholar] [CrossRef]
- Tajabadi, N.; Ebrahimpour, A.; Baradaran, A.; Rahim, R.A.; Mahyudin, N.A.; Manap, M.Y.A.; Bakar, F.A.; Saari, N. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 2015, 20, 6654–6669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nor, Z.O.; El-Enshasy, H.A.; Roslinda, A.M.; Sarmidi, M.R.; Ramlan, A.A. Kinetics of cell growth and functional characterization of probiotic strains Lactobacillus delbrueckii and Lactobacillus paracasei isolated from breast milk. Dtsc. Lebensm.-Rundsch. 2009, 105, 444–450. [Google Scholar]
- Sakthiselvan, P.; Meenambiga, S.S.; Madhumathi, R. Kinetic Studies on Cell Growth. In Cell Growth; IntechOpen: London, UK, 2019. [Google Scholar]
- Bertrand, R.L. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 2019, 201, 1–21. [Google Scholar] [CrossRef]
- NCBI. Basic Local Alignment Search Tool (BLAST); National Library of Medicine: Bethesda, MA, USA, 2020. [Google Scholar]
- Delgado, S.; Guadamuro, L.; Flórez, A.B.; Vázquez, L.; Mayo, B. Fermentation of commercial soy beverages with lactobacilli and bifidobacteria strains featuring high β-glucosidase activity. Innov. Food Sci. Emerg. Technol. 2019, 51, 148–155. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K. Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol. J 2010, 5, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Jung, S.-R.; Lee, S.-Y.; Lee, N.-K.; Paik, H.-D.; Lim, S.-I. Lactobacillus plantarum strain ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mrna levels associated with glucose and lipid metabolism. Nutrients 2018, 10, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishinari, K.; Fang, Y.; Nagano, T.; Guo, S.; Wang, R. 6-Soy as a food ingredient. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Woodhead Publishing: Philadelphia, PA, USA, 2018; pp. 149–186. [Google Scholar] [CrossRef]
Colonies Isolated | Number of Identical | Sequence Length, Similarity | Most Similar Type Strain | Accession Number |
---|---|---|---|---|
M1 | 8 | 1231, 99.51% | Lactobacillus plantatirum | MT026917 |
M3 | 12 | 1000, 99.9% | Lactobacillus plantatirum | MT026916 |
M6 | 10 | 1233, 99% | Lactobacillus pentosus | MT026915 |
y0 | a | b | R2 | Potential Absorbance at OD600 | |
---|---|---|---|---|---|
M1 | −0.732 | 2.08 | 0.26 | 0.984 | 1.348 |
M3 | −0.26 | 1.588 | 0.1015 | 0.926 | 1.329 |
M6 | −0.328 | 1.276 | 0.021 | 0.971 | 0.984 |
(Colonies) | Lag Phase | Reaching 0.5 OD600 | Reaching 0.5 OD600 after Lag Phase |
---|---|---|---|
M1 | 16.8 ± 0.21 | 34.8 ± 0.18 | 18.0 ± 1.81 |
M3 | 12.2 ± 0.34 | 44.6 ± 0.65 | 32.3 ± 0.38 |
M6 | 13.9 ± 0.10 | 49.1 ± 1.27 | 35.2 ± 0.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen-Sy, T.; Yew, G.Y.; Chew, K.W.; Nguyen, T.D.P.; Tran, T.N.T.; Le, T.D.H.; Vo, C.T.; Tran, H.K.P.; Mubashir, M.; Show, P.L. Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method. Processes 2020, 8, 902. https://doi.org/10.3390/pr8080902
Nguyen-Sy T, Yew GY, Chew KW, Nguyen TDP, Tran TNT, Le TDH, Vo CT, Tran HKP, Mubashir M, Show PL. Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method. Processes. 2020; 8(8):902. https://doi.org/10.3390/pr8080902
Chicago/Turabian StyleNguyen-Sy, Toan, Guo Yong Yew, Kit Wayne Chew, Thi Dong Phuong Nguyen, Thi Ngoc Thu Tran, Thi Dieu Huong Le, Chau Tuan Vo, Hoang Kim Pham Tran, Muhammad Mubashir, and Pau Loke Show. 2020. "Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method" Processes 8, no. 8: 902. https://doi.org/10.3390/pr8080902
APA StyleNguyen-Sy, T., Yew, G. Y., Chew, K. W., Nguyen, T. D. P., Tran, T. N. T., Le, T. D. H., Vo, C. T., Tran, H. K. P., Mubashir, M., & Show, P. L. (2020). Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method. Processes, 8(8), 902. https://doi.org/10.3390/pr8080902