Physicochemical, Bioactive, and Sensory Characterization of Panettone Enriched with Sambucus peruviana Flour
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of S. peruviana
2.2. Preparation of S. peruviana Flour
2.3. Formulation of the Panettone
2.4. Proximate Analysis of Panettones
2.4.1. Moisture
2.4.2. Ash
2.4.3. Lipid
2.4.4. Protein
2.4.5. Total Dietary Fiber
2.5. Physical Properties
2.5.1. Color
2.5.2. Texture
2.6. Bioactive Properties
2.6.1. Preparation of the Methanolic Extract
2.6.2. Total Phenolic Content (TPC)
2.6.3. Antioxidant Capacity by DPPH
2.7. FT-IR Spectroscopy
2.8. Sensory Analysis
2.9. Data Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Physical Properties and Colorimetric Analysis
3.2.1. Color
3.2.2. Texture
3.3. Bioactive Properties
Total Phenolic Content (TPC) and Antioxidant Capacity (AC)
3.4. FT-IR Spectroscopy
3.5. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fekete, M.; Lehoczki, A.; Kryczyk-Poprawa, A.; Zábó, V.; Varga, J.T.; Bálint, M.; Fazekas-Pongor, V.; Csípő, T.; Rząsa-Duran, E.; Varga, P. Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients 2025, 17, 2153. [Google Scholar] [CrossRef]
- Donn, P.; Prieto, M.A.; Mejuto, J.C.; Cao, H.; Simal-Gandara, J. Functional foods based on the recovery of bioactive ingredients from food and algae by-products by emerging extraction technologies and 3D printing. Food Biosci. 2022, 49, 101853. [Google Scholar] [CrossRef]
- Esposito, L.; Casolani, N.; Ruggeri, M.; Spizzirri, U.G.; Aiello, F.; Chiodo, E.; Martuscelli, M.; Restuccia, D.; Mastrocola, D. Sensory Evaluation and Consumers’ Acceptance of a Low Glycemic and Gluten-Free Carob-Based Bakery Product. Foods 2024, 13, 2815. [Google Scholar] [CrossRef]
- Martins, R.; Sales, H.; Pontes, R.; Nunes, J.; Gouveia, I. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants 2023, 12, 328. [Google Scholar] [CrossRef]
- Souza, E.L.; Santos, L.F.P.; Barreto, G.d.A.; Leal, I.L.; Oliveira, F.O.; Conceição dos Santos, L.M.; Ribeiro, C.D.F.; Minafra e Rezende, C.S.; Machado, B.A.S. Development and characterization of panettones enriched with bioactive compound powder produced from Shiraz grape by-product (Vitis vinifera L.) and arrowroot starch (Maranta arundinaceae L.). Food Chem. Adv. 2023, 2, 100220. [Google Scholar] [CrossRef]
- Maia, E.G.; dos Passos, C.M.; Levy, R.B.; Bortoletto Martins, A.P.; Mais, L.A.; Claro, R.M. What to expect from the price of healthy and unhealthy foods over time? The case from Brazil. Public Health Nutr. 2020, 23, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F.; Florença, S.G. Development and Characterisation of Functional Bakery Products. Physchem 2024, 4, 234–257. [Google Scholar] [CrossRef]
- Thuy, N.M.; Tram, N.B.; Cuong, D.G.; Duy, H.K.; An, L.T.; Tien, V.Q.; Giau, T.N.; Van Tai, N. Evaluation of functional characteristics of roselle seed and its use as a partial replacement of wheat flour in soft bread making. J. Appl. Biol. Biotechnol. 2023, 11, 238–243. [Google Scholar] [CrossRef]
- Han, B.; Wu, Q.; Hu, Z.; Zhang, R.; Yang, X.; Li, B.; Ma, M.; Shao, X. Health-promoting mechanisms and food applications of Sambucus nigra L.: A comprehensive review. J. Funct. Foods 2025, 134, 107025. [Google Scholar] [CrossRef]
- Liu, D.; He, X.Q.; Wu, D.T.; Li, H.B.; Feng, Y.B.; Zou, L.; Gan, R.Y. Elderberry (Sambucus nigra L.): Bioactive Compounds, Health Functions, and Applications. J. Agric. Food Chem. 2022, 70, 4202–4220. [Google Scholar] [CrossRef]
- Porras-Mija, I.; Chirinos, R.; Garcia-Rios, D.; Aguilar-Galvez, A.; Huaman-Alvino, C.; Pedreschi, R.; Campos, D. Physico-chemical characterization, metabolomic profile and in vitro antioxidant, antihypertensive, antiobesity and antidiabetic properties of Andean elderberry (Sambucus nigra subsp. peruviana). J. Berry Res. 2020, 10, 193–208. [Google Scholar] [CrossRef]
- Correa, J.L.; Zapata, J.E.; Hernández-Ledesma, B. Release of Bioactive Peptides from Erythrina edulis (Chachafruto) Proteins under Simulated Gastrointestinal Digestion. Nutrients 2022, 14, 5256. [Google Scholar] [CrossRef]
- Palma-Albino, C.; Intiquilla, A.; Jiménez-Aliaga, K.; Rodríguez-Arana, N.; Solano, E.; Flores, E.; Zavaleta, A.I.; Izaguirre, V.; Hernández-Ledesma, B. Albumin from Erythrina edulis (Pajuro) as a promising source of multifunctional peptides. Antioxidants 2021, 10, 1722. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.; Santos López, E.M.; Rodríguez, J.A.; Barros, L.; Lorenzo, J.M. Potential Use of Elderberry (Sambucus nigra L.) as Natural Colorant and Antioxidant in the Food Industry. A Review. Foods 2021, 10, 2713. [Google Scholar] [CrossRef] [PubMed]
- Seixas, N.L.; Paula, V.B.; Dias, T.; Dias, L.G.; Estevinho, L.M. The Effect of Incorporating Fermented Elderberries (Sambucus nigra) into Bread: Quality, Shelf Life, and Biological Enhancement. Foods 2025, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Intiquilla, A.; Jiménez-Aliaga, K.; Zavaleta, A.I.; Arnao, I.; Peña, C.; Chavez-Hidalgo, E.L.; Hernández-Ledesma, B. Erythrina edulis (pajuro) seed protein: A new source of antioxidant peptides. Nat. Prod. Commun. 2016, 11, 781–786. [Google Scholar] [CrossRef]
- Melini, V.; Vescovo, D.; Melini, F.; Raffo, A. Bakery Product Enrichment with Phenolic Compounds as an Unexplored Strategy for the Control of the Maillard Reaction. Appl. Sci. 2024, 14, 2647. [Google Scholar] [CrossRef]
- Schefer, S.; Oest, M.; Rohn, S. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods 2021, 10, 2798. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Chen, G.; Tilley, M.; Li, Y. Changes in phenolic profiles and antioxidant activities during the whole wheat bread-making process. Food Chem. 2021, 345, 128851. [Google Scholar] [CrossRef]
- Oblitas, R.; Quispe-Sanchez, L.; Guadalupe, G.; Diaz, E.H.; Oliva, S.; Diaz-Valderrama, J.R.; Yoplac, I.; Valencia-Sullca, C.; Chavez, S.G. Physicochemical properties of bioactive bioplastics based on cellulose from coffee and cocoa by-products. Results Chem. 2025, 15, 102201. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Najda, A.; Sałata, A.; Krajewska, A. Bioactive Compounds and Antioxidant Properties of Black Elderberry (Sambucus nigra L.). Acta Sci. Pol. Hortorum Cultus 2022, 21, 143–156. [Google Scholar]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of grape pomace powder addition on chemical, nutritional and technological properties of cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Forsido, S.F.; Welelaw, E.; Belachew, T.; Hensel, O. Effects of storage temperature and packaging material on physico-chemical, microbial and sensory properties and shelf life of extruded composite baby food flour. Heliyon 2021, 7, e06821. [Google Scholar] [CrossRef]
- Jamanca-Gonzales, N.C.; Ocrospoma-Dueñas, R.W.; Quintana-Salazar, N.B.; Siche, R.; Silva-Paz, R.J. Influence of Preferments on the Physicochemical and Sensory Quality of Traditional Panettone. Foods 2022, 11, 2566. [Google Scholar] [CrossRef]
- Hashim, N.A.; Mohd Norzi, M.F.A.; Mohd Arshad, Z.I.; Mohd Azman, N.A.; Abdul Mudalip, S.K. Effect of spray drying parameters on the physicochemical properties and oxidative stability of oil from menhaden (Brevoortia spp.) and Asian swamp eel (Monopterus albus) oil extract microcapsules. Food Chem. Adv. 2023, 3, 100392. [Google Scholar] [CrossRef]
- McClements, D.J.; Weiss, J.; Kinchla, A.J.; Nolden, A.A.; Grossmann, L. Methods for testing the quality attributes of plant-based foods: Meat-and processed-meat analogs. Foods 2021, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.M.; Witte, F.; Terjung, N.; Weiss, J.; Gibis, M. Influence of Processing Steps on Structural, Functional, and Quality Properties of Beef Hamburgers. Appl. Sci. 2022, 12, 7377. [Google Scholar] [CrossRef]
- Khaled, B.M.; Das, A.K.; Alam, S.M.S.; Saqib, N.; Rana, M.S.; Sweet, S.R.; Naznin, T.; Hossain, P.; Sardar, S.; Hossain, Z.; et al. Effect of different drying techniques on the physicochemical and nutritional properties of Moringa oleifera leaves powder and their application in bakery product. Appl. Food Res. 2024, 4, 100599. [Google Scholar] [CrossRef]
- AOAC International. Métodos Oficiales de Análisis-Official Methods of Analysis, 22nd Edition 2023; AOAC: Rockville, MD, USA, 2023. [Google Scholar]
- Abdollahi Moghaddam, M.R.; Rafe, A.; Taghizadeh, M. Kinetics of color and physical attributes of cookie during deep-fat frying by image processing techniques. J. Food Process. Preserv. 2015, 39, 91–99. [Google Scholar] [CrossRef]
- Ahanchi, M.; Sugianto, E.C.; Chau, A.; Khoddami, A. Quality Properties of Bakery Products and Pasta Containing Spent Coffee Grounds (SCGs): A Review. Foods 2024, 13, 3576. [Google Scholar] [CrossRef]
- Lewko, P.; Wójtowicz, A.; Gancarz, M. Application of Conventional and Hybrid Thermal-Enzymatic Modified Wheat Flours as Clean Label Bread Improvers. Appl. Sci. 2024, 14, 7659. [Google Scholar] [CrossRef]
- Da Paz, M.F.; Marques, R.V.; Schumann, C.; Corrêa, L.B.; Corrêa, É.K. Technological characteristics of bread prepared with defatted rice bran. Braz. J. Food Technol. 2015, 18, 128–136. [Google Scholar]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef]
- Zambelli, R.A.; Santos, E.C., Jr.; Pinto, L.I.F.; Viana, J.D.R.; Lima, C.A.R.; Pontes, D.F. Propriedades texturométricas e sensoriais de pães formulados com polidextrose e brócolis em pó obtidos por massas congeladas. Blucher Chem. Eng. Proc. 2015, 1, 3527–3533. [Google Scholar] [CrossRef]
- Jonfia-Essien, W.A.; West, G.; Alderson, P.G.; Tucker, G. Phenolic content and antioxidant capacity of hybrid variety cocoa beans. Food Chem. 2008, 108, 1155–1159. [Google Scholar] [CrossRef]
- Yu, L.; Beta, T. Identification and antioxidant properties of phenolic compounds during production of bread from purple wheat grains. Molecules 2015, 20, 15525–15549. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Antoniolli, A.; Becerra, L.; Piccoli, P.; Fontana, A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants 2024, 13, 590. [Google Scholar] [CrossRef] [PubMed]
- Mena-Chacon, L.M.; Quispe-Sanchez, L.; Chicana, F.; Oblitas, R.; Huaman-Pilco, A.F.; Mori, S.; Oliva, M.; Yoplac, I. Biopolymers extracted from agro-industrial wastes of lucuma, avocado and rice for production of biodegradable trays. J. Agric. Food Res. 2025, 23, 102231. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure-A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Vongsvivut, J.; Ye, Q.; Selomulya, C. On surface composition and stability of β-carotene microcapsules comprising pea/whey protein complexes by synchrotron-FTIR microspectroscopy. Food Chem. 2023, 426, 136565. [Google Scholar] [CrossRef]
- Tomei, P.A.; de Campos Serra, B.P.; Mello, S.F. Differences in the Use of 5- or 7-point Likert Scale: An Application in Food Safety Culture. Organ. Cult. Int. J. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Ojeda, L.G.I.; Genevois, C.E.; Busch, V.M. Novel flours from leguminosae (Neltuma ruscifolia) pods for technological improvement and nutritional enrichment of wheat bread. Heliyon 2023, 9, e17774. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer: New York, NY, USA, 2010; Volume 2, 603p. [Google Scholar]
- Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research, Package R version 1.3-7; R Foundation for Statistical Computing: Vienna, Austria, 2023.
- Momin, M.A.; Jubayer, M.F.; Begum, A.A.; Nupur, A.H.; Ranganathan, T.V.; Mazumder, M.A.R. Substituting wheat flour with okara flour in biscuit production. Foods Raw Mater. 2020, 8, 422–428. [Google Scholar] [CrossRef]
- Ostermann-Porcel, M.V.; Rinaldoni, A.N.; Rodriguez-Furlán, L.T.; Campderrós, M.E. Quality assessment of dried okara as a source of production of gluten-free flour. J. Sci. Food Agric. 2017, 97, 2934–2941. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Salvador-Reyes, R.; Guillén-Sánchez, J.; Mori-Arismendi, S. Effect of partial substitution of wheat flour by soybean meal in technological and sensory characteristics of cupcakes for children of school age. Sci. Agropecu. 2016, 7, 121–132. [Google Scholar] [CrossRef]
- Rodriguez, S.; Ponce Aquino, V.T.; Uriarte Dávila, J.R. Effect of partial substitution of wheat flour with okara flour in the elaboration of panettone. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, San Jose, Costa Rica, 17–19 July 2024; pp. 1–7. [Google Scholar]
- Bucsella, B.; Molnár, D.; Harasztos, A.H.; Tömösközi, S. Comparison of the rheological and end-product properties of an industrial aleurone-rich wheat flour, whole grain wheat and rye flour. J. Cereal. Sci. 2016, 69, 40–48. [Google Scholar] [CrossRef]
- Hemery, Y.; Holopainen, U.; Lampi, A.M.; Lehtinen, P.; Nurmi, T.; Piironen, V.; Edelmann, M.; Rouau, X. Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. J. Cereal. Sci. 2011, 53, 9–18. [Google Scholar] [CrossRef]
- Raczkowska, E.; Serek, P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review. Nutrients 2024, 16, 2757. [Google Scholar] [CrossRef]
- Silva-Paz, R.J.; Ocrospoma-Dueñas, R.W.; Eguilas-Caushi, Y.M.; Padilla-Fabian, R.A.; Jamanca-Gonzales, N.C. Sensory Evaluation through RATA and Sorting Task of Commercial and Traditional Panettones Sold in Peru. Foods 2024, 13, 1508. [Google Scholar] [CrossRef]
- Martínez, E.; Ramos-Escudero, F. Valorization of flours from cocoa, sinami and sacha inchi by-products for the reformulation of Peruvian traditional flatbread (‘Pan Chapla’). Int. J. Gastron. Food Sci. 2024, 36, 100930. [Google Scholar] [CrossRef]
- Bigne, F.; Puppo, M.C.; Ferrero, C. Mesquite (Prosopis alba) flour as a novel ingredient for obtaining a “panettone-like” bread. Applicability of part-baking technology. LWT 2018, 89, 666–673. [Google Scholar] [CrossRef]
- Gentscheva, G.; Milkova-Tomova, I.; Buhalova, D.; Pehlivanov, I.; Stefanov, S.; Nikolova, K.; Andonova, V.; Panova, N.; Gavrailov, G.; Dikova, T.; et al. Incorporation of the Dry Blossom Flour of Sambucus nigra L. in the Production of Sponge Cakes. Molecules 2022, 27, 1124. [Google Scholar] [CrossRef]
- Kolesárová, A.; Bojňanská, T.; Solgajová, M.; Mendelová, A.; Kopčeková, J.; Kolesárová, A. The effects of the addition of lyophilized berry fruits on the leavening properties of dough and volume properties of bread. Food Feed. Res. 2025, 52, 53–66. [Google Scholar] [CrossRef]
- Pascariu, O.E.; Israel-Roming, F. Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes 2022, 10, 2288. [Google Scholar] [CrossRef]
- Topka, P.; Poliński, S.; Sawicki, T.; Szydłowska-Czerniak, A.; Tańska, M. Effect of Enriching Gingerbread Cookies with Elder (Sambucus nigra L.) Products on Their Phenolic Composition, Antioxidant and Anti-Glycation Properties, and Sensory Acceptance. Int. J. Mol. Sci. 2023, 24, 1493. [Google Scholar] [CrossRef] [PubMed]
- Turkut, G.M.; Cakmak, H.; Kumcuoglu, S.; Tavman, S. Effect of quinoa flour on gluten-free bread batter rheology and bread quality. J. Cereal. Sci. 2016, 69, 174–181. [Google Scholar] [CrossRef]
- Nogueira Soares Souza, F.; Rocha Vieira, S.; Leopoldina Lamounier Campidelli, M.; Abadia Reis Rocha, R.; Milani Avelar Rodrigues, L.; Henrique Santos, P.; de Deus Souza Carneiro, J.; de Carvalho Tavares, I.M.; de Oliveira, C.P. Impact of using cocoa bean shell powder as a substitute for wheat flour on some of chocolate cake properties. Food Chem. 2022, 381, 132215. [Google Scholar] [CrossRef]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–13066. [Google Scholar] [CrossRef]
- Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef]
- Da Silva, R.F.R.; Barreira, J.C.M.; Heleno, S.A.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R. Anthocyanin profile of elderberry juice: A natural-based bioactive colouring ingredient with potential food application. Molecules 2019, 24, 2359. [Google Scholar] [CrossRef] [PubMed]
- Oancea, S. A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, R.; Miele, N.A.; Cabisidan, E.K.; Cavella, S. Strategies to reduce sugars in food. Curr. Opin. Food Sci. 2018, 19, 92–97. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Lopes, T.J.; Xavier, M.F.; Quadri, M.G.N.; Quadri, M.B. Antocianinas: Uma breve revisão das características estruturais e da estabilidade. Rev. Bras. Agrociencia 2007, 13, 291–297. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5702886&info=resumen&idioma=ENG (accessed on 22 October 2025).
- Mokrzyxki, W.S.; Tatol, M. Colour difference ΔE-A survey. Mach. Graph. Vis. Int. J. 2011, 20, 383–411. Available online: https://dl.acm.org/doi/10.5555/3166160.3166161 (accessed on 22 October 2025).
- Sedighi, R.; Rafe, A.; Rajabzadeh, G.; Pardakhty, A. Development and Characterization of Calcium Ion-Enhanced Nanophytosomes Encapsulating Pomegranate Fruit Extract. Food. Sci. Nutr. 2025, 13, e70032. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Lin, Z.; Shi, H.; Wang, Y.; Wang, Y.; Yang, Q. Chickpea sourdough as a functional ingredient in gluten-free bread: Impact on quality attributes. Food Hydrocoll. 2026, 172, 112007. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef]
- Nogueira, J.M.; Guiné, R.P.F. Textural Properties of Bakery Products: A Review of Instrumental and Sensory Evaluation Studies. Appl. Sci. 2022, 12, 8628. [Google Scholar] [CrossRef]
- Verheyen, C.; Albrecht, A.; Elgeti, D.; Jekle, M.; Becker, T. Impact of gas formation kinetics on dough development and bread quality. Food Res. Int. 2015, 76, 860–866. [Google Scholar] [CrossRef]
- Correia, P.; Guiné, R.; Fonseca, M.; Batista, L. Analysis of textural properties of gluten free breads. J. Hyg. Eng. Des. 2021, 34, 102–108. Available online: https://hdl.handle.net/10400.19/6717 (accessed on 12 November 2025).
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Faki, R.; Gursoy, O.; Yilmaz, Y. Effect of Electrospinning Process on Total Antioxidant Activity of Electrospun Nanofibers Containing Grape Seed Extract. Open Chem. 2019, 17, 912–918. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Mironeasa, C. Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels. Food Bioprocess Technol. 2019, 12, 228–245. [Google Scholar] [CrossRef]
- Funami, T.; Kataoka, Y.; Omoto, T.; Goto, Y.; Asai, I.; Nishinari, K. Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch☆. Food Hydrocoll. 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J. Funct. Foods 2021, 77, 104340. [Google Scholar] [CrossRef]
- Rojas-Ocampo, E.; Torrejón-Valqui, L.; Muñóz-Astecker, L.D.; Medina-Mendoza, M.; Mori-Mestanza, D.; Castro-Alayo, E.M. Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries. Heliyon 2021, 7, e07787. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, P.; Silva, A.M.; Nunes, F.M. Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: A three-year study. Food Chem. 2020, 302, 125366. [Google Scholar] [CrossRef]
- Acosta-Montoya, Ó.; Vaillant, F.; Cozzano, S.; Mertz, C.; Pérez, A.M.; Castro, M.V. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem. 2010, 119, 1497–1501. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Pando Bedriñana, R. The Phenolic Composition, Antioxidant Activity and Microflora of Wild Elderberry in Asturias (Northern Spain): An Untapped Resource of Great Interest. Antioxidants 2023, 12, 1986. [Google Scholar] [CrossRef]
- Yener, I.; Kocakaya, S.O.; Ertas, A.; Erhan, B.; Kaplaner, E.; Oral, E.V.; Yilmaz-Ozden, T.; Yilmaz, M.A.; Ozturk, M.; Kolak, U. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chem. 2020, 327, 127045. [Google Scholar] [CrossRef]
- Zhong, R.; Wan, X.; Wang, D.; Zhao, C.; Liu, D.; Gao, L.; Wang, M.; Wu, C.; Nabavid, S.M.; Daglia, M.; et al. Polysaccharides from Marine Enteromorpha: Structure and function. Trends Food Sci. Technol. 2020, 99, 11–20. [Google Scholar] [CrossRef]
- Calonico, K.; De La Rosa-Millan, J. Digestion-Related Enzyme Inhibition Potential of Selected Mexican Medicinal Plants (Ludwigia octovalvis (Jacq.) P.H.Raven, Cnidoscolus aconitifolius and Crotalaria longirostrata). Foods 2023, 12, 3529. [Google Scholar] [CrossRef]
- Wei, X.; Yao, J.; Wang, F.; Wu, D.; Zhang, R. Extraction, isolation, structural characterization, and antioxidant activity of polysaccharides from elderberry fruit. Front. Nutr. 2022, 9, 947706. [Google Scholar] [CrossRef] [PubMed]
- Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll. 2019, 87, 237–244. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Zhao, H.; Liu, J.; Xing, M.; Huang, H.; Stuart, M.A.C.; Wang, J. Flash nanoprecipitation enables regulated formulation of soybean protein isolate nanoparticles. Food Hydrocoll. 2022, 131, 107798. [Google Scholar] [CrossRef]
- Woo, S.H.; Sung, J.M.; Park, J.; Park, J.D.; Park, E.Y. Sucrose-induced structural modification of in situ exopolysaccharides: Effects on rheological and baking properties of gluten-free sourdough. Food Res. Int. 2025, 221, 117523. [Google Scholar] [CrossRef]
- Li, F.; Hu, X.; Qin, L.; Li, H.; Yang, Y.; Zhang, X.; Lu, J.; Li, Y.; Bao, M. Characterization and protective effect against ultraviolet radiation of a novel exopolysaccharide from Bacillus marcorestinctum QDR3-1. Int. J. Biol. Macromol. 2022, 221, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Rafe, A.; Razavi, S.M.A. Effect of thermal treatment on chemical structure of β-lactoglobulin and basil seed gum mixture at different states by ATR-FTIR spectroscopy. Int. J. Food Prop. 2015, 18, 2652–2664. [Google Scholar] [CrossRef]
- Benvenutti, L.; Moura, F.M.; Zanghelini, G.; Barrera, C.; Seguí, L.; Zielinski, A.A.F. An Upcycling Approach from Fruit Processing By-Products: Flour for Use in Food Products. Foods 2025, 14, 153. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, P.; Parra, F.; Simirgiotis, M.J.; Sepúlveda Chavera, G.F.; Parra, C. Chemical Characterization, Nutritional and Bioactive Properties of Physalis peruviana Fruit from High Areas of the Atacama Desert. Foods 2021, 10, 2699. [Google Scholar] [CrossRef] [PubMed]




| Elaboration Stage | Ingredients * | TP0 | EP4 | EP6 | EP8 | EP10 |
|---|---|---|---|---|---|---|
| First stage | Base premix (g) | 15.28 | 14.69 | 14.42 | 14.15 | 13.89 |
| Water (mL) | 9.17 | 8.81 | 8.65 | 8.49 | 8.33 | |
| Instant dry yeast (S. cerevisiae) (g) | 0.38 | 0.37 | 0.36 | 0.35 | 0.35 | |
| Second stage | Egg yolks (g) | 4.58 | 4.41 | 4.32 | 4.24 | 4.17 |
| Sugar (g) | 9.17 | 8.81 | 8.65 | 8.49 | 8.33 | |
| Water (repeated according to process stage) (mL) | 9.17 | 8.81 | 8.65 | 8.49 | 8.33 | |
| S. peruviana flour (g) | — | 3.85 | 5.65 | 7.40 | 9.08 | |
| Additional premix (g) | 22.92 | 22.04 | 21.62 | 21.22 | 20.84 | |
| Vegetable shortening (g) | 3.21 | 3.09 | 3.03 | 2.97 | 2.92 | |
| Margarine (g) | 3.21 | 3.09 | 3.03 | 2.97 | 2.92 | |
| Raisins (g) | 10.70 | 10.28 | 10.09 | 9.90 | 9.72 | |
| Candied fruits (g) | 12.22 | 11.75 | 11.53 | 11.32 | 11.11 |
| Elderberry Incorporation (%) | Moisture (%) | Ash (%) | Fat (%) | Protein (%) | Fiber (%) | pH | Titratable Acidity (%) |
|---|---|---|---|---|---|---|---|
| TP0 | 14.57 ± 0.14 c | 1.87 ± 0.03 a | 12.30 ± 0.06 a | 12.03 ± 0.21 ab | 3.53 ± 1.50 a | 5.27 ± 0.16 a | 0.25 ± 0.01 c |
| EP4 | 14.24 ± 0.05 d | 1.65 ± 0.02 b | 11.63 ± 0.17 b | 12.17 ± 0.23 a | 3.80 ± 1.93 a | 5.30 ± 0.21 a | 0.26 ± 0.01 c |
| EP6 | 15.15 ± 0.04 b | 1.61 ± 0.03 b | 11.85 ± 0.08 ab | 11.80 ± 0.01 ab | 3.85 ± 0.22 a | 4.34 ± 0.21 b | 0.28 ± 0.01 b |
| EP8 | 16.39 ± 0.03 a | 1.55 ± 0.02 b | 11.67 ± 0.34 b | 11.63 ± 0.06 bc | 4.18 ± 0.78 a | 4.35 ± 0.21 b | 0.30 ± 0.01 a |
| EP10 | 14.31 ± 0.02 d | 1.55 ± 0.09 b | 11.75 ± 0.07 b | 11.37 ± 0.12 c | 4.74 ± 0.01 a | 4.30 ± 0.23 b | 0.30 ± 0.01 a |
| Elderberry Incorporation (%) | Texture | Color | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Hardness (N) | Deformation (mm) | Elasticity (mm) | L | a | b | c | h | ∆E | WI | |
| TP0 | 20.23 ± 0.87 c | 5.99 ± 0.00 b | 2.95 ± 0.19 ab | 56.79 ± 0.27 a | 2.39 ± 0.52 c | 25.31 ± 1.83 a | 25.42 ± 1.87 a | 84.63 ± 0.79 a | 45.53 ± 1.02 b | 49.84 ± 0.82 a |
| EP4 | 19.71 ± 1.93 c | 5.99 ± 0.01 b | 2.75 ± 0.42 b | 47.18 ± 4.04 ab | 5.16 ± 0.27 b | 25.09 ± 1.43 ab | 25.62 ± 1.45 a | 78.36 ± 0.39 b | 53.52 ± 2.63 ab | 41.24 ± 2.97 ab |
| EP6 | 34.86 ± 2.46 b | 6.00 ± 0.00 a | 3.09 ± 0.23 ab | 43.92 ± 4.54 ab | 6.41 ± 0.87 ab | 23.18 ± 1.94 ab | 24.05 ± 2.09 a | 74.57 ± 0.87 bc | 55.54 ± 3.04 ab | 38.91 ± 3.36 ab |
| EP8 | 39.54 ± 0.92 b | 6.00 ± 0.01 a | 3.45 ± 0.06 a | 37.02 ± 9.35 b | 7.10 ± 0.59 a | 21.80 ± 1.91 ab | 22.94 ± 1.72 a | 71.87 ± 2.51 cd | 61.26 ± 7.89 a | 32.86 ± 8.27 b |
| EP10 | 77.15 ± 3.00 a | 5.99 ± 0.01 ab | 3.23 ± 0.10 ab | 39.54 ± 2.25 b | 7.75 ± 0.40 a | 20.91 ± 0.68 b | 22.30 ± 0.49 a | 69.64 ± 1.58 d | 58.54 ± 1.87 a | 35.55 ± 1.98 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Revilla Alva, J.; Oblitas-Delgado, R.; Balcázar-Zumaeta, C.R.; Vergara, A.J.; Cruzalegui, R.J.; Yoplac, I.; Coello, H.O.A.; Chavez, S.G.; Cayo-Colca, I.S.; Auquiñivin-Silva, E.A.; et al. Physicochemical, Bioactive, and Sensory Characterization of Panettone Enriched with Sambucus peruviana Flour. Processes 2026, 14, 68. https://doi.org/10.3390/pr14010068
Revilla Alva J, Oblitas-Delgado R, Balcázar-Zumaeta CR, Vergara AJ, Cruzalegui RJ, Yoplac I, Coello HOA, Chavez SG, Cayo-Colca IS, Auquiñivin-Silva EA, et al. Physicochemical, Bioactive, and Sensory Characterization of Panettone Enriched with Sambucus peruviana Flour. Processes. 2026; 14(1):68. https://doi.org/10.3390/pr14010068
Chicago/Turabian StyleRevilla Alva, Jheyson, Robin Oblitas-Delgado, César R. Balcázar-Zumaeta, Alex J. Vergara, Robert J. Cruzalegui, Ives Yoplac, Hexon O. Anticona Coello, Segundo G. Chavez, Ilse S. Cayo-Colca, Erick A. Auquiñivin-Silva, and et al. 2026. "Physicochemical, Bioactive, and Sensory Characterization of Panettone Enriched with Sambucus peruviana Flour" Processes 14, no. 1: 68. https://doi.org/10.3390/pr14010068
APA StyleRevilla Alva, J., Oblitas-Delgado, R., Balcázar-Zumaeta, C. R., Vergara, A. J., Cruzalegui, R. J., Yoplac, I., Coello, H. O. A., Chavez, S. G., Cayo-Colca, I. S., Auquiñivin-Silva, E. A., & Muñoz-Astecker, L. D. (2026). Physicochemical, Bioactive, and Sensory Characterization of Panettone Enriched with Sambucus peruviana Flour. Processes, 14(1), 68. https://doi.org/10.3390/pr14010068

