# Mathematical Modelling and Simulation of a Spray Fluidized Bed Granulator

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Two-Compartment Model for Sprayed Fluidized Bed Granulation

- The system is divided into two compartments:
- (a)
- the first compartment, that is the wet zone, is represented by fraction $\eta $, and the volume is ${V}_{1}=\eta V$,
- (b)
- the second compartment, that is the dry zone, is represented by the fraction $1-\eta $, and the volume is ${V}_{2}=(1-\eta )V$, where V is the total volume of the reactor.

- Each compartment ($WZ$, as well as $DZ$) is considered to be a well-mixed system.
- The size of both compartments remains constant during the process.
- The mass in each compartment should be constant at each time step.
- The rate of exchange of volume flux between the compartments is constant during the process.

#### Finite Volume Scheme

## 3. Derivation of the Analytical Solutions for Moments

- Case 1: additive aggregation kernel, linear selection function with binary breakage kernel, that is ${\beta}_{WZ}(t,r,s)={\beta}_{0}(r+s),{S}_{DZ}(t,r)=r,{b}_{DZ}(r,s)=2/s$.
- Case 2: product aggregation kernel, linear selection function with binary breakage kernel, that is ${\beta}_{WZ}(t,r,s)={\beta}_{0}(rs),{S}_{DZ}(t,r)=r,{b}_{DZ}(r,s)=2/s$.

#### 3.1. Case 1

#### 3.2. Case 2

## 4. Results and Discussion

#### 4.1. Additive Aggregation Kernel and Binary Breakage with the Linear Selection Function

#### 4.2. Product Kernel and Binary Breakage with Linear Selection Function

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Marchal, P.; David, R.; Klein, J.; Villermaux, J. Crystallization and precipitation engineering-I. an efficient method for solving population balance in crystallization with agglomeration. Chem. Eng. Sci.
**1988**, 43, 59–67. [Google Scholar] [CrossRef] - Ramkrishna, D. Population Balances: Theory and Applications to Particulate Systems in Engineering; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Wang, T.; Wang, J.; Jin, Y. Population balance model for gas-liquid flows: Influence of bubble coalescence and breakup models. Ind. Eng. Chem. Res.
**2005**, 44, 7540–7549. [Google Scholar] [CrossRef] - Börner, M.; Peglow, M.; Tsotsas, E. Particle residence times in fluidized bed granulation equipments. Chem. Eng. Technol.
**2011**, 34, 1116–1122. [Google Scholar] [CrossRef] - Teunou, E.; Poncelet, D. Batch and continuous fluid bed coating–review and state of the art. J. Food Eng.
**2002**, 53, 325–340. [Google Scholar] [CrossRef] - Vreman, A.; Van Lare, C.; Hounslow, M. A basic population balance model for fluid bed spray granulation. Chem. Eng. Sci.
**2011**, 64, 4389–4398. [Google Scholar] [CrossRef] - Hussain, M.; Kumar, J.; Peglow, M.; Tsotsas, E. On two-compartment population balance modelling of spray fluidized bed agglomeration. Comput. Chem. Eng.
**2014**, 61, 185–202. [Google Scholar] [CrossRef] - Liu, H.; Li, M. Two-compartmental population balance modelling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (cfd) analysis. Int. J. Pharm.
**2014**, 475, 256–269. [Google Scholar] [CrossRef] [PubMed] - Turchiuli, C.; Jimenèz, T.; Dumoulin, E. Identification of thermal zones and population balance modelling of fluidized bed spray granulation. Powder Technol.
**2011**, 208, 542–552. [Google Scholar] [CrossRef] - Kumar, J.; Peglow, M.; Warnecke, G.; Heinrich, S.; Mörl, L. Improved accuracy and convergence of discretized population balance for aggregation: The Cell Average Technique. Chem. Eng. Sci.
**2006**, 61, 3327–3342. [Google Scholar] [CrossRef] - Hounslow, M.; Ryall, R.; Marshall, V. A discretized population balance for nucleation, growth, and aggregation. AIChE J.
**1988**, 34, 1821–1832. [Google Scholar] [CrossRef] - Kumar, J.; Kaur, G.; Tsotsas, E. An accurate and efficient discrete formulation of aggregation population balance equation. Kinet. Relat. Model.
**2016**, 9, 373–391. [Google Scholar][Green Version] - Singh, M.; Kaur, G.; Kumar, J.; De Beer, T.; Nopens, I. A comparative study of numerical approximations for solving smoluchowski coagulation equation. Braz. J. Chem. Eng.
**2017**, 35. Available online: https://www.researchgate.net/profile/Mehakpreet_Singh/publication/318129362_A_Comparative_Study_of_Numerical_Approximations_for_Solving_Smoluchowski_Coagulation_Equation/links/5a3bb40fa6fdccb29dca325f/A-Comparative-Study-of-Numerical-Approximations-for-Solving-Smoluchowski-Coagulation-Equation.pdf (accessed on 1 September 2018). - Singh, M.; Kumar, J.; Bück, A. A volume conserving discrete formulation of aggregation population balance equations on non-uniform meshes. IFAC-PapersOnLine
**2015**, 48, 192–197. [Google Scholar] [CrossRef] - Saha, J.; Kumar, J.; Bück, A.; Tsotsas, E. Finite volume approximations of breakage population balance equation. Chem. Eng. Res. Des.
**2016**, 110, 114–122. [Google Scholar] [CrossRef] - Singh, M.; Kumar, J.; Bück, A.; Tsotsas, E. A volume-consistent discrete formulation of aggregation population balance equations. Math. Methods Appl. Sci.
**2015**, 39, 2275–2286. [Google Scholar] [CrossRef] - Smit, D.; Hounslow, M.; Paterson, W. Aggregation and gelation-I. analytical solutions for cst and batch operation. Chem. Eng. Sci.
**1994**, 49, 1025–1035. [Google Scholar] [CrossRef]

**Figure 3.**Different order moments and number density for the additive kernel. FVS, Finite Volume Scheme.

**Table 1.**Quantitative relative errors in the zeroth and first order moments for the additive kernel.

$\mathit{WZ}$ | $\mathit{DZ}$ | Total | $\mathit{WZ}$ | $\mathit{DZ}$ | Total | |
---|---|---|---|---|---|---|

Moments | $\mathit{\eta}=20\%$ | $\mathit{\eta}=20\%$ | $\mathit{\eta}=20\%$ | $\mathit{\eta}=30\%$ | $\mathit{\eta}=30\%$ | $\mathit{\eta}=30\%$ |

${\mu}_{0}$ | 0.0037 | 0.0037 | 0.0037 | 0.0033 | 0.0034 | 0.0034 |

${\mu}_{1}$ | $3.48\times {10}^{-10}$ | $3.32\times {10}^{-10}$ | $3.35\times {10}^{-10}$ | $1.60\times {10}^{-10}$ | $1.55\times {10}^{-9}$ | $1.57\times {10}^{-9}$ |

$\mathit{WZ}$ | $\mathit{DZ}$ | Total | $\mathit{WZ}$ | $\mathit{DZ}$ | Total | |
---|---|---|---|---|---|---|

Moments | $\mathit{\eta}=20\%$ | $\mathit{\eta}=20\%$ | $\mathit{\eta}=20\%$ | $\mathit{\eta}=30\%$ | $\mathit{\eta}=30\%$ | $\mathit{\eta}=30\%$ |

${\mu}_{0}$ | 0.0046 | 0.0044 | 0.0044 | 0.0056 | 0.0053 | 0.0054 |

${\mu}_{1}$ | $5.55\times {10}^{-8}$ | $2.05\times {10}^{-8}$ | $2.75\times {10}^{-8}$ | $1.62\times {10}^{-8}$ | $1.47\times {10}^{-8}$ | $1.52\times {10}^{-8}$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kaur, G.; Singh, M.; Kumar, J.; De Beer, T.; Nopens, I.
Mathematical Modelling and Simulation of a Spray Fluidized Bed Granulator. *Processes* **2018**, *6*, 195.
https://doi.org/10.3390/pr6100195

**AMA Style**

Kaur G, Singh M, Kumar J, De Beer T, Nopens I.
Mathematical Modelling and Simulation of a Spray Fluidized Bed Granulator. *Processes*. 2018; 6(10):195.
https://doi.org/10.3390/pr6100195

**Chicago/Turabian Style**

Kaur, Gurmeet, Mehakpreet Singh, Jitendra Kumar, Thomas De Beer, and Ingmar Nopens.
2018. "Mathematical Modelling and Simulation of a Spray Fluidized Bed Granulator" *Processes* 6, no. 10: 195.
https://doi.org/10.3390/pr6100195