Mutational Analysis of the Binding of Alternative Substrates and Inhibitors to the Active Site of Human Glutathione Transferase P1–1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plasmid and Phage Constructions
2.3. Expression and Purification of Recombinant Proteins
2.4. Kinetic Parameters
2.5. Structural Models of Enzyme-Inhibitor Complexes
3. Results and Discussion
3.1. Expression of GST P1–1 Variants
3.2. Specific Activities of hGST P1–1 Variants
3.3. Steady-State Kinetics
3.4. Inhibition Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Josephy, P.D.; Mannervik, B. Molecular Toxicology, 2nd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Hanna, P.E.; Anders, M.W. The mercapturic acid pathway. Crit. Rev. Toxicol. 2019, 49, 819–929. [Google Scholar] [CrossRef] [PubMed]
- Mannervik, B.; Castro, V.M.; Danielson, U.H.; Tahir, M.K.; Hansson, J.; Ringborg, U. Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis 1987, 8, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.-Y.; Castro, V.M.; Bergh, J.; Sundström, B.; Mannervik, B. Isoenzyme-specific quantitative immunoassays for cytosolic glutathione transferases and measurement of the enzymes in blood plasma from cancer patients and in tumor cell lines. Biochim. Biophys. Acta 1994, 1225, 223–230. [Google Scholar] [CrossRef]
- O’Brien, M.L.; Tew, K.D. Glutathione and related enzymes in multidrug resistance. Eur. J. Cancer 1996, 32A, 967–978. [Google Scholar] [CrossRef]
- Flatgaard, J.E.; Bauer, K.E.; Kauvar, L.M. Isozyme specificity of novel glutathione-S-transferase inhibitors. Cancer Chemother. Pharm. 1993, 33, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Ito, M.; Schophuizen, C.M.; Thengumtharayil, S.M.; Heuser, V.D.; Zhang, J.; Shimoji, M.; Vahter, M.; Ang, W.H.; Dyson, P.J.; et al. Characterization of new potential anticancer drugs designed to overcome glutathione transferase mediated resistance. Mol. Pharm. 2011, 8, 1698–1708. [Google Scholar]
- Mannervik, B.; Guthenberg, C.; Jakobson, I.; Warholm, M. Glutathione conjugation: Reaction mechanism of glutathione S-transferase A. In Conjugation Reactions in Drug Biotransformation; Aitio, A., Ed.; Elsevier/North-Holland: Amsterdam, The Netherlands, 1978; pp. 101–110. [Google Scholar]
- Reinemer, P.; Dirr, H.W.; Ladenstein, R.; Huber, R.; Lo Bello, M.; Federici, G.; Parker, M.W. Three-dimensional structure of class π glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 Å resolution. J. Mol. Biol. 1992, 227, 214–226. [Google Scholar] [CrossRef]
- Oakley, A.J.; Lo Bello, M.; Battistoni, A.; Ricci, G.; Rossjohn, J.; Villar, H.O.; Parker, M.W. The structures of human glutathione transferase P1–1 in complex with glutathione and various inhibitors at high resolution. J. Mol. Biol. 1997, 274, 84–100. [Google Scholar] [CrossRef]
- Kolm, R.H.; Sroga, G.E.; Mannervik, B. Participation of the phenolic hydroxyl group of Tyr−8 in the catalytic mechanism of human glutathione transferase Pl- 1. Biochem. J. 1992, 285, 537–540. [Google Scholar] [CrossRef]
- Widersten, M.; Kolm, R.H.; Björnestedt, R.; Mannervik, B. Contribution of five amino acid residues in the glutathione binding site to the function of human glutathione transferase P1–1. Biochem. J. 1992, 285, 377–381. [Google Scholar] [CrossRef]
- Lyttle, M.H.; Hocker, M.D.; Hui, H.C.; Caldwell, C.G.; Aaron, D.T.; Engqvist-Goldstein, A.; Flatgaard, J.E.; Bauer, K.E. Isozyme-specific glutathione-S-transferase inhibitors: Design and synthesis. J. Med. Chem. 1994, 37, 189–194. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Z.W.; Singh, S.; Townsend, D.M.; Tew, K.D. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic. Biol. Med. 2018, 120, 204–216. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Z.W.; Janssen-Heininger, Y.; Townsend, D.M.; Tew, K.D. Development of Telintra as an inhibitor of glutathione S-transferase P. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Morgan, A.S.; Sanderson, P.E.; Borch, R.F.; Tew, K.D.; Niitsu, Y.; Takayama, T.; Von Hoff, D.D.; Izbicka, E.; Mangold, G.; Paul, C.; et al. Tumor efficacy and bone marrow-sparing properties of TER286, a cytotoxin activated by glutathione S-transferase. Cancer Res. 1998, 58, 2568–2575. [Google Scholar]
- Dourado, D.F.; Fernandes, P.A.; Ramos, M.J.; Mannervik, B. Mechanism of glutathione transferase P1–1-catalyzed activation of the prodrug canfosfamide (TLK286, TELCYTA). Biochemistry 2013, 52, 8069–8078. [Google Scholar] [CrossRef] [PubMed]
- Vince, R.; Daluge, S.; Wadd, W.B. Inhibition of glyoxalase I by S-substituted glutathiones. J. Med. Chem. 1971, 14, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Kolm, R.H.; Widersten, M.; Stenberg, G.; Mannervik, B. High-level bacterial expression of human glutathione transferase P1–1 encoded by semisynthetic DNA. Protein Express Purif. 1995, 6, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Bjornestedt, R.; Widersten, M.; Board, P.G.; Mannervik, B. Design of two chimeric human-rat class Alpha glutathione transferases for probing the contribution of C-terminal segments of protein structure to the catalytic activity. Biochem. J. 1992, 282, 505–510. [Google Scholar]
- Taylor, J.W.; Ott, J.; Eckstein, F. The rapid generation of oligonucleotide- directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985, 13, 8765–8785. [Google Scholar] [CrossRef]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1982. [Google Scholar]
- Peterson, G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 1977, 83, 346–356. [Google Scholar] [CrossRef]
- Blum, H.; Beier, H.; Gross, H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987, 8, 93–99. [Google Scholar] [CrossRef]
- Ostlund Farrants, A.; Meyer, D.J.; Coles, B.; Southan, C.; Aitken, A.; Johnson, P.J.; Ketterer, B. Separation of glutathione S-transferase isoenzymes by HPLC. Biochem. J. 1987, 245, 423–428. [Google Scholar] [CrossRef]
- Bardsley, W.G.; McGinlay, P.B.; Roig, M.G. Optimal design for model discrimination using the F-test with non-linear biochemical models. J. Biol. 1989, 139, 85–102. [Google Scholar]
- Mannervik, B.; Danielson, H. Glutathione transferases-structure and catalytic activity. CRC Crit. Rev. Biochem. 1988, 23, 283–337. [Google Scholar] [CrossRef] [PubMed]
GST P1–1 Variant | Expression Level (mg/L Culture) | Affinity Matrix Used for Purification | Specific Activity (µmol/min/mg) a |
---|---|---|---|
wild-type | 220 b | S-hexylglutathione-Sepharose | 110 |
Q52K | 88 c | S-hexylglutathione-Sepharose | 35 |
Q52A | 5.1 c | S-hexylglutathione-Sepharose | 23 |
Q52E | 7.9 c | glutathione-Sepharose | <0.1 |
K45A | 1.4 b | S-hexylglutathione-Sepharose | 32 |
W39C | 1.8 c | not purified | <0.05 |
Parameter | Varied Substrate | GST P1–1 Variant | |||
---|---|---|---|---|---|
Wild-Type | Q52K | Q52A | K45A | ||
kcat/Km (s−1 mM−1) kcat/Km (s−1 mM−1) | CDNB Glutathione | 83 ± 2 345 ± 9 | 4.9 ± 0.5 5.0 ± 0.5 | 25.6 ± 0.9 17.3 ± 0.8 | 46 ± 22 21.6 ± 0.4 |
Km (mM) Km (mM) | CDNB Glutathione | 2.6 ± 0.2 0.5 ± 0.1 | 7.0 ± 2 4.7 ± 0.6 | 6.2 ± 0.8 2.8 ± 0.3 | 3.8 ± 0.4 0.8 ± 0.1 |
Vmax (µmol min−1 mg−1) | 570 ± 30 | 70 ± 20 | 340 ± 30 | 440 ± 30 |
Vmax (µmol min−1 mg−1) | ||||
---|---|---|---|---|
[CDNB] (mM) | Wild-Type GSH | Q52K GSH | Wild-Type | Q52K |
0.2 | 63 | 1.1 | 7.0 | <0.1 |
0.5 | 110 | 2.9 | 9.9 | 0.6 |
1 | 162 | 5.9 | 11.6 | 4.3 |
“Saturated” | 278 | No value | 13.8 | No value |
Substrate | GST P1–1 Variant | |
---|---|---|
Wild-TYPE kcat/Km (mM−1 s−1) | Q52K kcat/Km (mM−1 s−1) | |
GSH | 380 ± 40 | 5.9 ± 0.6 |
γE-C | 70 ± 1.3 | 3.6 ± 1.4 |
Ligand | GST P1–1 Variant | |||
---|---|---|---|---|
Wild-Type | Q52K | Q52A | K45A | |
γE-C(Hx)-G Ki (µM) ΔΔG (kJ mol−1) | 4.2 0 | 70 −7.0 | 65 −6.9 | 35 −5.3 |
γE-C(Hx)-ΦG Ki (µM) ΔΔG (kJ mol−1) | 20 −3.9 | 270 −10.5 | 45 −6.0 | 25 −4.5 |
γE-C(Bz)-ΦG Ki (µM) ΔΔG (kJ mol−1) | 0.3 6.7 | 40 −5.7 | 7 −1.3 | 8.5 −1.8 |
γE-C(Bz)-G Ki (µM) ΔΔG (kJ mol−1) | 8.3 −1.7 | 150 −9.0 | 17 −3.5 | 40 −5.7 |
γE-C(Bz)-βA Ki (µM) ΔΔG (kJ mol−1) | 180 −9.5 | 550 −12.5 | 250 −10.3 | 170 −9.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokeer, A.; Ismail, A.; Hegazy, U.M.; Kolm, R.H.; Mannervik, B. Mutational Analysis of the Binding of Alternative Substrates and Inhibitors to the Active Site of Human Glutathione Transferase P1–1. Processes 2020, 8, 1232. https://doi.org/10.3390/pr8101232
Shokeer A, Ismail A, Hegazy UM, Kolm RH, Mannervik B. Mutational Analysis of the Binding of Alternative Substrates and Inhibitors to the Active Site of Human Glutathione Transferase P1–1. Processes. 2020; 8(10):1232. https://doi.org/10.3390/pr8101232
Chicago/Turabian StyleShokeer, Abeer, Aram Ismail, Usama M. Hegazy, Rüdiger H. Kolm, and Bengt Mannervik. 2020. "Mutational Analysis of the Binding of Alternative Substrates and Inhibitors to the Active Site of Human Glutathione Transferase P1–1" Processes 8, no. 10: 1232. https://doi.org/10.3390/pr8101232
APA StyleShokeer, A., Ismail, A., Hegazy, U. M., Kolm, R. H., & Mannervik, B. (2020). Mutational Analysis of the Binding of Alternative Substrates and Inhibitors to the Active Site of Human Glutathione Transferase P1–1. Processes, 8(10), 1232. https://doi.org/10.3390/pr8101232