Effects of Single-arc Blade Profile Length on the Performance of a Forward Multiblade Fan
Abstract
:1. Introduction
2. Governing Equations and Numerical Method
3. Computational Model and Grid of Fan
4. Results and Discussions
4.1. Numerical Verification
4.2. Complex Internal Flow in Different Forward Multiblade Fans
4.3. Performance Results of Numerical Simulations
4.4. Performance Results of Experimental Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cau, G.; Mandas, N.; Manfrida, N.; Nurzia, F. Measurements of primary and secondary flows in an industrial forward-curved centrifugal fan. ASME J. Turbomach. 1990, 112, 84–90. [Google Scholar] [CrossRef]
- Cao, S.; Chu, L. Experimental study on the matching between centrifugal impeller and volute. Chin. Fluid Mach. 1991, 10, 2–4. [Google Scholar]
- Wei, Y.K.; Yang, H.; Lin, Z.; Wang, Z.D.; Qian, Y.H. A novel two-dimensional coupled lattice Boltzmann model for thermal incompressible flows. Appl. Math. Comput. 2018, 339, 556–567. [Google Scholar] [CrossRef]
- Liang, H.; Li, Y.; Chen, J.X.; Xu, J.R. Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Heat Mass Transf. 2019, 130, 1189–1205. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.P.; Yang, H.; Liang, H.; Wei, Y.K. Forced convection for flow across two tandem cylinders with rounded corners in a channel. Int. J. Heat Mass Transf. 2019, 130, 1053–1069. [Google Scholar] [CrossRef]
- Zhou, H.; Ca, G.B. Research of wall roughness effects based on Q criterion. Microfluid. Nanofluid. 2017, 21, 114–121. [Google Scholar] [CrossRef]
- Šístek, V. Corotational and Compressibility Aspects Leading to a Modification of the Vortex-Identification Q-Criterion. AIAA J. 2015, 53, 2406–2410. [Google Scholar]
- Gong, W.; Lv, W.; Xi, G.; Zhang, W. Experimental study on the velocity field near the tongue of a forward curved multi-blades centrifugal fan. Chin. J. Mech. Eng. 2005, 41, 166–171. [Google Scholar] [CrossRef]
- Velarde-Suárez, S.; Santolaria-Morros, C.; Ballesteros-Tajadura, R. Experimental study on the aeroacoustic behavior of a forward-curved blades centrifugal fan. ASME J. Fluid Eng. 1999, 121, 276–281. [Google Scholar] [CrossRef]
- Velarde-Suárez, S.; Ballesteros-Tajadura, R.; Santolaria-Morros, C.; Gonzalez-Perez, J. Unsteady flow pattern characteristics downstream of a forward-curved blades centrifugal fan. ASME J. Fluid Eng. 2001, 123, 265–270. [Google Scholar] [CrossRef]
- Younsi, M.; Bakir, F.; Kouidri, S.; Rey, R. Numerical and experimental study of unsteady flow in centrifugal fan. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 1025–1036. [Google Scholar] [CrossRef]
- Lin, S.; Huang, C. An integral experimental and numerical study of forward curved centrifugal fan. Exp. Fluid Sci. 2002, 26, 421–434. [Google Scholar] [CrossRef]
- Lun, Y.X.; Lin, L.M.; Zhu, Z.C.; Wei, Y.K. Effects of Vortex Structure on Performance Characteristics of a Multiblade Fan with Inclined tongue. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 233, 1007–1021. [Google Scholar] [CrossRef]
- Montazerin, N.; Damangir, A.; Mirian, S. A new concept for squirrel cage fan inlet. J. Power Energy 1998, 212, 343–349. [Google Scholar] [CrossRef]
- Montazerin, N.; Damangir, A.; Mirzaie, H. Inlet induced flow in squirrel-cage fans. J. Power Energy 2000, 214, 243–253. [Google Scholar] [CrossRef]
- Bayomi, N.N.; Osman, A.M. Effect of inlet straighteners on centrifugal fan performance. Energy Convers. Manag. 2006, 47, 3307–3318. [Google Scholar] [CrossRef]
- Zheng, X.; Lin, Z.; Xu, B.Y. Thermal conductivity and sorption performance of nano-silver powder/FAPO-34 composite fin. Appl. Therm. Eng. 2019, 160, 114055. [Google Scholar] [CrossRef]
- Hosangadi, A.; Lee, R.A.; York, B.J.; Sinha, N.; Dash, S.M. Upwind Unstructured Scheme for Three-Dimensional Combusting Flows. J. Propul. Power 1996, 12, 494–502. [Google Scholar] [CrossRef]
- Hosangadi, A.; Lee, R.A.; Cavallo, P.A.; Sinha, N.; York, B.J. Hybrid, Viscous, Unstructured Mesh Solver for Propulsive Applications. In Proceedings of the AIAA 34th JPC, Cleveland, OH, USA, 13–15 July 1998; Volume 98, p. 3153. [Google Scholar]
- Lee, Y.T.; Mulvihill, L.; Coleman, R.; Ahuja, V.; Hosangadi, A.; Birkbeck, R.; Becnel, A.; Slipper, M. LCAC Lift Fan Redesign and CFD Evaluation. Nav. Surf. Warf. Cent. Rep. 2007, 23, 112–119. [Google Scholar]
- Wang, C.; Hu, B.; Zhu, Y.; Wang, X.; Luo, C.; Cheng, L. Numerical study on the gas-water two-phase flow in the self-priming process of self-priming centrifugal pump. Processes 2019, 7, 330. [Google Scholar] [CrossRef]
- Zhang, S.F.; Li, X.J.; Hu, B.; Liu, Y.; Zhu, Z.C. Numerical investigation of attached cavitating flow in thermo-sensitive fluid with special emphasis on thermal effect and shedding dynamics. Int. J. Hydrog. Energy 2019, 44, 3170–3184. [Google Scholar] [CrossRef]
- Li, X.J.; Jiang, Z.W.; Zhu, Z.C.; Si, Q.R.; Li, Y. Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 4637–4646. [Google Scholar] [CrossRef]
- Liu, Q.; Ye, J.H.; Zhang, G.; Lin, Z.; Xu, H.; Jin, H.; Zhu, Z. Study on the metrological performance of a swirlmeter affected by flow regulation with a sleeve valve. Flow Meas. Instrum. 2019, 67, 83–94. [Google Scholar] [CrossRef]
- Xu, H.; Cantwell, C.D.; Monteserin, C.; Eskilsson, C.; Engsig-Karupet, A.P.; Sherwin, S.J. Spectral/hp element methods: Recent developments, applications, and perspectives. J. Hydrodyn. 2018, 30, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Mughal, S.M.; Gowree, E.R.; Atkin, C.J.; Sherwin, S.J. Destabilisation and modification of Tollmien–Schlichting disturbances by a three-dimensional surface indentation. J. Fluid Mech. 2017, 819, 592–620. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.J.; Zhu, Z.C. Quantification of wake unsteadiness for low-Re flow across two staggered cylinders. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019. [Google Scholar] [CrossRef]
- Xu, H.; Sherwin, S.J.; Hall, P.; Wu, X. The behaviour of Tollmien–Schlichting waves undergoing small-scale localised distortions. J. Fluid Mech. 2016, 792, 499–525. [Google Scholar] [CrossRef]
- Xu, H.; Lombard, J.E.; Sherwin, S.J. Influence of localised smooth steps on the instability of a boundary layer. J. Fluid Mech. 2017, 817, 138–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shi, W.; Wang, X.; Jiang, X.; Yang, Y.; Li, W.; Zhou, L. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Appl. Energy 2017, 187, 10–26. [Google Scholar] [CrossRef]
- Liu, Q.; Ye, J.; Zhang, G.; Lin, Z.; XU, H.; Zhu, Z. Metrological performance investigation of swirl flow meter affected by vortex inflow. J. Mech. Sci. Technol. 2019, 33, 2671–2680. [Google Scholar] [CrossRef]
- Chen, X.P.; Li, X.P.; Dou, H.S.; Zhu, Z.C. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow. J. Turbul. 2018, 19, 365–389. [Google Scholar] [CrossRef]
- Chen, X.P.; Li, X.L.; Zhu, Z.C. Effects of dimensional wall temperature on velocity-temperature correlations in supersonic turbulent channel flow of thermally perfect gas. Sci. China Phys. Mech. Astron. 2019, 62, 064711–064719. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Zhu, Z.C. Unsteady mixed convection in a square enclosure with an inner cylinder rotating in a bi-directional and time-periodic mode. Int. J. Heat Mass Transf. 2019, 136, 563–580. [Google Scholar] [CrossRef]
Baseline Model | Model-S | Model-L | |
---|---|---|---|
Blade inlet angle (β2A) | 84.83° | 91.27° | 71.34° |
Blade outlet angle (β1A) | 152.36° | 146.69° | 170.13° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Ying, C.; Xu, J.; Cao, W.; Wang, Z.; Zhu, Z. Effects of Single-arc Blade Profile Length on the Performance of a Forward Multiblade Fan. Processes 2019, 7, 629. https://doi.org/10.3390/pr7090629
Wei Y, Ying C, Xu J, Cao W, Wang Z, Zhu Z. Effects of Single-arc Blade Profile Length on the Performance of a Forward Multiblade Fan. Processes. 2019; 7(9):629. https://doi.org/10.3390/pr7090629
Chicago/Turabian StyleWei, Yikun, Cunlie Ying, Jun Xu, Wenbin Cao, Zhengdao Wang, and Zuchao Zhu. 2019. "Effects of Single-arc Blade Profile Length on the Performance of a Forward Multiblade Fan" Processes 7, no. 9: 629. https://doi.org/10.3390/pr7090629
APA StyleWei, Y., Ying, C., Xu, J., Cao, W., Wang, Z., & Zhu, Z. (2019). Effects of Single-arc Blade Profile Length on the Performance of a Forward Multiblade Fan. Processes, 7(9), 629. https://doi.org/10.3390/pr7090629