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Abstract: Macromolecules with well-defined structures in terms of molar mass and monomer sequence
became interesting building blocks for modern materials. The precision of the macromolecular
structure makes fine-tuning of the properties of resulting materials possible. Conjugated
macromolecules exhibit excellent optoelectronic properties that make them exceptional candidates for
sensor construction. The importance of chain length and monomer sequence is particularly important
in conjugated systems. The oligomer length, monomer sequence, and structural modification often
influence the energy bang gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) of the molecules that reflect in their properties. Moreover,
the supramolecular aggregation that is often observed in oligo-conjugated systems is usually strongly
affected by even minor structural changes that are used for sensor designs. This review discusses the
examples of well-defined conjugated macromolecules based on oligo(arylene ethynylene) skeleton
used for sensor applications. Here, exclusively examples of uniform macromolecules are summarized.
The sensing mechanisms and importance of uniformity of structure are deliberated.

Keywords: well-defined macromolecules; sequence-defined macromolecules; sequence-defined
polymers; conjugated oligomers; oligo(arylene ethynylene)s; biosensors; sensors; process monitoring

1. Introduction

Nowadays, facing the development of precise polymer chemistry, in particular new synthetic
methods that allow for monomer sequence control we are looking for new areas of application of
macromolecules where the sequence matters. To design new applications of macromolecules the
sequence–property relationship has to be well understood. Sensing and process monitoring are
expanding areas where the structure of macromolecules and the sequence of monomers became a
crucial parameter to achieve specificity and selectivity of the detection and bioprocess monitoring.

The monitoring of bioprocesses in an organism is performed by cascade communication between
the network of biomolecules [1]. Biological components often react very sensitively to environmental
changes (e.g., pH, temperature, nutrients), which may result in adverse effects on the activity of
the cells or the reproducibility of the process. Uniform, sequence-defined macromolecules such as
proteins and DNA are key features in the regulation of biological processes. The well-defined and
sequence-controlled structures of those biomolecules enable precise recognition of specific molecular
patterns or environmental changes (e.g., temperature, pH) to regulate the cascade events in the living
organisms. The monomer sequence, for instance, amino acids in proteins or nucleotides in DNA,

Processes 2020, 8, 539; doi:10.3390/pr8050539 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0002-7809-2772
https://orcid.org/0000-0003-2152-7656
http://dx.doi.org/10.3390/pr8050539
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/5/539?type=check_update&version=2


Processes 2020, 8, 539 2 of 31

determines functions and is responsible for regulation of thousands of cascade events in our body. The
whole mammalian immune system relies on a large array of nucleic acid sensors [2,3].

The precision of the primary structure is also very important in man-made (bio)sensor systems
based on conjugated macromolecules [4]. Over the last years, the synthetic strategies leading
to well/sequence-defined macromolecules, that enable better control of the properties of resulting
materials, were developed [5]. The monomer composition [6–19], sequence [4,6,12,19], and the oligomer
length [6,9] are parameters that influence the energy levels of HOMO and LUMO orbitals in conjugated
molecules. The structure indicates the energy gap between HOMO and LUMO, absorption, and
emission properties in conjugated systems [6,19]. Even a slight modification of oligomer structure, e.g.,
in the side [20] or end groups [21,22], can affect its optoelectronic properties and influence sensing.

Conjugated macromolecules, due to their excellent optoelectronic properties, found great use
in the construction of different types of sensors [23–25], e.g., monitoring of enzymatic activity [26],
chirality sensors [27], protein sensing [28], material self-healing [29], diagnosis and drug discovery [25],
biosensing and therapeutics [30]. The π-conjugated structure, allowing communication between
monomers in molecules backbone, is responsible for excellent optoelectronic properties susceptible
to environmental changes. The signal can be revealed in one or more dimensions [24] that induce
selectivity of the read-out, e.g., chemical nose approach [25,31]. Multidimensional sensor response
delivered by multiple sensor elements can selectively interact with the sample and produce a distinct
pattern of response enabling specific identification of target components.

Among conjugated macromolecules, oligo(arylene ethynylene)s (OArEs) have gained considerable
attention due to their excellent optoelectronic properties and emerging applications [32–35]. The current
synthesis methods provide access to uniform OArEs of precise length and full sequence control [6,12,36].
OArEs are an important class of sensory materials [26,30,37–40]. OArEs sensors can be used in organic
solvents as well as in the aqueous environment or as solid films. Their sensing mechanism usually
takes advantage of their fluorescence properties, but not exclusively.

This review aims to summarize the examples of linear oligo(arylene ethynylene)s applied in sensing
and to discuss their relevance and perspectives. Our study highlights the importance of adjustment and
manipulation of their sequence and length to improve the performance of oligomer-based fluorescent
sensors. The OArEs sensors in solution and solid films are discussed in the context of their applications
in detection and process monitoring. The examples of oligomers that change properties upon the
presence of a particular analyte or environmental changes are also included. Here, we focused on
well-defined, uniform oligomers built from at least three arylene units connected via ethynylene linkage.

2. Synthesis of Well-Defined Conjugated Macromolecules

The synthetic strategies leading to uniform macromolecules that enable control over the monomer
sequence have been introduced to polymer science during the last decades [41–43]. The nature-inspired
need of defined macromolecular structures was a driving force to develop new synthetic methodologies,
that combine current achievements of polymer chemistry, organic synthesis, and biochemistry to
develop methods yielding uniform, sequence-defined macromolecules (Figure 1) [41,42,44,45].

In general, discrete macromolecules can be accessed by iterative synthesis. In principle,
the synthesis relay on the stepwise attachment of protected monomers followed by deprotection. These
two steps are repeated cyclically until the desired molecule is obtained. When the monomers are
equipped with orthogonal functional groups there is no need for use of protecting groups [46,47].
Three main approaches can be distinguished: classical solution synthesis (Figure 1b), synthesis using
a soluble polymer as a support (Figure 1c), or solid-phase synthesis (Figure 1d) [48]. The syntheses
performed by classical organic chemistry methods are associated with cumbersome purification after
each step. The use of polymeric supports in a soluble [6] or a solid phase [49] significantly simplifies
the purification process.

In iterative synthesis it is very important to achieve high stepwise yields. The physical limitation
of iterative synthesis is stepwise yield that determines possible length of macromolecules. The total
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yield equals the product of actual step yield multiplying and, thus its value decreases dramatically
with the number of steps, according to the formula:

Ytotal[%] =
n∏

i=1

(
Yn

Ynth
× 100

)
(1)

where: n—number of steps, Yn—actual yield of step n [g], Ynth—theoretical yield of step n expressed in
mass units.

The Ytotal drops dramatically with the number of steps. For example, if the stepwise yield Yn will
be 95%, after 50 steps total yield will be only 7%.
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Figure 1. (a) The main approaches for the synthesis of sequence-defined conjugated macromolecules.
Sequence-defined macromolecules can be obtained by multistep-growth synthesis using three main
approaches: solid-phase synthesis, synthesis on soluble support, or solution synthesis. The monomers
are used in a protected form that demands performance of the deprotection step after each coupling or
by chemoselective reactions where monomers are equipped with orthogonal functional groups. The
examples are of (b) solution synthesis [42], (c) synthesis on soluble support [6], and (d) solid-phase
synthesis [11].

To obtain discrete conjugated oligomers (COs) based on oligo(arylene ethynylene)s skeleton,
several stepwise synthetic strategies have been developed [42,50]. Usually, the oligomers are obtained
by iterative solution synthesis that involves protected monomers. Due to poor solubility of arylene
ethynylene oligomers they are usually synthesized from monomers functionalized by solubilizing
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substituents. Oligomers are produced by successive coupling and deprotection steps that are repeated
in the cycle until the preferred macromolecule is obtained [8,9,11,51–53]. An interesting alternative to
classical solution-phase synthesis is the use of soluble or solid supports [7,10], in particular for longer
oligomers synthesis. Those approaches significantly simplify purification after each step. The synthesis
can be facilitated by divergent/convergent approaches [54] of bidirectional growth [55].

For example, the group of M.A.R. Meier established a solution synthesis protocol for
sequence-ordered, uniform pentamers built from five different monomers [12]. The oligomers
were synthesized by Sonogashira cross-coupling reaction followed by deprotection (Figure 1b).
The photophysical properties of the monodisperse oligomers differed only slightly, but the sequence
had an impact on their thermal properties and the hydrodynamic volume.

Oligo(arylene ethynylene)s without solubilizing substituents can be obtained by a soluble-support
approach. An interesting example of the polystyrene-tethered synthesis of uniform and
sequence-defined oligomers without solubilizing substituents was reported by R. Szweda et al. [6].
The use of an ATRP-made, tailored polystyrene support enabled the synthesis of OArEs containing
sequence ordered pyridine and benzene units. For oligomer synthesis, Sonogashira cross-coupling
reaction was used (Figure 1c). The use of the soluble support approach gave access to the unsubstituted
oligomers that are inaccessible using other methods due to their limited solubility. The UV and
fluorescent properties were changing with the oligomer length and composition.

The solid-phase synthesis of oligo(phenylene ethylene)s (OPEs) was reported by the group
of J. M. Tour [9]. The synthesis of 16-units oligo(phenylene ethylene)s was demonstrated [9].
The authors applied an iterative divergent/convergent approach on Merrifield resin leading to
oligo(2-alkyl-1,4-phenylene ethynylene)s. At each stage of the iteration, the length of the oligomer
doubled. Another example of solid-phase synthesis leading to oligomers of 18 repeating units was
developed by J. Moore [11]. In this approach, the monoprotected bisethynylarene and a 3-bromo-5-iodo
arene monomers bearing orthogonal reactivity were used.

Alternatively, the discrete conjugated macromolecules can be obtained by purification of oligomers
mixtures e.g., using reverse-phase chromatography [56] or automated flash chromatography [19] as
demonstrated by the group of C. J. Hawker. The automated flash chromatography is an efficient
separation method and can be used for the separation of thiophene oligomers of 2–14 units in grams
scale [19].

Other methods often employed for the synthesis of COs as step-growth polymerization lead to
mixtures of products of dispersity often higher than 1.2 [57]. Dispersity polymers consist of a mixture
of structures which has a significant impact on the properties and optical behavior that may influence
their sensing performance [58–60]. Moreover, the polymerization technique is not easily reproducible
and in the context of sensor application that might be a crucial factor to obtain the same properties of
materials. The resulting polymer even in the best-controlled conditions does not consist of uniform
macromolecules. It is unlikely to obtain exactly the same mixture of macromolecules in two different
polymerization processes.

Although lots of effort has been made, all of the existing methods show many limitations. The usual
problems are low yields, limited molar mass (chain length), small synthesis scale, high synthesis cost,
time, and labor consumption, etc. In the context of applications, those problems pose new challenges
to the chemists to optimize the synthetic strategies, that will overcome existing limitations and enable
further development of the field.
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3. Macromolecular Conjugated Sensor Probes

Sequence-defined, uniform macromolecules based on linear oligo(arylene ethynylene)s backbone
have been used in different types of sensors that can be classified into two main approaches: (i)
solution probes, where oligomers are dissolved in a medium (Section 3.1) and (ii) solid-phase probes
(Section 3.2), where oligomers are used as films or they are immobilized on a solid support. In the
solution phase, we can distinguish two main sensor categories: classical OArEs (Section 3.1.1) and
oligo(arylene ethynylene) electrolytes (Section 3.1.2), that possess ionic side-chains or end groups and
exhibit water solubility. In this review, the compounds were divided according to the applied approach.

The oligo(arylene ethynylene)-based sensors can be also categorized according to the type of
signal used in sensing, e.g., fluorescence, electrochemical, UV-vis, circularly polarized light (CD).
Among the typical detection methods, the most popular is based on fluorescence that takes advantage
of excellent optoelectronic properties of OArEs.

The sensing properties of OArEs strongly depends on their structure and chosen monomers.
It was demonstrated that certain oligomers have specific structures and can selectively respond to
the presence of particular species, e.g., selective detection of fibrillar and prefibrillar amyloid protein
aggregates [61]. Sensing can be influenced even by little structural changes like oligomers length and
monomer composition. In the following sections, the examples presenting the influence of structural
factors on detection efficiency are discussed.

The examples of linear, discrete oligo(arylene ethynylene)s applied in sensing for detection and
process monitoring are listed in Table 1. The oligomers that change properties upon the presence of a
particular analyte or environmental changes are also included.
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Table 1. Oligo(arylene ethynylene)s applied in sensing.

No. OArEs Structures Sensed Species
(Potential Application)

Solvent/Medium
(Concentration Range/LOD) Sensing Mechanism Detection Method Ref.

Oligo(phenylene ethynylene) in solutions

1
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Table 1. Cont.

No. OArEs Structures Sensed Species
(Potential Application)

Solvent/Medium
(Concentration Range/LOD) Sensing Mechanism Detection Method Ref.
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(efficient identification of
bacteria)

5 mM phosphate buffer (pH
7.4); (OD600 = 1.0)

Fluorescence recovery by
replacement of conjugated
polymers coupled on gold
nanoparticles with bacteria

FL [69]
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degassed water 

Photoaddition of water 

across triple bond of 

ethynyl group in 

absence of oxygen, the 

addition of singlet-

oxygen across a triple 

bond in presence of 

oxygen; formation of 

phenols via cleavage of 

alkoxy side chains in 

both cases 

UV-vis, 

MS 
[71] 
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Sodium dodecyl 

sulfate (SDS), 

carboxymethyl 

amylose (CMA), 

and 

carboxymethyl 

cellulose (CMeC) 

Water, deuterium 

oxide (50 μM) 

Fluorescence quenching 

by water; fluorescence 

enhancement due to 

formation of oligomer-

surfactant complex 

FL, UV-vis [72] 

20 

 

4-nitrophenyl 

phosphate, 

bis(cyclohexylam

monium) salt 

hydrate (NPP), 

9,10-

anthraquinone-

2,6-disulfonic acid 

disodium salt 

Water, pH 7.0 (AQS 

6.1 µM, NPP 23 µM) 

Strong fluorescence 

quenching in the 

presence of electron 

deficient species 

FL, UV-vis [70] 

Light-activated biocides against
Escherichia coli, Staphylococcus
epidermidis, and Staphylococcus

aureus

0.85% NaCl in water

Under UV the conjugate
photosensitize the generation

of singlet oxygen which
triggers the cytotoxicity

FL [35]
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aggregates Aβ40 
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(0.52 µM)  

pH 7.4 PB (0.48 µM) 
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binding inducing 
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pH 8.0 Tris (0.45 µM) 
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phospholipases 

(type A2, A1, C) 

and 

acetylcholinesteras

e (sensors of 

enzymes as 

biomarkers for 

pollution or 

disease) 

Water, pH 7.5 

Formation of molecular 

aggregates or 

conformational changes 

leading to change of 

photochemical 

properties 

FL, UV-vis [74] 

Fibril formation from native hen
egg white lysozyme (HEWL)

10 mM citrate buffer in water
(pH 3)

Significant fluorescence
enhancement in solution

with HEWL amyloids
FL, CD [73]
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local heating mechanism 
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Abbreviations: 1H NMR—proton nuclear magnetic resonance spectroscopy, FL—fluorescence spectroscopy, CAL—calculations, CD—circular dichroism spectroscopy, CLSM—confocal
laser scanning microscopy, CV—cyclic voltammetry, LOD—lower limit of detection, mRS—microRaman spectroscopy, MS—mass spectrometry, SPR—surface plasmon resonance,
TAS—transient-absorption spectroscopy, THF—tetrahydrofuran, UV-vis—ultraviolet-visible spectroscopy.



Processes 2020, 8, 539 15 of 31

3.1. Oligo(Arylene Ethynylene)s as Sensors Probes in Solution

3.1.1. Oligo(Arylene Ethynylene) Sensors

Oligo(arylene ethynylene)s have been used as sensors to detect different species e.g., chemicals [65],
saccharides [38,62], amino acids [63], explosives [84], ions [66], and physical changes e.g.,
temperature [67] or solvent polarity [67]. OArEs were also used for process monitoring to track
self-healing of polymers [29].

For example, the oligo(phenylene ethynylene)s foldamers with urea end-groups (Table 1, no.
4) were used for the detection of chiral carboxylic acids e.g., tartaric acid. [64] The stereodynamic
oligomer-carboxylic acid complexes formed chiral structures easily detectable by CD measurements.
It was demonstrated that the chiroptical signal could be used for quantitative analyses providing a fast
and simple method for chirality sensing assays (Figure 2).
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(Table 1, no. 4), Et3N, and samples of tartaric acid and linear relationship between the CD amplitude at
370 nm and the sample enantiomeric excess. Reprinted from [64] with permission from Elsevier.

For instance, conjugated oligomers functionalized by boronic acid have been used as sensors to
detect different saccharides: D-fructose, D-galactose, D-ribose, and D-glucose, in potassium phosphate
buffer/DMSO (99/1, v/v) [38]. By the addition of saccharides, significant fluorescence enhancement was
observed, and the response was different depending on saccharide. However, it was shown that the
fluorescence response can be observed only for well-designed oligomer structures. The oligo(phenylene
ethynylene)s with –OC10H21 side chains (Table 1, no. 1) and boronic acid groups attached via triazole
linker were sensitive exclusively to fructose presence. It was found that the fluorescence response
depends on supramolecular interactions between sensors and analyte molecules which are very
structure dependent. This study highlighted the need for a specific design of oligomer fluorophore in
the development of effective saccharide sensors.

Ortho-oligo(phenylene ethynylene)s (Table 1, no. 7, 8) were used as a circularly polarized
luminescence probe for the detection of silver ions [66]. The enantiopure helical core has been prepared
by a new macrocyclization reaction. The combination of such o-OPE helical skeleton and pyrene
reporter units lead to two characteristic circularly polarized emission features. The intensity of the
bands linearly corresponds with silver(I) concentration.

Interestingly, the temperature change that is a physical process can be followed by oligo(arylene
ethynylene)s [67]. The acetylene-bridged pentiptycene (n = 2, 3, and 4) (Table 1, no. 9) and
phenylene−pentiptycene−phenylene three-ring system (Table 1, no. 10) were evaluated as fluorescent
temperature sensors. The trimer and tetramer showed a unique response to temperature and solvent
polarity driven by intramolecular interactions (Figure 3). It was found that the twisted region of their
rotational potentials occurs at the local energy minimum, and the distribution of rotational conformers
is sensitive to the temperature and solvent polarity. Twisting of the π-conjugated backbones reflected
in 40 nm blue-shifted fluorescence spectra. It was demonstrated that upon temperature change in the
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range between 80 and 320 K, the fluorescence emission of acetylene-bridged pentiptycene tetramer
shifted significantly. This property can be used for the development of low-temperature sensors.
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Recently it was demonstrated that oligo(arylene ethynylene)s (Table 1, no. 11) can be used
as a fluorescent probe for monitoring of the self-healing process [29]. The OPE incorporated
into a mussel-inspired scratch-healing polymer network helped to determine detailed depth- and
time-dependent self-healing efficiency using confocal laser scanning microscopy (Figure 4). The damage
of the network resulted in decreased fluorescence emission of polymer within the scratch. The mobility
of the fluorescence marker is connected with the plasticity of the polymeric material, thus during
scratch refilling, no independent migration of dye within the polymeric material was detected.

3.1.2. Oligo(Arylene Ethynylene) Electrolytes

Oligo(arylene ethynylene) electrolytes are very attractive macromolecules for application in sensing.
As sensor probes, they combine the excellent fluorescence properties of a conjugated aryl-alkyne
system with electrolyte advantages especially water solubility [35]. Due to the presence of ionic groups,
these oligomers are very sensitive to the environment changes, e.g., ionic strength, pH, presence of
ions, presence of electrolytes. The charged pendant groups can induce electrostatic interactions
with oppositely charged (macro)molecules that reflect in fluorescence properties variation [37].
Moreover, the charges distributed along the oligomer molecules affect their aggregation thus
they exhibit high fluorescence response to alterations of aggregates structure and conformational
changes. Those changes caused by the presence of individual charged molecules may reveal a
unique response in the photophysical properties of the conjugated chromophore. The resulting
fluorescence quenching or enhanced emission can indicate presence of ions [70], oxygen [71],
surfactants [70,72,75,79,92], detergents [76,79], MV2+ ions [68], solvent polarity [80], anionic biopolymer
carboxymethylcellulose [77,78], biomolecules [93], and bacteria [69]. The oligomers were used for
processes monitoring of e.g., amyloid formation [61,73], enzymatic activity [74], and photochemical
reaction processes [71].
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fluorescence mode (λex = 405 nm) with the fluorescence channel (λem = 406−510 nm) monitoring
thermally triggered self-healing procedure, in particular the virgin damaged cross-linked copolymer
film, after 1, 2, and 8 h of thermal treatment at 60 ◦C: (red) homogeneous area within the scratch,
(yellow) heterogeneous area covering the majority of the analyzed defect, (orange) specific area with
residual removed film material, (blue) intact and undamaged reference area for each measurement, and
(green) photo-bleached marker area. Reprinted with permission from [29]. Copyright 2018 American
Chemical Society.

For instance, the oligo(p-phenylene ethynylene) electrolytes (OPE) were successfully applied
to track amyloid formation [61,73]. Oligomers with ester terminal moieties and positively charged
–(CH2)3N(CH3)3+ pendant groups of different length OPEn (n = 1, 2, and 3) (Table 1, no. 21) and
OPE1 negatively charged with pendant –(CH2)3SO3− groups (Table 1, no. 22) were evaluated as
probes for monitoring of the fibrillation process (Figure 5) [61,73]. The carboxyester terminal groups
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of OPEs cause high fluorescence quenching due to the strong interactions with the solvent, on the
other hand, the oligomers show strong fluorescence emission when in a water-poor environment.
These environment-dependent fluorescence properties were used for the sensor design. It was
demonstrated that positively charged OPEs used in 10:1 (protein:OPE) molar ratio are effective
molecular taggants for selective sensing of the amyloid fibril of the model protein HEWL. Upon fibril
formation, OPEs form clusters with the fibrils, where the carboxyester terminal groups are isolated from
water. In a non-water environment, they form superluminescent chiral J aggregates [94] and significant
fluorescence enhancement is observed (Figure 5). It was found that due to the energy transfer the
excitation at 280 nm characteristic for HEWL results in the emission of OPE only in solutions containing
OPEs and HEWL amyloids that indicate amyloid formation.
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Figure 5. Oligo(p-phenylene ethynylene) (OPEs) electrolytes are forming specific chiral constructs
together with amyloid fibrils. The construct exhibits enhanced fluorescence quenching and a unique
CD signal. Circular dichroism spectra of OPE n = 3 (10 µM) in phosphate buffer with hen egg white
lysozyme (HEWL) monomer (black trace) and with HEWL (10 µM) amyloid (red trace). Emission
spectra of OPE n = 3 in phosphate buffer (PB, pH 7.4, 10 mM) alone (black long dashed line) with
HEWL monomers (red short dashed line) and with HEWL amyloids (blue solid line), concentration:
500 nM, protein concentration: 5 µM monomer basis/0.25 mg/mL. Reprinted with permission from [73].
Copyright 2015 American Chemical Society.

p-Phenylene ethynylene oligomers can be also used for monitoring of enzymatic processes.
Complexes of oligomers (Table, no. 24, 25) with enzyme substrates were successfully used to follow
activity and inhibition of two biomarkers, phospholipase indicating heart and circulatory disease,
and acetylcholinesterase for Alzheimer’s diagnosis (Figure 6) [74]. In a buffer solution, oligomers
form complexes with positively charged substrates e.g., 1,2-dilauroyl-sn-glycero-3-phosphoglycerol
(DLPG) and lauroyl choline (LaCh). The DLPG-oligomer (Table, no. 24) complex upon phospholipases
undergoes transformation due to the cleavage of DLPG phosphate bond that resulted in a swift of the
fluorescence quenching. The aggregates of an anionic oligomer (Table, no. 25) with lauroyl choline
were used as a sensor to detect the activity and inhibition of acetylcholinesterase.
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Figure 6. (A) Fluorescence of the oligomer/1,2-dilauroyl-sn-glycero-3-phosphoglycerol (DLPG) (Table 1,
no. 24) aggregates over the course of Phospholipase A1 activity with 1.4 µMOPE and a DLPG
concentration of 7.27 µM, with enzyme added ranging from 0.5 to 5 mU of Phospholipase A1.
(B) A concentration of 1.4 µM of +2C with DLPG at a series of concentrations from 10.6 to 35.6 µM
(7.5−25.4 DLPG:OPE ratio), followed by the addition of 4 mU of Phospholipase A1. (C) Fluorescence of
the oligomer/DLPG aggregates over the course of Phospholipase A2 activity with 1.4 µM oligomer and
a DLPG concentration of 7.27 µM, with enzyme added ranging from 0.5 to 5 mU of Phospholipase A2.
(D) A concentration of 1.4 µM of +2C with DLPG at a series of concentrations from 2.37 to 17.8 µM
(1.7−12.7 DLPG:oligomer ratio), followed by addition of 40 mU of Phospholipase A2. t = −1 s is the
time of enzyme addition. Wavelength of excitation is 375 nm, emission is 440 nm. Reprinted with
permission from [74]. Copyright 2015 American Chemical Society.

OArEs (Table 1, no. 18) can be used to monitor chemical processes, e.g., photolysis [71].
For example, the photo-induced degradation process of oligomer (Table 1, no. 18) occurred by three
main routes: the photoprotonation of the triple bond followed by the addition of water, the addition
of singlet oxygen across the triple-bond, and the cleavage of the quaternary ammonium side-chains.
The degradation led to the formation of different products depending on the reaction atmosphere
(argon or oxygen). All those structural changes reflected in fluorescence properties indicating the rate
and mechanism of the degradation. Whenever the process was performed in the presence or absence
of oxygen, different products of different fluorescence properties were formed. The dependence of
fluorescence properties on the reaction atmosphere led to developing an oxygen-sensing methodology
based on fluorescence read-out of OArE photo-degradation.

Constructs of oligo(phenylene ethynylene)s electrolyte and gold nanoparticles can be used for
selective bacteria identification using the “chemical nose” sensing concept (Table 1, no. 14) [69].
In a solution, positively charged gold nanoparticles form complexes with negatively charged
oligo(phenylene ethynylene)s, and oligomer fluorescence is quenched. In the presence of bacteria,
some OPEs are released to the solution and fluorescence is restored as a consequence of the presence
of free oligomers (Figure 7). The applied oligomer with branched oligo(ethylene glycol) side chain
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reduces the non-specific interaction of oligomer and bacteria. Depending on bacteria the oligomer
replacement is different which results in selective fluorescence response.

Processes 2020, 8, x FOR PEER REVIEW 24 of 35 

 

OArEs (Table 1, no. 18) can be used to monitor chemical processes, e.g., photolysis [71]. For 
example, the photo-induced degradation process of oligomer (Table 1, no. 18) occurred by three main 
routes: the photoprotonation of the triple bond followed by the addition of water, the addition of 
singlet oxygen across the triple-bond, and the cleavage of the quaternary ammonium side-chains. 
The degradation led to the formation of different products depending on the reaction atmosphere 
(argon or oxygen). All those structural changes reflected in fluorescence properties indicating the rate 
and mechanism of the degradation. Whenever the process was performed in the presence or absence 
of oxygen, different products of different fluorescence properties were formed. The dependence of 
fluorescence properties on the reaction atmosphere led to developing an oxygen-sensing 
methodology based on fluorescence read-out of OArE photo-degradation. 

Constructs of oligo(phenylene ethynylene)s electrolyte and gold nanoparticles can be used for 
selective bacteria identification using the “chemical nose” sensing concept (Table 1, no. 14) [69]. In a 
solution, positively charged gold nanoparticles form complexes with negatively charged 
oligo(phenylene ethynylene)s, and oligomer fluorescence is quenched. In the presence of bacteria, 
some OPEs are released to the solution and fluorescence is restored as a consequence of the presence 
of free oligomers (Figure 7). The applied oligomer with branched oligo(ethylene glycol) side chain 
reduces the non-specific interaction of oligomer and bacteria. Depending on bacteria the oligomer 
replacement is different which results in selective fluorescence response.  

 
Figure 7. (a) Fluorescence intensity patterns of nanoparticle–oligomer (Table 1, no. 14) constructs in 
the presence of various bacteria strains. (b) The schematic presentation of sensor design. Bacteria 
interact with gold nanoparticle-oligomer construct and as oligomers macromolecules are released to 
the solution, fluorescence enhancement is observed. For each bacteria, interactions with nanoparticles 
are unique. In the figure, columns represent bacteria of different types, and rows represent the 
oligomer–nanoparticle constructs. Reprinted with permission from [69]. Copyright 2008 John Wiley 
and Sons. 

The π-conjugated oligo(phenylene ethynylene) backbones with two negatively charged 
−CH2COO– groups on each repeating unit and lengths of n = 5, 7, and 9 (Table 1, no. 13) were used to 
detect Ca2+ ions and quenching ionic agents [68]. In the presence of bivalent calcium ions, the 
oligomers aggregated causing fluorescence shift. The shift depended on oligomer length and for the 
shorter oligomers (n = 5, 7), the effects are less pronounced than for longer ones n = 9. This shift can 
be explained by the planarization of the phenylene ethynylene backbone and formation of “excimer-
like” excited states, that are not observed in the absence of Cu2+ ions. The oligomers were also 

Figure 7. (a) Fluorescence intensity patterns of nanoparticle–oligomer (Table 1, no. 14) constructs in the
presence of various bacteria strains. (b) The schematic presentation of sensor design. Bacteria interact
with gold nanoparticle-oligomer construct and as oligomers macromolecules are released to the solution,
fluorescence enhancement is observed. For each bacteria, interactions with nanoparticles are unique. In
the figure, columns represent bacteria of different types, and rows represent the oligomer–nanoparticle
constructs. Reprinted with permission from [69]. Copyright 2008 John Wiley and Sons.

The π-conjugated oligo(phenylene ethynylene) backbones with two negatively charged
−CH2COO– groups on each repeating unit and lengths of n = 5, 7, and 9 (Table 1, no. 13) were
used to detect Ca2+ ions and quenching ionic agents [68]. In the presence of bivalent calcium
ions, the oligomers aggregated causing fluorescence shift. The shift depended on oligomer length
and for the shorter oligomers (n = 5, 7), the effects are less pronounced than for longer ones
n = 9. This shift can be explained by the planarization of the phenylene ethynylene backbone
and formation of “excimer-like” excited states, that are not observed in the absence of Cu2+ ions.
The ligomers were also evaluated for fluorescence quenching in the presence of methyl viologen
and 3,3′-diethyloxacarbocyanine–well-known fluorescence quenching agents. It was found that the
quenching efficiency depends on oligomer length. Taken together, the elongation of oligomer increased
the ionic charge of macromolecules that in presence of counter ions favor the formation of ordered and
backbone-overlapped aggregates.

For example, while the fluorescence of cationic OPEs with amine end groups is quenched in
water, the addition of a small amount of oppositely charged detergent, sodium dodecyl sulfate (SDS),
causes a significant increase in the OPE fluorescence due to the formation of a complex (Table 1,
no. 16, 17) [35]. These OPE-detergent complexes exhibited antimicrobial properties [95], which, in
addition to the fluorescence emission during their formation, can be utilized for the development of
multifunctional biosensors.

3.2. Oligo(Arylene Ethynylene) Sensor Films

Oligo(arylene ethynylene) films consist of packed macromolecules with π-conjugated backbone
thus exhibit high fluorescence emission which can be altered upon binding of an analyte
molecule. OArEs films are an excellent materials for detection of amino acids [63], bacteria [81,82],
explosives [35,83,84,87], pH [86], inorganic acids [85], gas [88], digital information [89], or
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chemicals [90,91]. Usually, the detection of an analyte is based on fluorescence changes, its
enhancement or quenching upon binding of the sensed molecule. The OArEs films can be obtained by
covalent immobilization e.g., reaction between an aldehyde and amine-functionalized surface [85,87],
triethoxysilane group and glass [86], electrostatic binding [96], or drop-casting [90].

For instance, oligo(phenylene ethynylene)s bearing 4-aminophenyl-D-mannopyranoside groups
(Table 1, no. 36, 37) in combination with laser scanning confocal microscopy have been used for the
detection of E. coli bacteria [81]. Oligomer probes with two mannose groups enable discrimination
between uropathogenic and the non-uropathogenic E. coli mutant. Moreover, the films of oligomer
on aluminum support together with SPR allowed for quantitative biosensing of uropathogenic E. coli
achieving a LOD of 104 CFU/mL. Those findings showed the direction towards robust biochips to
detect bacteria.

For example, oligo(p-phenylene ethynylene) (Table 1, no. 44, 45) films have been examined in
sensing of common explosive nitroaromatic compounds (NACs) i.e., 2,4,6-trinitrophenol (picric acid,
PA), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) [87]. Interestingly,
the film with cholesterol side groups (Table 1, no. 45) exhibited sensitivity to changes of water/THF
solvents ratio (Figure 8a). In water, the film adapted a compacted structure causing a decrease in
fluorescence intensity whereas in THF the chains attained extended conformation. In the presence
of NACs molecules, complete fluorescence quenching was observed as the effect of the formation
of nonfluorescent OPE-NACs complexes. This effect was not interfered by the presence of other
compounds, including methanol, THF, toluene, dichloromethane, ammonia, HCl, NaOH, NaCl, copper
salts, or seawater (Figure 8b). The experiments revealed that the cholesterol chains incorporated in the
oligomer structure induced the sensitivity of the films towards the detected molecules by at least one
order of magnitude. Thus, the films of oligo(p-phenylene ethynylene) with cholesterol groups can be
used as an effective sensor for explosives.

Surface-immobilized monolayers of defined in length, short oligo(p-phenylene ethynylene)
oligomers end-capped by fluorescein (Table 1, no. 43) have been used as narrow-range threshold
fluorescent pH indicators (Figure 9a) [86]. At low pH, fluorescein was in its lactone form and the
observed emission mostly originated from the oligomer. Upon pH increase fluorescein form change to
anionic that favors electron delocalization with a respective decrease in HOMO-LUMO gap. A smaller
energy gap facilitates the exciton migration that results in fluorescence enhancement. Moreover, an
increase of pH causes a bathochromic shift of oligomer emission due to energy transfer from the
oligomer backbone to fluorescein (Figure 9b). This unique pH-dependent response was observed
only for oligomer-fluorescein dyad structures immobilized on the surface. The dyad structure was
crucial for sensor selectivity. Experiments performed for immobilized fluorescein did not reveal such a
selective sensor response. For comparison the same experiment was performed for dyad oligomers in
solution, however, the fluorescence signal was much weaker in intensity and the pH validation range
was significantly narrowed (pH 8 to 10).
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no. 45) in water and tetrahydrofuran (THF), respectively. THF is a good solvent for oligomer and
its cholesterol side chains and macromolecules in the film attain extended conformation. In contrast,
water is a poor solvent for both the oligomer backbone and the side chains, thus the oligomer film is
collapsed. Plots of the ratios of Ix/Iy of a given fluorescent film (Film 1-oligo(p-phenyleneethynylene)
with cholesterol moieties and Film 2-pristin oligo(p-phenyleneethynylene)) against the compositions of
the mixture solvents in which the fluorescence measurements were conducted (for Film 1 (Table 1, no.
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Figure 9. (a) Structure of the sensor and its assembly into a surface-immobilized monolayer. (b) The
general principle of generating pH-dependent fluorescent response. (c) pH-dependent absorption (left)
and fluorescence (right) spectra of monolayer fluorescein-oligomer film. Reprinted with permission
from [86]. Copyright 2013 John Wiley and Sons.

Additionally, immobilized oligo(p-phenylene ethynylene) can act as chemosensors for the detection
of polar species in an aprotic solvent. For example, a self-assembled monolayer of oligo(p-phenylene
ethynylene) with cholic acid moieties (Table 1, no. 42) immobilized onto a glass slide, has been used
as a sensor for trace amounts of inorganic acids, such as HCl, H2SO4, HNO3, and H3PO4, in acetone
medium [85]. The presence of a cholic acid unit induced the formation of hydrophobic pockets in
the upper part of the layer (Figure 10a). This pocket containing imino group was able to trap ions
that interacted with the imino groups. Basing on the comparative studies performed for different
acids, it was revealed that for the anaerobic acids, the quenching efficiency depended on the size of the
molecule and hydrogen bonds between the anions (Figure 10b). In other words, to observe efficient
quenching the acid ions had to fit the cavity of the hydrophilic pocket. When chloride anion was
trapped in the pocket the fluorescence quenching originated from the protonation of the imino group
next to the phenylene ethynylene segment was observed.
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Figure 10. (a) Illustration of immobilized oligomer (Table 1, no. 42) conformations in different medium
representing good (acetone as an example) or poor solvent (water, for example). In a good solvent,
the hydrophilic pocket is formed as an upper layer of the film. (b) Quenching efficiencies of various
acids to the fluorescence emission of Film 1-oligo(p-phenylene ethynylene) with cholic acid side chains
(Table 1, no. 42) and Film 2-oligo(p-phenylene ethynylene) (Table 1, no. 41) in water and acetone,
respectively (concentration of acids are 20 µM). Reprinted with permission from [85]. Copyright 2012
American Chemical Society.

Very sensitive sensor response can be achieved using electrochemical sensing methods.
An electrochemical sensor based on an oligo(phenylene ethynylene) (Table 1, no. 49) and chemically
reduced graphene oxide (rGO) nanocomposite was used for the quantification of dopamine (DA) [90].
This nanocomposite was synthesized by a simple ultrasonication method and then drop-casted onto
a polished glassy carbon electrode and followed by casting of a Nafion ethanol solution (0.25 wt%).
The formation of the oligomer nanocomposite was attributed to the π–π stacking interaction between
the conjugated structure of oligo(phenylene ethynylene) and rGO as well as the electrostatic force
between the amino group of oligomer and the carboxyl group on rGO. Anchoring of the oligomer
changed the configuration of the multiple bonds so that a conjugated system represented a characteristic
feature of conducting polymers. The developed sensor exhibited significantly enhanced electrocatalytic
activity toward the oxidation of DA in a human serum PBS solution in the concentration range of
0.01–60 µM with LOD of 5 nM, a significantly lower value than those reported for the other DA
sensors [97].
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A chemical sensor based on GO-oligo(phenylene ethynylene) (Table 1, no. 48) nanocomposites
was developed for amino acid detection [63]. The oligo(phenylene ethynylene) with cyanoacrylate
groups in presence of cysteine residue change fluorescence properties. As a result of the interaction
between oligomer and cysteine blue-shifted and decreased fluorescence emission was observed.
For oligomer-GO nanocomposite the behavior was opposite and fluorescence enhancement occurred.
The strong response of oligomer to cysteine can be used as a highly sensitive sensor.

Oligo(phenylene ethynylene)-based temperature sensors have been used to encode digital
information [89]. The oligomers (Table 1, no. 47) were used as junctions between two Au electrodes
(Figure 11a). Interestingly, during local temperature changes, the oligomers were able to change their
structure between norbornadiene (NB)-state and quadricyclane (QC)-state (Figure 11d). The molecule
states exhibited different conductance values that can be assigned to “1” and “0” digital symbols.
The temperature-dependent conducting properties of oligomers could be used for local temperature
monitoring. This system due to the clear response, translated into two states can be further exploited
as a new approach for encoding digital information.
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Figure 11. (a) Schematic of the molecular device with a modulating bias. (b) Reversible switching
behavior of single-molecule devices and the applied waveform. (c) Energy landscape of isomerization
processes. Blue and orange arrows indicate the electrically controlled forward and reverse switching
processes, respectively. (d) Schematic describing the processes for controlling the norbornadiene
(NB)-quadricyclane (QC) switching within a molecular junction (blue and orange arrows). The switching
processes within a molecular junction are controlled in the forward direction (NB to QC) by electrically
controlling the local temperature and in the reverse process (QC to NB) by catalyzing the reaction
through a single electron transfer (SET) process. These two states possess different conductance values
and can be used to encode digital information. Reprinted with permission from [89]. Copyright 2020
John Wiley and Sons.
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4. Conclusions

Uniform, π-conjugated oligomers based on an arylene ethynylene core are attractive sensory
materials. They can respond to the environment changes (polarity, temperature), presence of chemicals
(amino acids, saccharides, ions), macromolecules (proteins, polymers), bacteria, and process monitoring.
The successfully designed oligo(arylene ethynylene)-based sensors can be used as selective probes
to detect particular analytes in the mixture and they can be used for selective process monitoring.
However, their huge potential has not been explored, yet.

Well-defined conjugated arylene ethynylene can be accessed by iterative chemistry protocols
that permit for full structure precision and sequence definition. The solubility issues occurring for
oligo(arylene ethynylene)s can be overcome by the synthesis approach that uses soluble support.
Nevertheless, the high synthesis scale and yields remain a challenge.

The sensing parameters (sensitivity, selectivity, specificity) are strongly connected with the
oligomer structure. Even a small difference in structure, e.g., one unit length difference may result in
loss of sensor selectivity and sensitivity. Although a variety of examples were described, it has been
still difficult to rationally design the arylene ethynylene oligomers with high selectivity and affinity,
though more systematic studies in the field are needed.

In the near future sensing and process monitoring can become an interesting and emerging
application for sequence-defined polymers built from π-conjugated segments. As it was shown by
many examples in this review sensing is one of the applications where monomer sequence, composition,
and length matter. Systematic studies on the sequence–property relationship can open an avenue for
more specific and selective sensors relevant to biological samples.
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