Can Dicyanamide Ionic Liquids Boost Water Electrolysis?
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Room-Temperature Ionic Liquids
2.2. Electrochemical Methods and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Kazmi, W.W.; Butt, F.N.; Irshad, M.; Sher, F.; Kazmi, S.M.A.; Chaudry, U.M.; Zeb, H.; Jun, T.-S.; Khan, M.K. Fabrication of Nanocage Structured Based Electrocatalyst for Oxygen Evolution Reactions. Mater. Lett. 2023, 331, 133416. [Google Scholar] [CrossRef]
- Feng, Z.; Dai, C.; Shi, P.; Lei, X.; Guo, R.; Wang, B.; Liu, X.; You, J. Seven Mechanisms of Oxygen Evolution Reaction Proposed Recently: A Mini Review. Chem. Eng. J. 2024, 485, 149992. [Google Scholar] [CrossRef]
- Fabbri, E.; Schmidt, T.J. Oxygen Evolution Reaction—The Enigma in Water Electrolysis. ACS Catal. 2018, 8, 9765–9774. [Google Scholar] [CrossRef]
- Liang, Q.; Brocks, G.; Bieberle-Hütter, A. Oxygen Evolution Reaction (OER) Mechanism under Alkaline and Acidic Conditions. J. Phys. Energy 2021, 3, 026001. [Google Scholar] [CrossRef]
- Georgijević, J.; Milikić, J.; Aykut, Y.; Zdolšek, N.; Santos, D.M.F.; Bayrakçeken, A.; Šljukić, B. Fe, Cu-Decorated Carbon Material Produced from Ionic Liquids as Resourceful Electrocatalyst for Water Splitting. J. Electroanal. Chem. 2024, 967, 118455. [Google Scholar] [CrossRef]
- Milikić, J.; Martins, M.; Dobrota, A.S.; Bozkurt, G.; Soylu, G.S.P.; Yurtcan, A.B.; Skorodumova, N.V.; Pašti, I.A.; Šljukić, B.; Santos, D.M.F. A Pt/MnV2O6 Nanocomposite for the Borohydride Oxidation Reaction. J. Energy Chem. 2021, 55, 428–436. [Google Scholar] [CrossRef]
- Kempler, P.A.; Boettcher, S.W. Electrolyte Engineering for Advanced Alkaline Water Electrolysis. ECS Meet. Abstr. 2025, MA2025–01, 1950. [Google Scholar] [CrossRef]
- Georgijević, J.; Zdolšek, N.; Vasić, M.; Milikić, J.; Vraneš, M.; Jugović, D.; Santos, D.M.F.; Šljukić, B. Bifunctional Electrocatalysts for Alkaline Water Electrolysis Derived from Metal-Containing Ionic Liquids. Processes 2025, 13, 623. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, J.; Wang, H.; Wang, K.; Tian, Y.; Xue, X.; Qiao, Y.; Ji, X.; Zhang, S. Ionic Liquids as a New Cornerstone to Support Hydrogen Energy. Green Chem. 2023, 25, 4981–4994. [Google Scholar] [CrossRef]
- Rogers, E.I.; Sljukic, B.; Hardacre, C.; Compton, R.G. Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. J. Chem. Eng. Data 2009, 54, 2049–2053. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Zhang, L.; Liu, Y.; Miao, Q.; Liu, R.; Zhao, W.; Diao, Y.; Dong, K. The Advanced Applications of Ionic Liquids in New Energy, Electronic Information Materials, and Biotechnologies. Green Chem. 2024, 26, 9048–9074. [Google Scholar] [CrossRef]
- Xu, C.; Yang, G.; Wu, D.; Yao, M.; Xing, C.; Zhang, J.; Zhang, H.; Li, F.; Feng, Y.; Qi, S.; et al. Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices. Chem.—An Asian J. 2021, 16, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.; Haghpanah Jahromi, A. Ionic Liquids in Green Energy Storage Devices: Lithium-Ion Batteries, Supercapacitors, and Solar Cells. Monatshefte Für Chem.—Chem. Mon. 2024, 155, 383–399. [Google Scholar] [CrossRef]
- Ray, A.; Saruhan, B. Application of Ionic Liquids for Batteries and Supercapacitors. Materials 2021, 14, 2942. [Google Scholar] [CrossRef]
- Rana, S.; Thakur, R.C.; Dosanjh, H.S. Ionic Liquids as Battery Electrolytes for Lithium Ion Batteries: Recent Advances and Future Prospects. Solid State Ion. 2023, 400, 116340. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Jia, G.; Du, J. Challenges and Opportunities of Ionic Liquid Electrolytes for Rechargeable Batteries. Cryst. Growth Des. 2022, 22, 5770–5784. [Google Scholar] [CrossRef]
- Pereira, J.; Souza, R.; Moita, A. A Review of Ionic Liquids and Their Composites with Nanoparticles for Electrochemical Applications. Inorganics 2024, 12, 186. [Google Scholar] [CrossRef]
- Chen, K.; Xu, B.; Shen, L.; Shen, D.; Li, M.; Guo, L.-H. Functions and Performance of Ionic Liquids in Enhancing Electrocatalytic Hydrogen Evolution Reactions: A Comprehensive Review. RSC Adv. 2022, 12, 19452–19469. [Google Scholar] [CrossRef]
- Pan, S.; Yao, M.; Zhang, J.; Li, B.; Xing, C.; Song, X.; Su, P.; Zhang, H. Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors. Front. Chem. 2020, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Konwar, M.; Borthakur, L.; Sarma, D. A Binary Mixture of Ionic Liquids as a Sustainable Electrocatalyst for Oxygen Evolution Reaction. J. Mol. Liq. 2024, 415, 126385. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Q.; Yang, Y.; Chen, J.; Pan, H.; Zheng, W. Ionic Liquid–Controlled Growth of Bifunctional NiCo2O4 Nanostructures with Different Dimensionalities on Carbon Cloth for Oxygen Evolution Reaction and Asymmetric Supercapacitor. Electrochim. Acta 2022, 429, 141040. [Google Scholar] [CrossRef]
- Gao, R.; Hu, B.; Fang, Z.; Deng, M.; Wu, Y.; Yan, Q.; Yuan, W.; Chen, D.; Han, W.; Chen, Z. Ionic Liquid-Assisted Synthesis of Cobalt-iron Difluoride Electrocatalysts for Oxygen Evolution Reaction. Catal. Commun. 2022, 169, 106482. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Chen, T.; Wang, G.; Qiu, C.; Hu, W. Ionic Liquid In-Situ Functionalized Carbon Nanotube Film as Self-Supported Metal-Free Electrocatalysts for Oxygen Evolution. Chem. Eng. J. 2024, 484, 149767. [Google Scholar] [CrossRef]
- Sorour, N.; Su, C.; Ghali, E.; Houlachi, G. Effect of Ionic Liquid Additives on Oxygen Evolution Reaction and Corrosion Behavior of Pb-Ag Anode in Zinc Electrowinning. Electrochim. Acta 2017, 258, 631–638. [Google Scholar] [CrossRef]
- Eckardt, M.; Alwast, D.; Schnaidt, J.; Behm, R.J. Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the Mg2+-Containing Ionic Liquid N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)Imide. ChemSusChem 2020, 13, 3919–3927. [Google Scholar] [CrossRef]
- Qi-Bo, Z.; Yi-Xin, H. Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning. Acta Phys.-Chim. Sin. 2011, 27, 149–155. [Google Scholar] [CrossRef]
- Jamil, R.; Loomba, S.; Kar, M.; Collis, G.E.; Silvester, D.S.; Mahmood, N. Metal Anodes Meet Ionic Liquids: An Interfacial Perspective. Appl. Phys. Rev. 2024, 11, 011307. [Google Scholar] [CrossRef]
- Forsyth, M.; Hilder, M.; Zhang, Y.; Chen, F.; Carre, L.; Rakov, D.A.; Armand, M.; Macfarlane, D.R.; Pozo-Gonzalo, C.; Howlett, P.C. Tuning Sodium Interfacial Chemistry with Mixed-Anion Ionic Liquid Electrolytes. ACS Appl. Mater. Interfaces 2019, 11, 43093–43106. [Google Scholar] [CrossRef]
- Basile, A.; Yoon, H.; MacFarlane, D.R.; Forsyth, M.; Howlett, P.C. Investigating Non-Fluorinated Anions for Sodium Battery Electrolytes Based on Ionic Liquids. Electrochem. Commun. 2016, 71, 48–51. [Google Scholar] [CrossRef]
- Simons, T.J.; MacFarlane, D.R.; Forsyth, M.; Howlett, P.C. Zn Electrochemistry in 1-Ethyl-3-Methylimidazolium and N-Butyl-N-Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes. ChemElectroChem 2014, 1, 1688–1697. [Google Scholar] [CrossRef]
- Fiegenbaum, F.; De Souza, M.O.; Becker, M.R.; Martini, E.M.A.; De Souza, R.F. Electrocatalytic Activities of Cathode Electrodes for Water Electrolysis Using Tetra-Alkyl-Ammonium-Sulfonic Acid Ionic Liquid as Electrolyte. J. Power Sources 2015, 280, 12–17. [Google Scholar] [CrossRef]
- Khoo, T.; Howlett, P.C.; Tsagouria, M.; MacFarlane, D.R.; Forsyth, M. The Potential for Ionic Liquid Electrolytes to Stabilise the Magnesium Interface for Magnesium/Air Batteries. Electrochim. Acta 2011, 58, 583–588. [Google Scholar] [CrossRef]
- Kamat, G.A.; Zamora Zeledón, J.A.; Gunasooriya, G.T.K.K.; Dull, S.M.; Perryman, J.T.; Nørskov, J.K.; Stevens, M.B.; Jaramillo, T.F. Acid Anion Electrolyte Effects on Platinum for Oxygen and Hydrogen Electrocatalysis. Commun. Chem. 2022, 5, 20. [Google Scholar] [CrossRef]
- Lopata, J.S.; Kang, S.G.; Cho, H.S.; Kim, C.H.; Weidner, J.W.; Shimpalee, S. Investigating Influence of Geometry and Operating Conditions on Local Current, Concentration, and Crossover in Alkaline Water Electrolysis Using Computational Fluid Dynamics. Electrochim. Acta 2021, 390, 138802. [Google Scholar] [CrossRef]
- Potassium Hydroxide (KOH) in Electrolysis: Unlocking Green Hydrogen Pr—Alliance Chemical. Available online: https://alliancechemical.com/blogs/articles/potassium-hydroxide-koh-in-electrolysis-unlocking-green-hydrogen-production-and-beyond (accessed on 24 July 2025).
- Kaluđerović, M.; Savić, S.; Bajuk-Bogdanović, D.; Jovanović, A.Z.; Rakočević, L.; Vlahović, F.; Milikić, J.; Stanković, D. Samarium-Doped PbO2 Electrocatalysts for Environmental and Energy Applications: Theoretical Insight into the Mechanisms of Action Underlying Their Carbendazim Degradation and OER Properties. Processes 2025, 13, 1459. [Google Scholar] [CrossRef]
- Kapałka, A.; Fóti, G.; Comninellis, C. Determination of the Tafel Slope for Oxygen Evolution on Boron-Doped Diamond Electrodes. Electrochem. Commun. 2008, 10, 607–610. [Google Scholar] [CrossRef]
- Sequeira, C.A.C.; Santos, D.M.F.; Šljukić, B.; Amaral, L. Physics of Electrolytic Gas Evolution. Braz. J. Phys. 2013, 43, 199–208. [Google Scholar] [CrossRef]
- Mlostoń, G.; Celeda, M.; Jasiński, M.; Urbaniak, K.; Boratyński, P.J.; Schreiner, P.R.; Heimgartner, H. 2-Unsubstituted Imidazole N-Oxides as Novel Precursors of Chiral 3-Alkoxyimidazol-2-Ylidenes Derived from Trans-1,2-Diaminocyclohexane and Other Chiral Amino Compounds. Molecules 2019, 24, 4398. [Google Scholar] [CrossRef]
- Sousa, R.P.C.L.; Figueira, R.B.; Gomes, B.R.; Sousa, S.; Ferreira, R.C.M.; Costa, S.P.G.; Raposo, M.M.M. Hybrid Sol–Gel Matrices Doped with Colorimetric/Fluorimetric Imidazole Derivatives. Nanomaterials 2021, 11, 3401. [Google Scholar] [CrossRef]
- Arduengo, A.J.; Tapu, D. Dicoordinated Carbenes, and Tricoordinated Ions and Radicals Bearing Two Heteroatoms. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-409547-2. [Google Scholar]
- Kirchner, B. Electronic Effects in Organic Chemistry; Kirchner, B., Ed.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2014; Volume 351, ISBN 978-3-662-43581-6. [Google Scholar]
- Fiegenbaum, F.; Martini, E.M.; De Souza, M.O.; Becker, M.R.; De Souza, R.F. Hydrogen Production by Water Electrolysis Using Tetra-Alkyl-Ammonium-Sulfonic Acid Ionic Liquid Electrolytes. J. Power Sources 2013, 243, 822–825. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, J.; Lee, Y.; Lee, W.B.; Jho, Y. Electric Double Layer in Ionic Liquids: A Result of Interplay between Coupling Effects and Phase Demixing. Phys. Rev. Res. 2024, 6, 033026. [Google Scholar] [CrossRef]
- Bou Tannous, L.; Simoes Santos, M.; Gong, Z.; Haumesser, P.-H.; Benayad, A.; Padua, A.A.H.; Steinberger, A. Effect of Surface Chemistry on the Electrical Double Layer in a Long-Chain Ionic Liquid. Langmuir 2023, 39, 16785–16796. [Google Scholar] [CrossRef]
- Li, Y.; Malkani, A.; Gawas, R.; Intikhab, S.; Xu, B.; Tang, M.; Snyder, J. Interfacial Water Manipulation with Ionic Liquids for the Oxygen Reduction Reaction. ACS Catal. 2023, 13, 382–391. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, Y.; Ma, J.; Fan, M.; Zhang, S.; Wang, J. Ionic Liquids for Advanced Materials. Mater. Today Nano 2022, 17, 100159. [Google Scholar] [CrossRef]
- Kempler, P.A.; Coridan, R.H.; Luo, L. Gas Evolution in Water Electrolysis. Chem. Rev. 2024, 124, 10964–11007. [Google Scholar] [CrossRef] [PubMed]
- Araújo, F.; Neto, R.C.; Moita, A.S. Alkaline Water Electrolysis: Ultrasonic Field and Hydrogen Bubble Formation. Int. J. Hydrogen Energy 2024, 78, 594–603. [Google Scholar] [CrossRef]
- Qiu, H.; Obata, K.; Yuan, Z.; Nishimoto, T.; Lee, Y.; Nagato, K.; Kinefuchi, I.; Shiomi, J.; Takanabe, K. Quantitative Description of Bubble Formation in Response to Electrolyte Engineering. Langmuir 2023, 39, 4993–5001. [Google Scholar] [CrossRef] [PubMed]
RTIL | 1-butyl-3-ethyl imidazolium dicyanamide | 1-butyl-3-octyl imidazolium dicyanamide | 1,3-dibutyl imidazolium dicyanamide | 1,3-diethyl imidazolium dicyanamide | 1-butyl-3-hexyl imidazolium dicyanamide |
Label | BEIm DCA | BOIm DCA | BBIm DCA | EEIm DCA | BHIm DCA |
Cation | |||||
Anion |
T/°C | 25 | 35 | 45 | 55 | 65 | 75 | 85 |
---|---|---|---|---|---|---|---|
8 M KOH | |||||||
b/mV dec−1 | 135 | 144 | 131 | 129 | 175 | 205 | - |
α | 0.44 | 0.42 | 0.48 | 0.51 | 0.38 | 0.34 | - |
8 M KOH + BEIm DCA | |||||||
b/mV dec−1 | 148 | 122 | 135 | 160 | 209 | 255 | 266 |
α | 0.44 | 0.50 | 0.47 | 0.41 | 0.32 | 0.27 | 0.27 |
T/°C | Rs/Ω cm2 | C/μF cm−2 | Rct/Ω cm2 |
---|---|---|---|
25 | 0.672 ± 0.007 | 336.4 | 10.1 ± 0.2 |
35 | 0.69 ± 0.01 | 120.3 | 12.7 ± 0.2 |
45 | 0.60 ± 0.01 | 64.0 | 12.4 ± 0.3 |
55 | 0.60 ± 0.01 | 48.2 | 13.5 ± 0.3 |
65 | 0.499 ± 0.005 | 38.3 | 14.6 ± 0.1 |
75 | 0.478 ± 0.008 | 35.4 | 9.3 ± 0.2 |
85 | 0.518 ± 0.007 | 32.7 | 6.19 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutsch, J.A.B.; Milikić, J.; Santos, D.M.F.; Sequeira, C.A.C.; Vraneš, M.; Gadžurić, S.; Šljukić, B. Can Dicyanamide Ionic Liquids Boost Water Electrolysis? Processes 2025, 13, 2765. https://doi.org/10.3390/pr13092765
Tutsch JAB, Milikić J, Santos DMF, Sequeira CAC, Vraneš M, Gadžurić S, Šljukić B. Can Dicyanamide Ionic Liquids Boost Water Electrolysis? Processes. 2025; 13(9):2765. https://doi.org/10.3390/pr13092765
Chicago/Turabian StyleTutsch, Juliane A. B., Jadranka Milikić, Diogo M. F. Santos, César A. C. Sequeira, Milan Vraneš, Slobodan Gadžurić, and Biljana Šljukić. 2025. "Can Dicyanamide Ionic Liquids Boost Water Electrolysis?" Processes 13, no. 9: 2765. https://doi.org/10.3390/pr13092765
APA StyleTutsch, J. A. B., Milikić, J., Santos, D. M. F., Sequeira, C. A. C., Vraneš, M., Gadžurić, S., & Šljukić, B. (2025). Can Dicyanamide Ionic Liquids Boost Water Electrolysis? Processes, 13(9), 2765. https://doi.org/10.3390/pr13092765