# Flow Characteristics and Stress Analysis of a Parallel Gate Valve

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model Description

#### 2.1. Physic Model

#### 2.2. Numerical Model

_{ij}stands for the viscous stress. The Realizable k-ε turbulence model [32] is used to solve the turbulent flow inside the investigated wedge-type double disk parallel gate valve, and the transport equations for turbulence kinetic and turbulence dissipation are shown, as follows

_{k}= 1.0, σ

_{ε}= 1.2, C

_{1ε}= 1.44, and C

_{2}= 1.9.

^{5}to 25.3 × 10

^{5}, the variation of the pressure drop is within 0.9%, so the method that is used to generate the grid 2 is adopted in this study.

#### 2.3. Model Validation

_{E}represents the experimental results and ξ

_{N}represents the numerical results. From Table 2, it can be found the relative errors between the experimental results and the numerical results are within 3%, thus the applied methods in this study are appropriate and they can provide results with sufficiently precise.

## 3. Results and Discussion

#### 3.1. Flow and Loss Characteristics

^{3}/h), ρ

_{0}is the density of water at 15 °C, K

_{v}is the flow coefficient and it represents the flux when the pressure drop of the gate valve is 100 kPa. Figure 7 shows the relationship between the flow coefficient and the Reynolds number. It can be found that the flow coefficient increases with the increase of Reynolds number, and the smaller the Reynolds number, the larger the variation of the flow coefficient.

#### 3.2. Effects of Valve Opening Degree

#### 3.3. Effects of the Groove Depth

#### 3.4. Stress Analysis of the Bolt

#### 3.4.1. Effects of the Gap C2

_{s}, which equals to the membrane stress plus the bending stress, is shown in Figure 14b.

#### 3.4.2. Effects of the Gap C3

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Barsoum, I.; Muñoz, A. Failure Analysis of a Large Knife Gate Valve Subjected to Multiaxial Loading. In Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2017. [Google Scholar]
- Owen, D.M.; Beavers, J.A. Investigation of Bolt Failures on a Gate Valve from a Natural Gas Pipeline. In Proceedings of the 4th International Pipeline Conference, Calgary, AB, Canada, 29 September–3 October 2002; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2002. [Google Scholar]
- Ifezue, D.; Tobins, F. Failure Investigation of a Gate Valve Eye Bolt Fracture During Hydrotesting. J. Fail. Anal. Prev.
**2013**, 13, 249–256. [Google Scholar] [CrossRef] - Qian, J.Y.; Chen, M.R.; Gao, Z.X.; Jin, Z.J. Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression. Energy
**2019**, 179, 647–654. [Google Scholar] [CrossRef] - Qian, J.Y.; Wu, J.Y.; Gao, Z.X.; Wu, A.; Jin, Z.J. Hydrogen decompression analysis by multi-stage Tesla valves for hydrogen fuel cell. Int. J. Hydrogen Energy
**2019**, 44, 13666–13674. [Google Scholar] [CrossRef] - Yuan, C.; Song, J.; Zhu, L.; Liu, M. Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction. Int. J. Heat Mass Transfer
**2019**, 141, 1009–1024. [Google Scholar] [CrossRef] - Jin, Z.J.; Gao, Z.X.; Qian, J.Y.; Wu, Z.; Sunden, B. A parametric study of hydrodynamic cavitation inside globe valves. ASME J. Fluids Eng.
**2018**, 140, 031208. [Google Scholar] [CrossRef] - Dasgupta, K.; Ghoshal, S.K.; Kumar, S.; Das, J. Dynamic analysis of an open-loop proportional valve controlled hydrostatic drive. Proc. Inst. Mech. Eng. Part E
**2019**, 0954408919861247. [Google Scholar] [CrossRef] - Zhang, Z.; Jia, L.; Yang, L. Numerical simulation study on the opening process of the atmospheric relief valve. Nucl. Eng. Des.
**2019**, 351, 106–115. [Google Scholar] [CrossRef] - Qian, J.Y.; Wei, L.; Jin, Z.J.; Wang, J.K.; Zhang, H. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve. Energy Convers. Manage.
**2014**, 87, 220–226. [Google Scholar] [CrossRef] - Jin, Z.J.; Gao, Z.X.; Zhang, M.; Liu, B.Z.; Qian, J.Y. Computational fluid dynamics analysis on orifice structure inside valve core of pilot-control angle globe valve. Proc. Inst. Mech. Eng. Part C
**2018**, 232, 2419–2429. [Google Scholar] [CrossRef] - Qian, J.Y.; Chen, M.R.; Liu, X.L.; Jin, Z.J. A numerical investigation of the flow of nanofluids through a micro Tesla valve. J. Zhejiang Univ. Sci. A
**2019**, 20, 50–60. [Google Scholar] [CrossRef] - Qian, J.Y.; Gao, Z.X.; Liu, B.Z.; Jin, Z.J. Parametric study on fluid dynamics of pilot-control angle globe valve. ASME J. Fluids Eng.
**2018**, 140, 111103. [Google Scholar] [CrossRef] - Xu, X.G.; Liu, T.Y.; Li, C.; Zhu, L.; Li, S.X. A Numerical Analysis of Pressure Pulsation Characteristics Induced by Unsteady Blood Flow in a Bileaflet Mechanical Heart Valve. Processes
**2019**, 7, 232. [Google Scholar] [CrossRef] - Chen, F.Q.; Zhang, M.; Qian, J.Y.; Fei, Y.; Chen, L.L.; Jin, Z.J. Thermo-mechanical stress and fatigue damage analysis on multi-stage high pressure reducing valve. Ann. Nucl. Energy
**2017**, 110, 753–767. [Google Scholar] [CrossRef] - Qian, J.Y.; Hou, C.W.; Wu, J.Y.; Gao, Z.X.; Jin, Z.J. Aerodynamics analysis of superheated steam flow through multi-stage perforated plates. Int. J. Heat Mass Transfer
**2019**, 141, 48–57. [Google Scholar] [CrossRef] - Solek, M.; Mika, L. Ice slurry flow through gate valves—Local pressure loss coefficient. In Proceedings of the 2nd International Conference on the Sustainable Energy and Environmental Development, Beijing, China, 24–25 March 2019. [Google Scholar]
- Alimonti, C. Experimental characterization of globe and gate valves in vertical gas–liquid flows. Exp. Therm. Fluid Sci.
**2014**, 54, 259–266. [Google Scholar] [CrossRef] - Lin, Z.; Ma, G.; Cui, B.; Li, Y.; Zhu, Z.; Tong, N. Influence of flashboard location on flow resistance properties and internal features of gate valve under the variable condition. J. Nat. Gas Sci. Eng.
**2016**, 33, 108–117. [Google Scholar] [CrossRef] - Yu, L.; Yu, S. High Temperature Flow Characteristics in Non-Full Opening Steam Gate Valve for Thermal Power Plant. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Hu, B.; Zhu, H.; Ding, K.; Zhang, Y.; Yin, B. Numerical investigation of conjugate heat transfer of an underwater gate valve assembly. Appl Ocean Res.
**2016**, 56, 1–11. [Google Scholar] [CrossRef] - Kolesnikov, G.N.; Tikhonov, E.A. Influence of the Angle of Taper of Output Channel of Wedge Gate Valve on the Movement of a Liquid. Chem. Pet. Eng.
**2017**, 52, 707–709. [Google Scholar] [CrossRef] - Xu, X.; Li, S.; Gong, L.; Wang, H.; Wang, Y. Study on seals of subsea production gate valves. Int. J. Comput. Appl. Technol.
**2018**, 58, 29–36. [Google Scholar] [CrossRef] - Babaev, S.G.; Kerimov, V.I. Increase in the Working Capacity of Christmas-Tree Gate Valves Based on Studying the Wear Mechanism of a Gate and Seat Pair. Chem. Pet. Eng.
**2015**, 51, 526–529. [Google Scholar] [CrossRef] - Lin, Z.; Ruan, X.D.; Zhu, Z.C.; Fu, X. Three-dimensional numerical investigation of solid particle erosion in gate valves. Proc. Inst. Mech. Eng. Part C
**2014**, 228, 1670–1679. [Google Scholar] [CrossRef] - Lin, Z.; Zhu, L.; Cui, B.; Li, Y.; Ruan, X. Effect of placements (horizontal with vertical) on gas-solid flow and particle impact erosion in gate valve. J. Therm. Sci.
**2014**, 23, 558–563. [Google Scholar] [CrossRef] - Liao, Y.; Lian, Z.; Long, R.; Yuan, H. Effects of multiple factors on the stress of the electro-hydraulic directional valve used on the hydraulic roof supports. Int. J. Appl. Electrom.
**2015**, 47, 199–209. [Google Scholar] [CrossRef] - Zakirnichnaya, M.M.; Kulsharipov, I.M. Wedge gate valves selected during technological pipeline systems designing service life assessment. Procedia Eng.
**2017**, 206, 1831–1838. [Google Scholar] [CrossRef] - Punitharani, K.; Murugan, N.; Sivagami, S.M. Finite element analysis of residual stresses and distortion in hard faced gate valve. J. Sci. Ind. Res.
**2010**, 69, 129–134. [Google Scholar] - Zhang, C.; Yu, L.; Feng, R.; Zhang, Y.; Zhang, G. A numerical study of stress distribution and fracture development above a protective coal seam in longwall mining. Processes
**2018**, 6, 146. [Google Scholar] [CrossRef] - Wang, S.; Li, H.; Li, D. Numerical Simulation of Hydraulic Fracture Propagation in Coal Seams with Discontinuous Natural Fracture Networks. Processes
**2018**, 6, 113. [Google Scholar] [CrossRef] - Shih, T.H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-e eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids
**1995**, 24, 227–238. [Google Scholar] [CrossRef]

**Figure 8.**Pressure and velocity distributions on the symmetry plane: (

**a**) Pressure distribution; and, (

**b**) Velocity distribution.

**Figure 9.**Pressure and flow fields under different valve opening degrees: (

**a**) 20% opening; and, (

**b**) 60% opening.

**Figure 12.**Pressure and flow fields under different groove depth: (

**a**) Groove depth 1; and, (

**b**) Groove depth 2.

**Figure 14.**The path of the stress linearization analysis and the stress distribution along the path: (

**a**) The path of the stress linearization analysis; and, (

**b**) The stress distribution along the path.

**Figure 15.**The path of the stress linearization analysis and the stress distribution along the path: (

**a**) The path of the stress linearization analysis; and, (

**b**) The stress distribution along the path.

Grid 1 | Grid 2 | Grid 3 | |
---|---|---|---|

N × 10^{5} | 6.7 | 13.3 | 25.3 |

∆p (pa) | 104.54 | 102.95 | 102.08 |

Valve Opening Degree | 3/8 | 5/8 | 1 |
---|---|---|---|

ξ_{E} [17] | 10.82 | 3.69 | 2.03 |

ξ_{N} | 11.03 | 3.74 | 1.98 |

Error (%) | 1.9 | 1.3 | −2.5 |

Re | Groove Depth 1 | Groove Depth 2 | Groove Depth 3 |
---|---|---|---|

200 | 3.763 | 3.763 | 3.763 |

800 | 1.570 | 1.569 | 1.570 |

5000 | 0.429 | 0.428 | 0.425 |

40,000 | 0.293 | 0.293 | 0.292 |

100,000 | 0.254 | 0.253 | 0.252 |

200,000 | 0.233 | 0.233 | 0.232 |

300,000 | 0.223 | 0.223 | 0.222 |

400,000 | 0.217 | 0.216 | 0.215 |

500,000 | 0.212 | 0.212 | 0.211 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, H.; Li, J.-y.; Gao, Z.-x.
Flow Characteristics and Stress Analysis of a Parallel Gate Valve. *Processes* **2019**, *7*, 803.
https://doi.org/10.3390/pr7110803

**AMA Style**

Wu H, Li J-y, Gao Z-x.
Flow Characteristics and Stress Analysis of a Parallel Gate Valve. *Processes*. 2019; 7(11):803.
https://doi.org/10.3390/pr7110803

**Chicago/Turabian Style**

Wu, Hui, Jun-ye Li, and Zhi-xin Gao.
2019. "Flow Characteristics and Stress Analysis of a Parallel Gate Valve" *Processes* 7, no. 11: 803.
https://doi.org/10.3390/pr7110803