Well-Defined Conjugated Macromolecules Based on Oligo(Arylene Ethynylene)s in Sensing †
Abstract
:1. Introduction
2. Synthesis of Well-Defined Conjugated Macromolecules
3. Macromolecular Conjugated Sensor Probes
3.1. Oligo(Arylene Ethynylene)s as Sensors Probes in Solution
3.1.1. Oligo(Arylene Ethynylene) Sensors
3.1.2. Oligo(Arylene Ethynylene) Electrolytes
3.2. Oligo(Arylene Ethynylene) Sensor Films
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [Google Scholar] [CrossRef]
- Vabret, N.; Bhardwaj, N.; Greenbaum, B.D. Sequence-Specific Sensing of Nucleic Acids. Trends Immunol. 2017, 38, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Yaffe, M.B. Protein Regulation in Signal Transduction. CSH Perspect. Biol. 2016, 8, a005918. [Google Scholar] [CrossRef]
- Scheer, P.V.D.; Laar, T.V.D.; Sprakel, J. Chain length-dependent luminescence in acceptor-doped conjugated polymers. Sci. Rep. 2019, 9, 11217. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Lehn, J.-M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024. [Google Scholar] [CrossRef]
- Szweda, R.; Chendo, C.; Charles, L.; Baxter, P.N.W.; Lutz, J.-F. Synthesis of oligoarylacetylenes with defined conjugated sequences using tailor-made soluble polymer supports. Chem. Commun. 2017, 53, 8312–8315. [Google Scholar] [CrossRef] [Green Version]
- Young, J.K.; Nelson, J.C.; Moore, J.S. Synthesis of Sequence Specific Phenylacetylene Oligomers on an Insoluble Solid Support. J. Am. Chem. Soc. 1994, 116, 10841–10842. [Google Scholar] [CrossRef]
- Lavastre, O.; Ollivier, L.; Dixneuf, P.H.; Sibandhit, S. Sequential catalytic synthesis of rod-like conjugated poly-ynes. Tetrahedron 1996, 52, 5495–5504. [Google Scholar] [CrossRef]
- Jones, L.; Schumm, J.S.; Tour, J.M. Rapid Solution and Solid Phase Syntheses of Oligo(1,4-phenylene ethynylene)s with Thioester Termini: Molecular Scale Wires with Alligator Clips. Derivation of Iterative Reaction Efficiencies on a Polymer Support. J. Org. Chem. 1997, 62, 1388–1410. [Google Scholar] [CrossRef]
- Anderson, S. Phenylene Ethynylene Pentamers for Organic Electroluminescence. Chem. Eur. J. 2001, 7, 4706–4714. [Google Scholar] [CrossRef]
- Elliott, E.L.; Ray, C.R.; Kraft, S.; Atkins, J.R.; Moore, J.S. Solid-Phase Synthesis of m-Phenylene Ethynylene Heterosequence Oligomers. J. Org. Chem. 2006, 71, 5282–5290. [Google Scholar] [CrossRef]
- Schneider, R.V.; Waibel, K.A.; Arndt, A.P.; Lang, M.; Seim, R.; Busko, D.; Bräse, S.; Lemmer, U.; Meier, M.A.R. Sequence-definition in stiff conjugated oligomers. Sci. Rep. 2018, 8, 17483. [Google Scholar] [CrossRef]
- Norris, B.N.; Zhang, S.; Campbell, C.M.; Auletta, J.T.; Calvo-Marzal, P.; Hutchison, G.R.; Meyer, T.Y. Sequence Matters: Modulating Electronic and Optical Properties of Conjugated Oligomers via Tailored Sequence. Macromolecules 2013, 46, 1384–1392. [Google Scholar] [CrossRef]
- Zhang, S.; Bauer, N.E.; Kanal, I.Y.; You, W.; Hutchison, G.R.; Meyer, T.Y. Sequence Effects in Donor–Acceptor Oligomeric Semiconductors Comprising Benzothiadiazole and Phenylenevinylene Monomers. Macromolecules 2017, 50, 151–161. [Google Scholar] [CrossRef]
- Zhang, S.; Hutchison, G.R.; Meyer, T.Y. Sequence Effects in Conjugated Donor–Acceptor Trimers and Polymers. Macromol. Rapid Commun. 2016, 37, 882–887. [Google Scholar] [CrossRef]
- Nishide, Y.; Osuga, H.; Saito, M.; Aiba, T.; Inagaki, Y.; Doge, Y.; Tanaka, K. Synthesis and Properties of a Series of Well-Defined and Polydisperse Benzo[1,2-b:4,3-b′]dithiophene Oligomers. J. Org. Chem. 2007, 72, 9141–9151. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Gaylord, B.S.; Bazan, G.C. Size-Specific Interactions Between Single- and Double-Stranded Oligonucleotides and Cationic Water-Soluble Oligofluorenes. Adv. Funct. Mater. 2003, 13, 463–467. [Google Scholar] [CrossRef]
- Liu, B.; Gaylord, B.S.; Wang, S.; Bazan, G.C. Effect of Chromophore-Charge Distance on the Energy Transfer Properties of Water-Soluble Conjugated Oligomers. J. Am. Chem. Soc. 2003, 125, 6705–6714. [Google Scholar] [CrossRef]
- Lawrence, J.; Goto, E.; Ren, J.M.; McDearmon, B.; Kim, D.S.; Ochiai, Y.; Clark, P.G.; Laitar, D.; Higashihara, T.; Hawker, C.J. A Versatile and Efficient Strategy to Discrete Conjugated Oligomers. J. Am. Chem. Soc. 2017, 139, 13735–13739. [Google Scholar] [CrossRef]
- Johansson, L.B.G.; Simon, R.; Bergström, G.; Eriksson, M.; Prokop, S.; Mandenius, C.-F.; Heppner, F.L.; Åslund, A.K.O.; Nilsson, K.P.R. An azide functionalized oligothiophene ligand—A versatile tool for multimodal detection of disease associated protein aggregates. Biosens. Bioelectron. 2015, 63, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Niu, Q.; Li, Y.; Li, T.; Hu, T.; Wang, E.; Liu, H. A novel oligothiophene-based colorimetric and fluorescent “turn on” sensor for highly selective and sensitive detection of cyanide in aqueous media and its practical applications in water and food samples. Sens. Actuators B Chem. 2018, 258, 64–71. [Google Scholar] [CrossRef]
- Lan, L.; Li, T.; Wei, T.; Pang, H.; Sun, T.; Wang, E.; Liu, H.; Niu, Q. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor. Spectrochim. Acta A 2018, 193, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Peng, J.; Fang, Y. Recent advances in fluorescent film sensing from the perspective of both molecular design and film engineering. Mol. Syst. Des. Eng. 2016, 1, 242–257. [Google Scholar] [CrossRef]
- Freudenberg, J.; Hinkel, F.; Jänsch, D.; Bunz, U.H.F. Chemical Tongues and Noses Based upon Conjugated Polymers. Top. Curr. Chem. 2017, 375, 67. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Peveler, W.J.; Rotello, V.M. Array-based “Chemical Nose” Sensing in Diagnostics and Drug Discovery. Angew. Chem. Int. Ed. 2019, 58, 5190–5200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, F.; Liu, L.; Yang, Q.; Wang, S. Water-Soluble Conjugated Polymers for Fluorescent-Enzyme Assays. Macromol. Rapid Commun. 2010, 31, 1405–1421. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y.-B. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors. Chem. Soc. Rev. 2015, 44, 4249–4263. [Google Scholar] [CrossRef]
- Kubota, R.; Hamachi, I. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem. Soc. Rev. 2015, 44, 4454–4471. [Google Scholar] [CrossRef]
- Ahner, J.; Pretzel, D.; Enke, M.; Geitner, R.; Zechel, S.; Popp, J.; Schubert, U.S.; Hager, M.D. Conjugated Oligomers as Fluorescence Marker for the Determination of the Self-Healing Efficiency in Mussel-Inspired Polymers. Chem. Mater. 2018, 30, 2791–2799. [Google Scholar] [CrossRef]
- Wang, B.; Queenan, B.N.; Wang, S.; Nilsson, K.P.R.; Bazan, G.C. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. Adv. Mater. 2019, 31, 1806701. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- Bunz, U.H.F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications. Chem. Rev. 2000, 100, 1605–1644. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cui, H.; Liu, X.; Li, L.; Cao, Y.; Liu, T.; Fang, Y. Alternative Copolymerization of a Conjugated Segment and a Flexible Segment and Fabrication of a Fluorescent Sensing Film for HCl in the Vapor Phase. Chem. Asian J. 2013, 8, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zyryanov, G.V.; Kopchuk, D.S.; Kovalev, I.S.; Nosova, E.V.; Rusinov, V.L.; Chupakhin, O.N. Chemosensors for detection of nitroaromatic compounds (explosives). Russ. Chem. Rev. 2014, 83, 783–819. [Google Scholar] [CrossRef]
- Whitten, D.G.; Tang, Y.; Zhou, Z.; Yang, J.; Wang, Y.; Hill, E.H.; Pappas, H.C.; Donabedian, P.L.; Chi, E.Y. A Retrospective: 10 Years of Oligo(phenylene-ethynylene) Electrolytes: Demystifying Nanomaterials. Langmuir 2019, 35, 307–325. [Google Scholar] [CrossRef]
- Lehnherr, D.; Chen, C.; Pedramrazi, Z.; DeBlase, C.R.; Alzola, J.M.; Keresztes, I.; Lobkovsky, E.B.; Crommie, M.F.; Dichtel, W.R. Sequence-defined oligo(ortho-arylene) foldamers derived from the benzannulation of ortho(arylene ethynylene)s. Chem. Sci. 2016, 7, 6357–6364. [Google Scholar] [CrossRef] [Green Version]
- Löffler, S.; Antypas, H.; Choong, F.X.; Nilsson, K.P.R.; Richter-Dahlfors, A. Conjugated Oligo- and Polymers for Bacterial Sensing. Front. Chem. 2019, 7. [Google Scholar] [CrossRef]
- Mulla, K.; Dongare, P.; Zhou, N.; Chen, G.; Thompson, D.W.; Zhao, Y. Highly sensitive detection of saccharides under physiological conditions with click synthesized boronic acid-oligomer fluorophores. Org. Biomol. Chem. 2011, 9, 1332–1336. [Google Scholar] [CrossRef]
- Bunz, U.H.F.; Seehafer, K.; Bender, M.; Porz, M. Poly(aryleneethynylene)s (PAE) as paradigmatic sensor cores. Chem. Soc. Rev. 2015, 44, 4322–4336. [Google Scholar] [CrossRef]
- Mako, T.L.; Racicot, J.M.; Levine, M. Supramolecular Luminescent Sensors. Chem. Rev. 2019, 119, 322–477. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Ouchi, M.; Liu, D.R.; Sawamoto, M. Sequence-Controlled Polymers. Science 2013, 341, 1238149. [Google Scholar] [CrossRef] [PubMed]
- Solleder, S.C.; Schneider, R.V.; Wetzel, K.S.; Boukis, A.C.; Meier, M.A.R. Recent Progress in the Design of Monodisperse, Sequence-Defined Macromolecules. Macromol. Rapid Commun. 2017, 38, 1600711. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.-F. Defining the Field of Sequence-Controlled Polymers. Macromol. Rapid Commun. 2017, 38, 1700582. [Google Scholar] [CrossRef] [PubMed]
- De Neve, J.; Haven, J.J.; Maes, L.; Junkers, T. Sequence-definition from controlled polymerization: The next generation of materials. Polym. Chem. 2018, 9, 4692–4705. [Google Scholar] [CrossRef]
- Feng, H.-T.; Yuan, Y.-X.; Xiong, J.-B.; Zheng, Y.-S.; Tang, B.Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452–7476. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-H.; Zimmerman, S.C. Orthogonality in organic, polymer, and supramolecular chemistry: From Merrifield to click chemistry. Chem. Commun. 2013, 49, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Al Ouahabi, A.; Oswald, L.; Charles, L.; Lutz, J.-F. Orthogonal Synthesis of “Easy-to-Read” Information-Containing Polymers Using Phosphoramidite and Radical Coupling Steps. J. Am. Chem. Soc. 2016, 138, 9417–9420. [Google Scholar] [CrossRef]
- Hill, S.A.; Gerke, C.; Hartmann, L. Recent Developments in Solid-Phase Strategies towards Synthetic, Sequence-Defined Macromolecules. Chem. Asian J. 2018, 13, 3611–3622. [Google Scholar] [CrossRef]
- Trinh, T.T.; Laure, C.; Lutz, J.-F. Synthesis of Monodisperse Sequence-Defined Polymers Using Protecting-Group-Free Iterative Strategies. Macromol. Chem. Phys. 2015, 216, 1498–1506. [Google Scholar] [CrossRef] [Green Version]
- Tour, J.M. Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures. Chem. Rev. 1996, 96, 537–554. [Google Scholar] [CrossRef]
- Zhang, L.; Colella, N.S.; Cherniawski, B.P.; Mannsfeld, S.C.B.; Briseno, A.L. Oligothiophene Semiconductors: Synthesis, Characterization, and Applications for Organic Devices. ACS Appl. Mater. 2014, 6, 5327–5343. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.P.V.; Smith, P.; Heeney, M. “Fibonacci’s Route” to Regioregular Oligo(3-hexylthiophene)s. J. Am. Chem. Soc. 2013, 135, 13695–13698. [Google Scholar] [CrossRef] [PubMed]
- Ten Hoeve, W.; Wynberg, H.; Havinga, E.E.; Meijer, E.W. Substituted 2,2′:5′,2″:5″,2‴:5‴,2⁗:5⁗,2′′′′′: 5′′′′′,2′′′′′′:5′′′′′′,2′′′′′′′:5′′′′′′′,2′′′′′′′′:5′′′′′′′′,2′′′′′′′′′:5′′′′′′′′′,2′′′′′′′′′′-undecithiophenes, the longest characterized oligothiophenes. J. Am. Chem. Soc. 1991, 113, 5887–5889. [Google Scholar] [CrossRef] [Green Version]
- Schumm, J.S.; Pearson, D.L.; Tour, J.M. Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128Å-Long Potential Molecular Wire. Angew. Chem. Int. Ed. 1994, 33, 1360–1363. [Google Scholar] [CrossRef]
- Huang, S.; Tour, J.M. Rapid bi-directional synthesis of oligo(1, 4-phenylene ethynylene)s. Tetrahedron Lett. 1999, 40, 3447–3450. [Google Scholar] [CrossRef]
- Vonk, E.C.; Langeveld-Voss, B.M.W.; van Dongen, J.L.J.; Janssen, R.A.J.; Claessens, H.A.; Cramers, C.A. Separation and characterization of oligomers by reversed-phase high-performance liquid chromatography; a study on well-defined oligothiophenes. J. Chromatogr. A 2001, 911, 13–26. [Google Scholar] [CrossRef]
- Advincula, R.C. Review of Conjugated Polymer Synthesis: Methods and Reactions. J. Am. Chem. Soc. 2011, 133, 5622. [Google Scholar] [CrossRef]
- Kline, R.J.; McGehee, M.D.; Kadnikova, E.N.; Liu, J.; Fréchet, J.M.J. Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight. Adv. Mater. 2003, 15, 1519–1522. [Google Scholar] [CrossRef]
- Pingel, P.; Zen, A.; Neher, D.; Lieberwirth, I.; Wegner, G.; Allard, S.; Scherf, U. Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity. Appl. Phys. A 2009, 95, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.-K.; Huang, C.-I. Charge Mobility and Transport Behavior in the Ordered and Disordered States of the Regioregular Poly(3-hexylthiophene). J. Phys. Chem. B 2009, 113, 14555–14564. [Google Scholar] [CrossRef]
- Fanni, A.M.; Monge, F.A.; Lin, C.-Y.; Thapa, A.; Bhaskar, K.; Whitten, D.G.; Chi, E.Y. High Selectivity and Sensitivity of Oligomeric p-Phenylene Ethynylenes for Detecting Fibrillar and Prefibrillar Amyloid Protein Aggregates. ACS Chem. Neurosci. 2019, 10, 1813–1825. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Machiguchi, H.; Matsumoto, S.; Inouye, M. Saccharide Recognition-Induced Transformation of Pyridine−Pyridone Alternate Oligomers from Self-Dimer to Helical Complex. J. Org. Chem. 2008, 73, 4650–4661. [Google Scholar] [CrossRef]
- Adachi, N.; Yoshinari, M.; Suzuki, E.; Okada, M. Oligo(p-phenylene ethynylene) with Cyanoacrylate Terminal Groups and Graphene Composite as Fluorescent Chemical Sensor for Cysteine. J. Fluoresc. 2017, 27, 1449–1456. [Google Scholar] [CrossRef]
- De los Santos, Z.A.; Yusin, G.; Wolf, C. Enantioselective sensing of carboxylic acids with a bis(urea)oligo(phenylene)ethynylene foldamer. Tetrahedron 2019, 75, 1504–1509. [Google Scholar] [CrossRef]
- Suk, J.-M.; Kim, D.A.; Jeong, K.-S. Helicity Control of an Indolocarbazole Foldamer by Chiral Organic Anions. Org. Lett. 2012, 14, 5018–5021. [Google Scholar] [CrossRef] [PubMed]
- Reiné, P.; Justicia, J.; Morcillo, S.P.; Abbate, S.; Vaz, B.; Ribagorda, M.; Orte, Á.; Álvarez de Cienfuegos, L.; Longhi, G.; Campaña, A.G.; et al. Pyrene-Containing ortho-Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence. J. Org. Chem. 2018, 83, 4455–4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M. Probing the Intrachain and Interchain Effects on the Fluorescence Behavior of Pentiptycene-Derived Oligo(p-phenyleneethynylene)s. J. Am. Chem. Soc. 2006, 128, 14109–14119. [Google Scholar] [CrossRef]
- Feng, F.; Yang, J.; Xie, D.; McCarley, T.D.; Schanze, K.S. Remarkable Photophysics and Amplified Quenching of Conjugated Polyelectrolyte Oligomers. J. Phys. Chem. Lett. 2013, 4, 1410–1414. [Google Scholar] [CrossRef]
- Phillips, R.L.; Miranda, O.R.; You, C.-C.; Rotello, V.M.; Bunz, U.H.F. Rapid and Efficient Identification of Bacteria Using Gold-Nanoparticle–Poly(para-phenyleneethynylene) Constructs. Angew. Chem. Int. Ed. 2008, 47, 2590–2594. [Google Scholar] [CrossRef]
- George, W.N.; Giles, M.; McCulloch, I.; Steinke, J.H.G.; deMello, J.C. Efficient Quenching of a Guanidinium-Containing Fluorescence Sensor. ChemPhysChem 2011, 12, 765–768. [Google Scholar] [CrossRef]
- Hill, E.H.; Goswami, S.; Evans, D.G.; Schanze, K.S.; Whitten, D.G. Photochemistry of a Model Cationic p-Phenylene Ethynylene in Water. J. Phys. Chem. Lett. 2012, 3, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.H.; Evans, D.G.; Whitten, D.G. The influence of structured interfacial water on the photoluminescence of carboxyester-terminated oligo-p-phenylene ethynylenes. J. Phys. Org. Chem. 2014, 27, 252–257. [Google Scholar] [CrossRef]
- Donabedian, P.L.; Pham, T.K.; Whitten, D.G.; Chi, E.Y. Oligo(p-phenylene ethynylene) Electrolytes: A Novel Molecular Scaffold for Optical Tracking of Amyloids. ACS Chem. Neurosci. 2015, 6, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.H.; Zhang, Y.; Evans, D.G.; Whitten, D.G. Enzyme-Specific Sensors via Aggregation of Charged p-Phenylene Ethynylenes. ACS Appl. Mater. 2015, 7, 5550–5560. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.H.; Sanchez, D.; Evans, D.G.; Whitten, D.G. Structural Basis for Aggregation Mode of oligo-p-Phenylene Ethynylenes with Ionic Surfactants. Langmuir 2013, 29, 15732–15737. [Google Scholar] [CrossRef]
- Donabedian, P.L.; Creyer, M.N.; Monge, F.A.; Schanze, K.S.; Chi, E.Y.; Whitten, D.G. Detergent-induced self-assembly and controllable photosensitizer activity of diester phenylene ethynylenes. Proc. Natl. Acad. Sci. USA 2017, 114, 7278–7282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Zhou, Z.; Ogawa, K.; Lopez, G.P.; Schanze, K.S.; Whitten, D.G. Photophysics and self-assembly of symmetrical and unsymmetrical cationic oligophenylene ethynylenes. J. Photochem. Photobiol. A 2009, 207, 4–6. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Z.; Ogawa, K.; Lopez, G.P.; Schanze, K.S.; Whitten, D.G. Synthesis, Self-Assembly, and Photophysical Behavior of Oligo Phenylene Ethynylenes: From Molecular to Supramolecular Properties. Langmuir 2009, 25, 21–25. [Google Scholar] [CrossRef]
- Tang, Y.; Corbitt, T.S.; Parthasarathy, A.; Zhou, Z.; Schanze, K.S.; Whitten, D.G. Light-Induced Antibacterial Activity of Symmetrical and Asymmetrical Oligophenylene Ethynylenes. Langmuir 2011, 27, 4956–4962. [Google Scholar] [CrossRef]
- Tong, W.-L.; Lai, L.-M.; Chan, M.C.W. Platinum(ii) Schiff base as versatile phosphorescent core component in conjugated oligo(phenylene–ethynylene)s. Dalton Trans. 2008, 1, 1412–1414. [Google Scholar] [CrossRef]
- Arias, E.; Méndez, M.T.; Arias, E.; Moggio, I.; Ledezma, A.; Romero, J.; Margheri, G.; Giorgetti, E. Supramolecular Recognition of Escherichia coli Bacteria by Fluorescent Oligo(Phenyleneethynylene)s with Mannopyranoside Termini Groups. Sensors 2017, 17, 1025. [Google Scholar] [CrossRef] [PubMed]
- Concepción García, M.; Turlakov, G.; Moggio, I.; Arias, E.; Valenzuela, J.H.; Hernández, M.; Rodríguez, G.; Ziolo, R.F. Synthesis and photophysical properties of conjugated (dodecyl)benzoateethynylene macromolecules: Staining of Bacillus subtilis and Escherichia coli rhizobacteria. New J. Chem. 2019, 43, 3332–3340. [Google Scholar] [CrossRef]
- Barata, P.D.; Prata, J.V. New entities for sensory chemistry based on calix[4]arene-carbazole conjugates: From synthesis to applications. Supramol. Chem. 2013, 25, 782–797. [Google Scholar] [CrossRef]
- Caron, T.; Guillemot, M.; Montméat, P.; Veignal, F.; Perraut, F.; Prené, P.; Serein-Spirau, F. Ultra trace detection of explosives in air: Development of a portable fluorescent detector. Talanta 2010, 81, 543–548. [Google Scholar] [CrossRef]
- Cui, H.; He, G.; Wang, H.; Sun, X.; Liu, T.; Ding, L.; Fang, Y. Fabrication of a Novel Cholic Acid Modified OPE-Based Fluorescent Film and Its Sensing Performances to Inorganic Acids in Acetone. ACS Appl. Mater. 2012, 4, 6935–6941. [Google Scholar] [CrossRef]
- Imsick, B.G.; Acharya, J.R.; Nesterov, E.E. Surface-Immobilized Monolayers of Conjugated Oligomers as a Platform for Fluorescent Sensors Design: The Effect of Exciton Delocalization on Chemosensing Performance. Adv. Mater. 2013, 25, 120–124. [Google Scholar] [CrossRef]
- Wang, H.; He, G.; Chen, X.; Liu, T.; Ding, L.; Fang, Y. Cholesterol modified OPE functionalized film: Fabrication, fluorescence behavior and sensing performance. J. Mater. Chem. 2012, 22, 7529–7536. [Google Scholar] [CrossRef]
- Xin, J.-G.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G. OPE molecular junction as a hydrogen gas sensor. Curr. Appl. Phys. 2018, 18, 273–279. [Google Scholar] [CrossRef]
- Li, H.B.; Tebikachew, B.E.; Wiberg, C.; Moth-Poulsen, K.; Hihath, J. A Memristive Element based on Electrically Controlled Single-Molecule Reaction. Angew. Chem. Int. Ed. 2020. [Google Scholar] [CrossRef]
- Deng, J.; Liu, M.; Lin, F.; Zhang, Y.; Liu, Y.; Yao, S. Self-assembled oligo(phenylene ethynylene)s/graphene nanocomposite with improved electrochemical performances for dopamine determination. Anal. Chim. Acta 2013, 767, 59–65. [Google Scholar] [CrossRef]
- Samanta, D.; Singh, A.; Verma, P.; Bhattacharyya, S.; Roy, S.; Maji, T.K. Photoswitchable J-Aggregated Processable Organogel by Integrating a Photochromic Acceptor. J. Org. Chem. 2019, 84, 10946–10952. [Google Scholar] [CrossRef] [PubMed]
- Pappas, H.C.; Donabedian, P.L.; Schanze, K.S.; Whitten, D.G. Intended and Unintended Consequences and Applications of Unnatural Interfaces: Oligo p-Phenylene Ethynylene Electrolytes, Biological Cells and Biomacromolecules. J. Braz. Chem. Soc. 2016, 27, 256–266. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Schanze, K.S. A conjugated polyelectrolyte-based fluorescence sensor for pyrophosphate. Chem. Commun. 2007, 1, 2914–2916. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Rovelo, N.R.; Ruiz-Carretero, A. Recent Progress in Hydrogen-Bonded π-Conjugated Systems Displaying J-Type Aggregates. Org. Mater. 2020, 2, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Dascier, D.; Ji, E.; Parthasarathy, A.; Schanze, K.S.; Whitten, D.G. Efficacy of End-Only-Functionalized Oligo(arylene-ethynylene)s in Killing Bacterial Biofilms. Langmuir 2012, 28, 11286–11290. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.D.; Montazami, R.; Daengngam, C.; Zuo, Z.; Dong, W.; Metzman, J.; Heflin, R. Optoelectronic Materials and Devices Incorporating Polyelectrolyte Multilayers. In Multilayer Thin Films; Decher, G., Schlenoff, J.B., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 511–537. [Google Scholar]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. TrAC Trends Anal. Chem. 2016, 82, 55–67. [Google Scholar] [CrossRef]
No. | OArEs Structures | Sensed Species (Potential Application) | Solvent/Medium (Concentration Range/LOD) | Sensing Mechanism | Detection Method | Ref. |
---|---|---|---|---|---|---|
Oligo(phenylene ethynylene) in solutions | ||||||
1 | D-fructose (fluorescent saccharide sensors) | Aqueous buffer pH 8.21 (D-fructose - 85-390 mM) | Reversible and pH-dependent complexation of phenylboronic acid with saccharides | FL | [38] | |
2 | Octyl β-D-glucopyranoside | Dichloromethane and chloroform | Dynamic transformation between CD-silent dimer and CD-active helical oligomer-saccharide | CD, 1H NMR | [62] | |
3 | Cysteine (fluorescent chemical sensor for cysteine) | THF, THF/water (1:1, v/v) (1.0–10.0 μM) | Fluorescence quenching by blocking the photo-induced electron PET mechanism by free electron pair at N atom in Cys | FL | [63] | |
4 | Enantioselective sensing of carboxylic acids, e.g., non-racemic tartaric acid (chiroptical sensing of carboxylic acids) | Chloroform (0.2 µM or 0.8 mM) | Chiroptical signals induced upon hydrogen bonding between urea protons and carboxylate groups in analytes | CD | [64] | |
5 | Enantioselective sensing of carboxylic acids, e.g., non-racemic tartaric acid (chiroptical sensing of carboxylic acids) | Chloroform (0.2 µM or 0.8 mM) | Chiroptical signals induced upon hydrogen bonding between urea protons and carboxylate groups in analytes | CD | [64] | |
6 | Chiral organic ions, i.e., camphorsulfonates, adenosine 3′,5′-cyclic monophosphate (cyclic monophosphate chirality sensors) | CH2Cl2, MeOH/CH2Cl2 (1%, v/v) (1 mg/mL) | CD signal controlled/switchable through acid-base chemistry | CD | [65] | |
7 | Silver (I) compounds: AgBF4 | CH2Cl2 or 95:5 mixture of CH2Cl2/acetone (0-2.5 × 10−4 M) | Organic monomolecular emitter which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe | CD, FL | [66] | |
8 | Silver (I) compounds: AgBF4 | CH2Cl2 or 95:5 mixture of CH2Cl2/acetone (0-2.5 × 10−4 M) | Organic monomolecular emitter which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe | CD, FL | [66] | |
9 | Temperature (fluorescent thermosensors) | CHCl3; 2-methyltetrahydrofuran (80 to 320 K) | Change of the twist angles in the π-conjugated backbones depending on the temperature | FL | [67] | |
10 | Temperature (fluorescent thermosensors) | CHCl3; 2-methyltetrahydrofuran (80 to 320 K) | Change of the twist angles in the π-conjugated backbones depending on the temperature | FL | [67] | |
11 | Scratch healing efficiency in mussel-inspired polymer (monitoring of thermally triggered self-healing systems) | Air; temperature treatment at 60 °C | Reversible Zn−histidine interactions | FL, CLSM | [29] | |
Oligo(phenylene ethynylene)s electrolytes | ||||||
12 | Methyl viologen (MV2+), 3,3′-diethyloxacarbocyanine iodide (DOC) (optical materials in chemo- and biodetection) | Water pH 8 (MV2+ 0.01–0.3 µM; DOC 0.02–5 mM) | Amplified fluorescence quenching due to ion pairing between the oligomer and the quencher cation | FL, UV-vis | [68] | |
13 | Ca2+ | Water pH 8 (0.02–10 mM) | Fluorescence shift | FL, UV-vis | [68] | |
14 | bacteria: Amycolatopsis azurea, Amycolatopsis orientalis subsp. lurida, Bacillus lichenformis, Bacillus subtilis, Escherichia coli (BL21(DE3)), Escherichia coli (E. coli (DH5α)), Escherichia coli (E. coli (XL1 Blue)), Lactococcus lactis, Lactococcus plantarum, Pseudomonas putida, Streptomyces coelicolor, and Streptomyces griseus (efficient identification of bacteria) | 5 mM phosphate buffer (pH 7.4); (OD600 = 1.0) | Fluorescence recovery by replacement of conjugated polymers coupled on gold nanoparticles with bacteria | FL | [69] | |
15 | 4-nitrophenyl phosphate, bis(cyclohexylammonium) salt hydrate (NPP), disodium hydrogen phosphate (DHP), 9,10-anthraquinone-2,6-disulfonic acid disodium salt (AQS) (optoelectronic sensor devices) | Water, pH 7.0 (DHP < 0.25 mM, AQS 3.2 µM, NPP 10 µM) | Quenching effect due to formation of non-emissive aggregates | FL, UV-vis | [70] | |
16 | Light-activated biocides against Escherichia coli, Staphylococcus epidermidis, and Staphylococcus aureus | 0.85% NaCl in water | Under UV the conjugate photosensitize the generation of singlet oxygen which triggers the cytotoxicity | FL | [35] | |
17 | Light-activated biocides against Escherichia coli, Staphylococcus epidermidis, and Staphylococcus aureus | 0.85% NaCl in water | Under UV the conjugate photosensitize the generation of singlet oxygen which triggers the cytotoxicity | FL | [35] | |
18 | Oxygen sensor for photosplitting of water | Water, argon-degassed water | Photoaddition of water across triple bond of ethynyl group in absence of oxygen, the addition of singlet-oxygen across a triple bond in presence of oxygen; formation of phenols via cleavage of alkoxy side chains in both cases | UV-vis, MS | [71] | |
19 | Sodium dodecyl sulfate (SDS), carboxymethyl amylose (CMA), and carboxymethyl cellulose (CMeC) | Water, deuterium oxide (50 μM) | Fluorescence quenching by water; fluorescence enhancement due to formation of oligomer-surfactant complex | FL, UV-vis | [72] | |
20 | 4-nitrophenyl phosphate, bis(cyclohexylammonium) salt hydrate (NPP), 9,10-anthraquinone-2,6-disulfonic acid disodium salt (AQS) (optoelectronic sensor devices) | Water, pH 7.0 (AQS 6.1 µM, NPP 23 µM) | Strong fluorescence quenching in the presence of electron deficient species | FL, UV-vis | [70] | |
21 | Fibril formation from native hen egg white lysozyme (HEWL) | 10 mM citrate buffer in water (pH 3) | Significant fluorescence enhancement in solution with HEWL amyloids | FL, CD | [73] | |
22 | Amyloid protein aggregates Aβ40 | pH 8.0 Tris (0.52 µM) pH 7.4 PB (0.48 µM) | Aggregate-specific binding inducing fluorescence turn on | FL | [61] | |
23 | Amyloid protein aggregates Aβ40 | pH 8.0 Tris (0.45 µM) pH 7.4 PB (0.24 µM) | Aggregate-specific binding inducing fluorescence turn on | FL | [61] | |
24 | Activity of phospholipases (type A2, A1, C) and acetylcholinesterase (sensors of enzymes as biomarkers for pollution or disease) | Water, pH 7.5 | Formation of molecular aggregates or conformational changes leading to change of photochemical properties | FL, UV-vis | [74] | |
25 | Activity of phospholipases (type A2, A1, C) and acetylcholinesterase (sensors of enzymes as biomarkers for pollution or disease) | Water, pH 7.5 | Formation of molecular aggregates or conformational changes leading to change of photochemical properties | FL, UV-vis | [74] | |
26 | Presented on the example of surfactants SDS and TTAB | Water | Formation of aggregates with strongly red-shifted absorbance | FL, UV-vis | [75] | |
27 | Presented on the example of surfactants SDS and TTAB | Water | Formation of aggregates with strongly red-shifted absorbance | FL, UV-vis | [75] | |
28 | Presented on the example of surfactants SDS and TTAB | Water (TTAB 0–200 µM, SDS 0–30 µM) | Fluorescence loss resulting from rapid internal conversion between singlet states | FL, UV-vis | [75] | |
29 | Presented on the example of surfactants SDS and TTAB | Water (TTAB 0–200 µM, SDS 0–30 µM) | Fluorescence loss resulting from rapid internal conversion between singlet states | FL, UV-vis | [75] | |
30 | Cationic surfactant cetyl trimethylammonium bromide (CTAB) (theranostic agent e.g., amyloid diseases) | Water (0–1500 µM) | Under UV the conjugate photosensitize the generation of singlet oxygen which triggers the cytotoxicity | FL, UV-vis | [76] | |
31 | Anionic biomacromolecules; anionic biopolymer carboxymethylcellulose (CMC) | Water (0–42 µM) | strong spectral red shifts in both absorption and fluorescence coupled with the increase in fluorescence efficiency upon complexation with CMC | FL, UV-vis | [77] | |
32 | Anionic biomacromolecules; presented the example of carboxymethylcellulose (CMC), carboxymethylamylose (CMA) and synthetic Laponite clay | Water (CMC 0–50 µM, CMA 0–0.28 µM, Laponite 0–31 µg) | Strong spectral red shifts caused by effective increase in the conjugation length upon template-induced formation of linear J-dimers or possibly because of planarization | CD, FL, UV-vis | [78] | |
33 | Amyloid protein aggregates; detergents (i.e., carboxymethyl amylose (CMA) and carboxymethyl cellulose (CMeC)); activity of phospholipases (PL A2, A1, C) and acetylcholinesterase; phospahatase/kinase) | Organic solvents (e.g., methanol); water | Red/blue shift in the emission spectrum on the interface between the oligo-electrolyte and the analyte; reversible fluorescence turn-on (phospahatase–kinase; LOD of 0.05 units/mL) | FL | [79] | |
34 | Amyloid protein aggregates; detergents (i.e., carboxymethyl amylose (CMA) and carboxymethyl cellulose (CMeC)); activity of phospholipases (PL A2, A1, C) and acetylcholinesterase; phospahatase/kinase) | Organic solvents (e.g., methanol); water | Red/blue shift in the emission spectrum on the interface between the oligo-electrolyte and the analyte; reversible fluorescence turn-on (phospahatase–kinase; LOD of 0.05 units/mL) | FL | [79] | |
35 | Signal dependent on polarity of solvents (tunable luminescent sensory materials) | CH2Cl2, THF, 2-methyltetrahydrofuran | Controllable integration of functionalized phosphorescent signaling units into well-defined conjugated materials | FL, UV-vis, TAS | [80] | |
Oligo(phenylene ethynylene)s films | ||||||
36 | Escherichia coli bacteria (new family of sensitive and selective biochips to detect E. coli) | Sample in a culture medium, (LOD = 104 CFU/mL) | Staining of bacteria by conjugated polymers | LSCM, SPR | [81] | |
37 | Escherichia coli bacteria (new family of sensitive and selective biochips to detect E. coli) | Sample in a culture medium, (LOD = 104 CFU/mL) | Staining of bacteria by conjugated polymers | LSCM, SPR | [81] | |
38 | Gram-positive Bacillus subtilis and Gram-negative Escherichia coli | Sample in miliQ water | Staining of bacteria by conjugated polymers | FL, LSCM, mRS, | [82] | |
39 | Detection of high explosive materials and explosive markers: 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), nitromethane (NM), 2,3-dimethyl-2,3-dinitrobutane (DMNB) | Vapors in air | Amplified fluorescence detection response thanks to the establishment of a tridimensional network of strong π–π and CH–π interactions with electron-deficient guests developed near the transduction centers | FL | [83] | |
40 | Detection of nitroaromatic explosives: trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), | Vapors in air, detection threshold—0.75 ppbv for TNT, 9 ppbv for DNT | In the presence of nitroaromatic explosives, conjugated fluorescent materials exhibit excellent fluorescence extinction properties due to a charge transfer mechanism | FL | [84] | |
41 | Inorganic acids: HCl, H2SO4, HNO3, H3PO4 (monomolecular layer chemistry-based fluorescent sensing films) | Acetone (5–40 μM) | Fluorescence quenching due to protonation of the imino group next to the conjugated segment | FL | [85] | |
42 | Inorganic acids: HCl, H2SO4, HNO3, H3PO4 (monomolecular layer chemistry-based fluorescent sensing films) | Acetone (5–40 μM) | Fluorescence quenching due to protonation of the imino group next to the conjugated segment | FL | [85] | |
43 | pH (thin-film ratiometric chemosensors) | Water (pH 2–10) | Shift in the emission spectrum of fluorescein (formation of anionic isomers) | FL | [86] | |
44 | 2,4,6-trinitrophenol (PA), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrobenzene (NB) (sensor for nitro compounds) | Water (PA, 0.2–5 µM; TNT, DNT, NB, 50 µM) | Reversible fluorescence quenching upon oligomer-analyte complex formation | FL | [87] | |
45 | 2,4,6-trinitrophenol (PA), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrobenzene (NB) (sensor for nitro compounds) | Water (PA, 0.2–5 µM; TNT, DNT, NB, 50 µM) | Reversible fluorescence quenching upon oligomer-analyte complex formation | FL | [87] | |
46 | H2 (gas sensor for environmental monitoring) | - | Theoretical DFT-based model: adsorbed H2 molecule significantly changes the characteristics of the current–voltage curve of the OPE molecular junction | CAL (DFT) | [88] | |
47 | Data encoding | - | Electrically controllable local heating mechanism for the forward reaction and catalyzed by a single charge transferprocess for the reverse switching | CV | [89] | |
48 | Cysteine (fluorescent chemical sensor for cysteine) | THF (1.0–10.0 μM) | Fluorescent “turn-on” upon electrostatic attraction between carboxylic groups of oligomer and ammonium groups of Cys | FL | [63] | |
49 | Dopamine (electrochemical sensors) | Human serum in aqueous PBS (0.01–60 µM, LOD 5 nM) | Oxidation/reduction of dopamine on the film-modified electrode | CV | [90] | |
50 | Perfluorocyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-2-carbaldehyde (PBMC) | Solid state, xerogel, liquid, i.e., ethanol, water, methanol–water mixture (1:1) | Photoswitch based on pcFRET (on/off) | FL | [91] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krywko-Cendrowska, A.; Szweda, D.; Szweda, R. Well-Defined Conjugated Macromolecules Based on Oligo(Arylene Ethynylene)s in Sensing. Processes 2020, 8, 539. https://doi.org/10.3390/pr8050539
Krywko-Cendrowska A, Szweda D, Szweda R. Well-Defined Conjugated Macromolecules Based on Oligo(Arylene Ethynylene)s in Sensing. Processes. 2020; 8(5):539. https://doi.org/10.3390/pr8050539
Chicago/Turabian StyleKrywko-Cendrowska, Agata, Dawid Szweda, and Roza Szweda. 2020. "Well-Defined Conjugated Macromolecules Based on Oligo(Arylene Ethynylene)s in Sensing" Processes 8, no. 5: 539. https://doi.org/10.3390/pr8050539