Intensified Treatment of Pharmaceutical Effluent Using Combined Ultrasound-Based Advanced Oxidation and Biological Oxidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.2.1. Ultrasonic Horn
2.2.2. Biological Oxidation Setup
2.3. Methodology
2.3.1. Pretreatment Studies
2.3.2. Aerobic Oxidation
2.4. Analysis
3. Results and Discussion
3.1. Pretreatment Using US Reactor
3.1.1. Effect of Initial pH on Treatment Efficacy
3.1.2. Effect of Temperature on Treatment Efficacy
3.2. Combination of US + AOPs
3.2.1. US + Ozone
3.2.2. US + H2O2
3.2.3. US + Fenton
3.2.4. US + Peroxone
3.3. Toxicity Analysis
3.4. Biological Oxidation Studies
3.4.1. Sludge Preparation
3.4.2. Conventional Biological Oxidation
3.4.3. Sludge Acclimatisation
3.4.4. Effect of Pretreatment on Biological Oxidation
3.5. Process Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gadipelly, C.; Pérez-González, A.; Yadav, G.D.; Ortiz, I.; Ibáñez, R.; Rathod, V.K.; Marathe, K.V. Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Ind. Eng. Chem. Res. 2014, 53, 11571–11592. [Google Scholar] [CrossRef]
- Emenike, E.C.; Adeleke, J.; Iwuozor, K.O.; Ogunniyi, S.; Adeyanju, C.A.; Amusa, V.T.; Okoro, H.K.; Adeniyi, A.G. Adsorption of crude oil from aqueous solution: A review. J. Water Process Eng. 2022, 50, 103330. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, I.; Ambekar, K. Occurrence, Distribution, and Fate of Emerging Persistent Organic Pollutants in the Environment. In Management of Contaminants of Emerging Concern (CEC) in Environment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–69. [Google Scholar] [CrossRef]
- Eryıldız, C.; Sakru, N.; Kuyucuklu, G. Investigation of Antimicrobial Susceptibilities and Resistance Genes of Campylobacter Isolates from Patients in Edirne, Turkey. Iran. J. Public Health 2022, 51, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Sun, H.; Jia, L.; Wu, W.; Wang, J. Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. Chemosphere 2022, 296, 134054. [Google Scholar] [CrossRef]
- Amaral, M.; Couto, C.; Lange, L. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Process Eng. 2019, 32, 100927. [Google Scholar] [CrossRef]
- Verma, M.; Haritash, A.K. Photocatalytic degradation of Amoxicillin in pharmaceutical wastewater: A potential tool to manage residual antibiotics. Environ. Technol. Innov. 2020, 20, 101072. [Google Scholar] [CrossRef]
- Pera-Titus, M.; García-Molina, V.; Baños, M.A.; Giménez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B Environ. 2004, 47, 219–256. [Google Scholar] [CrossRef]
- Xia, C.; Yuan, Y.; Mathimani, T.; Rene, E.R.; Brindhadevi, K.; Le, Q.H.; Pugazhendhi, A. Process intensification approaches in wastewater and sludge treatment for the removal of pollutants. J. Environ. Manag. 2023, 345, 118837. [Google Scholar] [CrossRef]
- Denisov, S.; Maksimov, S.; Gordeef, E. Improving the Efficiency of Biological Treatment of Domestic Wastewater by Using Acoustic and Hydrodynamic Effect. Procedia Eng. 2016, 150, 2399–2404. [Google Scholar] [CrossRef]
- Al-Hamadani, Y.A.J.; Chu, K.H.; Flora, J.R.V.; Kim, D.-H.; Jang, M.; Sohn, J.; Joo, W.; Yoon, Y. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. Ultrason. Sonochem. 2016, 32, 440–448. [Google Scholar] [CrossRef]
- Bagal, M.V.; Gogate, P.R. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrason. Sonochem. 2014, 21, 1035–1043. [Google Scholar] [CrossRef]
- Neppolian, B.; Jung, H.; Choi, H.; Lee, J.H.; Kang, J.-W. Sonolytic degradation of methyl tert-butyl ether: The role of coupled fenton process and persulphate ion. Water Res. 2002, 36, 4699–4708. [Google Scholar] [CrossRef]
- Lin, J.; Wang, C. Oxidation of 2-Chlorophenol in Water by Ultrasound/Fenton Method. J. Environ. Eng. 2000, 126, 130–137. [Google Scholar] [CrossRef]
- Agadyekar, V.G.; Kakodkar, E.; Barretto, D.A.; Barni, R.; Riccardi, C.; Joshi, N. Concurrent removal of benzene, toluene, and P-nitrophenol from water using dielectric barrier discharge plasma. Clean. Eng. Technol. 2025, 27, 101042. [Google Scholar] [CrossRef]
- Singh, S.K.; Khajuria, R.; Kaur, L. Biodegradation of ciprofloxacin by white rot fungus Pleurotus ostreatus. 3 Biotech 2017, 7, 69. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, A.H.; Tiwari, P.; Zubair, M.; Naushad, M. New insights into the integrated application of Fenton-based oxidation processes for the treatment of pharmaceutical wastewater. J. Water Process Eng. 2021, 44, 102440. [Google Scholar] [CrossRef]
- Kestioğlu, K.; Yonar, T.; Azbar, N. Feasibility of physico-chemical treatment and Advanced Oxidation Processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochem. 2005, 40, 2409–2416. [Google Scholar] [CrossRef]
- Bar-Niv, N.; Azaizeh, H.; Kuc, M.E.; Azerrad, S.; Haj-Zaroubi, M.; Menashe, O.; Kurzbaum, E. Advanced oxidation process UV-H2O2 combined with biological treatment for the removal and detoxification of phenol. J. Water Process Eng. 2022, 48, 102923. [Google Scholar] [CrossRef]
- Scaria, J.; Nidheesh, P.V. Pre-treatment of real pharmaceutical wastewater by heterogeneous Fenton and persulfate oxidation processes. Environ. Res. 2023, 217, 114786. [Google Scholar] [CrossRef]
- Lakshmi, N.J.; Iyer, A.M.; Gogate, P.R. Treatment of wastewater containing ciprofloxacin using the hybrid treatment approach based on acoustic cavitation. Can. J. Chem. Eng. 2024, 102, 2403–2417. [Google Scholar] [CrossRef]
- Lakshmi, N.J.; Gogate, P.R.; Pandit, A.B. Acoustic cavitation for the process intensification of biological oxidation of CETP effluent containing mainly pharmaceutical compounds: Understanding into effect of parameters and toxicity analysis. Ultrason. Sonochem. 2023, 98, 106524. [Google Scholar] [CrossRef]
- Wei, Z.; Spinney, R.; Ke, R.; Yang, Z. Effect of pH on the sonochemical degradation of organic pollutants. Environ. Chem. Lett. 2016, 14, 163–182. [Google Scholar] [CrossRef]
- Artiles, M.M.; Gómez González, S.; González Marín, M.A.; Gaspard, S.; Jauregui Haza, U.J. Degradation of Diazepam with Gamma Radiation, High Frequency Ultrasound and UV Radiation Intensified with H2O2 and Fenton Reagent. Processes 2022, 10, 1263. [Google Scholar] [CrossRef]
- Shi, X.; Liu, J.-B.; Hosseini, M.; Shemshadi, R.; Razavi, R.; Parsaee, Z. Ultrasound-aasisted photodegradation of Alprazolam in aqueous media using a novel high performance nanocomosite hybridation g-C3N4/MWCNT/ZnO. Catal. Today 2019, 335, 582–590. [Google Scholar] [CrossRef]
- Pardeshi, S.K.; Patil, A.B. A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol. Energy 2008, 82, 700–705. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Application of an ultrasonic field, hydrogen peroxide and the Fenton process in removing DEHP from bottom sediments. Desalination Water Treat. 2020, 186, 309–316. [Google Scholar] [CrossRef]
- Psillakis, E.; Goula, G.; Kalogerakis, N.; Mantzavinos, D. Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. J. Hazard. Mater. 2004, 108, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Little, C.; Hepher, M.J.; El-Sharif, M. The sono-degradation of phenanthrene in an aqueous environment. Ultrasonics 2002, 40, 667–674. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Sonochemistry in Environmental Remediation. 1. Combinative and Hybrid Sonophotochemical Oxidation Processes for the Treatment of Pollutants in Water. Environ. Sci. Technol. 2005, 39, 3409–3420. [Google Scholar] [CrossRef]
- Gottschalk, C.; Libra, J.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, J.; Yao, W.; Wang, B.; Deng, S.; Huang, J.; Yu, G.; Wang, Y. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process. Water Res. 2018, 130, 127–138. [Google Scholar] [CrossRef]
- Cunha, D.; da Silva, A.; Coutinho, R.; Marques, M. Optimization of Ozonation Process to Remove Psychoactive Drugs from Two Municipal Wastewater Treatment Plants. Water Air Soil Pollut. 2022, 233, 67. [Google Scholar] [CrossRef]
- Ashraf, M.I.; Ateeb, M.; Khan, M.H.; Ahmed, N.; Mahmood, Q.; Zahidullah. Integrated treatment of pharmaceutical effluents by chemical coagulation and ozonation. Sep. Purif. Technol. 2016, 158, 383–386. [Google Scholar] [CrossRef]
- Alaton, I.A.; Dogruel, S.; Baykal, E.; Gerone, G. Combined chemical and biological oxidation of penicillin formulation effluent. J. Environ. Manag. 2004, 73, 155–163. [Google Scholar] [CrossRef]
- Lester, Y.; Mamane, H.; Zucker, I.; Avisar, D. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Res. 2013, 47, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.I.; Wahaab, R.A.; El-Kalliny, A.S. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J. Hazard. Mater. 2009, 167, 567–574. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P.; Shi, S.; Liu, Y. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater. J. Hazard. Mater. 2009, 168, 238–245. [Google Scholar] [CrossRef]
- Lakshmi, N.J.; Agarkoti, C.; Gogate, P.R.; Pandit, A.B. Acoustic and hydrodynamic cavitation-based combined treatment techniques for the treatment of industrial real effluent containing mainly pharmaceutical compounds. J. Environ. Chem. Eng. 2022, 10, 108349. [Google Scholar] [CrossRef]
- Gliniak, M.; Nawara, P.; Bieszczad, A.; Górka, K.; Tabor, J. The Use of E-Peroxone to Neutralize Wastewater from Medical Facilities at a Laboratory Scale. Sustainability 2023, 15, 1449. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Toxicity changes of wastewater during various advanced oxidation processes treatment: An overview. J. Clean. Prod. 2021, 315, 128202. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, G.; Pang, Y.; Lei, Y.; Gao, J.; Liu, M. Integrated Biological and Electrochemical Oxidation Treatment for High Toxicity Pesticide Pollutant. Ind. Eng. Chem. Res. 2010, 49, 5496–5503. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Y.; Wang, Y.; Li, C.; Zhu, J.; Li, R.; Wu, Y. Comprehensive Evaluation on the Bio-Toxicity of Three Advanced Wastewater Treatment Processes. Water Air Soil Pollut. 2020, 231, 110. [Google Scholar] [CrossRef]
- Randhawa, G.K.; Kullar, J.S. Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomeya/cow dung. ISRN Pharmacol. 2011, 2011, 362459. [Google Scholar] [CrossRef] [PubMed]
- Godambe, T.; Fulekar, M.H. Cow dung Bacteria offer an Effective Bioremediation for Hydrocarbon-Benzene. Int. J. Biotech Trends Technol. 2017, 6, 13–22. [Google Scholar]
- Sangave, P.C.; Gogate, P.R.; Pandit, A.B. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment. Chemosphere 2007, 68, 32–41. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Ahmad, D.; Aziz, M.E.B.A. Aerobic treatment of palm oil mill effluent. J. Environ. Manag. 2007, 82, 24–31. [Google Scholar] [CrossRef]
- Alexander, M. Nonbiodegradable and other racalcitrant molecules. Biotechnol. Bioeng. 1973, 15, 611–647. [Google Scholar] [CrossRef]
- Burgess, J.E.; Stuetz, R.M. Activated sludge for the treatment of sulphur-rich wastewaters. Miner. Eng. 2002, 15, 839–846. [Google Scholar] [CrossRef]
- El-Bestawy, E.; Helmy, S.; Hussein, H.; Fahmy, M. Optimization and/or acclimatization of activated sludge process under heavy metals stress. World J. Microbiol. Biotechnol. 2012, 29, 693–705. [Google Scholar] [CrossRef]
- Morgan-Sagastume, F.; Valentino, F.; Hjort, M.; Zanaroli, G.; Majone, M.; Werker, A. Acclimation Process for Enhancing Polyhydroxyalkanoate Accumulation in Activated-Sludge Biomass. Waste Biomass Valorization 2019, 10, 1065–1082. [Google Scholar] [CrossRef]
- Martín, M.; González, I.; Siles, J.A.; Berrios, M.; Martín, A. Combined Physical-Chemical and Aerobic Biological Treatments of Wastewater Derived from Sauce Manufacturing. Water Environ. Res. 2013, 85, 346–353. [Google Scholar] [CrossRef]
- Estrada, A.L.; Li, Y.Y.; Wang, A. Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J. Hazard. Mater. 2012, 227–228, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Agarkoti, C.; Chaturvedi, A.; Gogate, P.R.; Pandit, A.B. Degradation of sulfamerazine using ultrasonic horn and pilot scale US reactor in combination with different oxidation approaches. Sep. Purif. Technol. 2023, 312, 123351. [Google Scholar] [CrossRef]
- Thanekar, P.; Gogate, P.R. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep. Purif. Technol. 2020, 239, 116563. [Google Scholar] [CrossRef]










| Characteristics | |
|---|---|
| pH | 4 ± 0.5 |
| COD | 50,000 ± 100 mgL−1 |
| Appearance | Clear solution with brown colour |
| Odour | Odourless |
| Treatment Method | Pretreatment COD Reduction (%) | Overall COD Reduction (%) | Overall Yield (×104) (mg/J) | Energy (×106 kWh/L) | Total Cost (Rs)/Litre |
|---|---|---|---|---|---|
| BO | 0 | 3.85 | 0.711 | 19.88 | 171.41 |
| US | 5.77 | 14.3 | 2.51 | 6.62 | 48.49 |
| US + O3 | 30.77 | 88.46 | 9.94 | 6.57 | 16.63 |
| US + H2O2 | 17.31 | 57.69 | 7.54 | 5.02 | 16.35 |
| US + Fenton | 19.23 | 61.54 | 7.6 | 5.21 | 16.03 |
| US + peroxone | 42.31 | 94.23 | 9.59 | 70.20 | 17.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Iyer, A.M.; Gogate, P.R. Intensified Treatment of Pharmaceutical Effluent Using Combined Ultrasound-Based Advanced Oxidation and Biological Oxidation. Processes 2026, 14, 160. https://doi.org/10.3390/pr14010160
Iyer AM, Gogate PR. Intensified Treatment of Pharmaceutical Effluent Using Combined Ultrasound-Based Advanced Oxidation and Biological Oxidation. Processes. 2026; 14(1):160. https://doi.org/10.3390/pr14010160
Chicago/Turabian StyleIyer, Akshara M., and Parag R. Gogate. 2026. "Intensified Treatment of Pharmaceutical Effluent Using Combined Ultrasound-Based Advanced Oxidation and Biological Oxidation" Processes 14, no. 1: 160. https://doi.org/10.3390/pr14010160
APA StyleIyer, A. M., & Gogate, P. R. (2026). Intensified Treatment of Pharmaceutical Effluent Using Combined Ultrasound-Based Advanced Oxidation and Biological Oxidation. Processes, 14(1), 160. https://doi.org/10.3390/pr14010160

