Application of Tween 80 in the Remediation of Diesel-Contaminated Podzolic Soils Under Boreal Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Characterization
2.2. Diesel Contamination and Surfactant Treatment
2.3. Ecotoxicological Assays
2.3.1. Vibrio fischeri Luminescence Inhibition Assay
2.3.2. Ceriodaphnia affinis Acute Toxicity Test
2.4. Data Processing
3. Results
3.1. Physicochemical Changes Following Diesel Contamination
3.2. Soil pH Response to Surfactant Application
3.3. Reduction in Total Petroleum Hydrocarbons (TPH)
3.4. Acute Toxicity of Tween 80
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TPH | Total Petroleum Hydrocarbons |
CMC | Critical Micelle Concentration |
EC | Electrical Conductivity |
V. fischeri | Vibrio fischeri |
C. affinis | Ceriodaphnia affinis |
SER | Surfactant-Enhanced Remediation |
PAHs | Polycyclic aromatic hydrocarbons |
References
- Pinedo, J.; Ibañez, R.; Lijzen, J.P.A.; Irabien, Á. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. J. Environ. Manag. 2013, 130, 72–79. [Google Scholar] [CrossRef]
- Riser-Roberts, E. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 5–113. [Google Scholar] [CrossRef]
- EPA. Understanding Oil Spills and Oil Spill Response. Available online: https://www.epa.gov/sites/default/files/2018-01/documents/ospguide99.pdf (accessed on 1 April 2025).
- Ahmed, A.; Fowzia, N.; Fakhruddin, M. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int. J. Environ. Sci. Nat. Resour. 2018, 11, 555811. [Google Scholar] [CrossRef]
- Albers, P.H. Petroleum and individual polycyclic aromatic hydrocarbons. In Handbook of Ecotoxicology, 1st ed.; Hoffman, D.J., Rattner, B.A., Burton, J.A., Cairns, J., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 365–396. [Google Scholar]
- Falih, K.T.; Mohd Razali, S.F.; Abdul Maulud, K.N.; Abd Rahman, N.; Abba, S.I.; Yaseen, Z.M. Assessment of petroleum contamination in soil, water, and atmosphere: A comprehensive review. Int. J. Environ. Sci. Technol. 2024, 21, 8803–8832. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Palanisami, T.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Ex-situ remediation technologies for environmental pollutants: A critical perspective. Rev. Environ. Contam. Toxicol. 2016, 236, 117–192. [Google Scholar] [CrossRef]
- Dymov, A.A.; Grodnitskaya, I.D.; Yakovleva, E.V.; Dubrovskiy, Y.A.; Kutyavin, I.N.; Startsev, V.V.; Milanovsky, E.Y.; Prokushkin, A.S. Albic podzols of boreal pine forests of Russia: Soil organic matter, physicochemical and microbiological properties across pyrogenic history. Forests 2022, 13, 1831. [Google Scholar] [CrossRef]
- Atlas, R.M. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 1981, 45, 180–209. [Google Scholar] [CrossRef]
- Sutormin, O.S.; Goncharov, A.S.; Kratasyuk, V.A.; Petrova, Y.Y.; Bajbulatov, R.Y.; Yartsov, A.E.; Shpedt, A.A. Effects of Oil Contamination on Range of Soil Types in Middle Taiga of Western Siberia. Sustainability 2024, 16, 11204. [Google Scholar] [CrossRef]
- Lundström, U.S.; Van Breemen, N.; Bain, D. The podzolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, J.; Zhu, L. A comprehensive review of recent and perspective technologies and challenges for the remediation of oil-contaminated sites. Energy Rep. 2022, 8, 7976–7988. [Google Scholar] [CrossRef]
- Lim, M.W.; Ee, V.L.; Phaik, E.P. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Sun, H.; Zuo, F.; Kuang, S.; Zhang, S.; Wang, F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. Toxics 2024, 12, 648. [Google Scholar] [CrossRef]
- Masooma, N.; Shah, M.U.H.; Yahya, W.Z.N.; Goto, M.; Moniruzzaman, M. Surface active ionic liquid and Tween-80 blend as an effective dispersant for crude oil spill remediation. Environ. Technol. Innov. 2021, 24, 101868. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Yang, C.; Lai, C.; Zhang, C.; Liu, Y. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem. Eng. J. 2017, 314, 98–113. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Zhu, F.; Jia, S. Effects of surfactants on the remediation of petroleum contaminated soil and surface hydrophobicity of petroleum hydrocarbon degrading flora. Environ. Eng. Res. 2021, 26, 200384. [Google Scholar] [CrossRef]
- Agnello, A.C.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation. Int. J. Phytorem. 2015, 17, 669–677. [Google Scholar] [CrossRef]
- Information and Reference System for Soil Classification in Russia. Classification of Soils of Russia. 2004. Available online: http://infosoil.ru/index.php?pageID=clas04mode (accessed on 10 July 2025). (In Russian).
- GOST 26213-91; Soils. Methods for Determination of Organic Matter. RussianGost: St. Petersburg, Russia, 1991. Available online: https://www.russiangost.com/p-52750-gost-26213-91.aspx (accessed on 10 July 2025).
- PND F 16.1.41-04; Quantitative Chemical Analysis of Soil. Methods for Measuring the Mass Concentration of Oil Products in Soil Samples by the Gravimetric Method. RussianGost: St. Petersburg, Russia, 2004. Available online: https://www.russiangost.com/p-162428-pnd-f-16141-04.aspx (accessed on 10 July 2025).
- GOST 26423-85; Soils. Methods for Determination of Specific Electric Conductivity, pH and Solid Residue of Water Extract. RussianGost: St. Petersburg, Russia, 1985. Available online: https://www.russiangost.com/p-16105-gost-26423-85.aspx (accessed on 10 July 2025).
- Rosen, M.J.; Kunjappu, J.T. The Critical Micelle Concentration (CMC). In Surfactants and Interfacial Phenomena, 4th ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 123–126. [Google Scholar] [CrossRef]
- GOST 5180-2015; Soils. Methods for Laboratory Determination of Physical Characteristics. RussianGost: St. Petersburg, Russia, 2015. Available online: https://www.russiangost.com/p-139346-gost-5180-2015.aspx (accessed on 11 August 2025).
- Kalita, M.; Devi, A. Study on the effects of soil pH and addition of NPK fertilizer on degradation of petroleum hydrocarbon present in oil contaminated soil. Int. J. Chem. Petrochem. Technol. (IJCPT) 2012, 2, 9–22. [Google Scholar]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2004; pp. 154–196. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 2001, 56, 650–663. [Google Scholar] [CrossRef] [PubMed]
- ISO 11348-3:2007; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test). Part 3: Method Using Freeze-Dried Bacteria. ISO: Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/40518.html (accessed on 10 August 2025).
- OECD Guidelines for the Testing of Chemicals, Section 2. Test No. 202: Daphnia sp. Acute Immobilisation Test. Available online: https://www.oecd.org/en/publications/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en.html (accessed on 10 August 2025).
- Elliott, R.; Singhal, N.; Swift, S. Surfactants and bacterial bioremediation of polycyclic aromatic hydrocarbon contaminated soil—Unlocking the targets. Crit. Rev. Environ. Sci. Technol. 2010, 41, 78–124. [Google Scholar] [CrossRef]
- Ying, G.-G. Fate, behavior and effects of surfactants and their degradation products in the environment. Environ. Int. 2006, 32, 417–431. [Google Scholar] [CrossRef]
- Tiwari, M.; Tripathy, D.B. Soil contaminants and their removal through surfactant-enhanced soil remediation: A comprehensive review. Sustainability 2023, 15, 13161. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- He, L.; Qu, R.; Han, X.; Chen, J. Surfactant-Enhanced Washing of Aged PAH Contaminated Soils: Comparison between Nonionic and Anionic Surfactants. Appl. Mech. Mater. 2014, 522–524, 316–321. [Google Scholar] [CrossRef]
- Parus, A.; Ciesielski, T.; Woźniak-Karczewska, M.; Ślachciński, M.; Owsianiak, M.; Ławniczak, Ł.; Loibner, A.P.; Heipieper, H.J.; Chrzanowski, Ł. Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons—A critical evaluation of the performance of rhamnolipids. J. Hazard. Mater. 2023, 443 Pt A, 130171. [Google Scholar] [CrossRef] [PubMed]
Treatment Code | Tween 80 Concentration (mol L−1) | Temperature (°C) | Initial TPH (mg kg−1) | Soil Mass (g, Dry Basis) |
---|---|---|---|---|
T0 (control) | – | 22–24 | 50.01 ± 1.14 | 300 |
T1 | 3.0 × 10−4 | 22–24 | ||
T2 | 1.5 × 10−4 | 22–24 | ||
X0 (control) | – | 2–3 | ||
X1 | 3.0 × 10−4 | 2–3 | ||
X2 | 1.5 × 10−4 | 2–3 |
Soil Type | Humus (%) | TPH (g kg−1) | pHH2O | Dense Residue (%) | Electrical Conductivity (mS cm−1) |
---|---|---|---|---|---|
Uncontaminated | 0.40 ± 0.04 | 0.05 ± 0.01 | 5.50 ± 0.11 | 0.040 ± 0.004 | 9.82 ± 0.19 |
Diesel-contaminated | 0.51 ± 0.06 | 50.01 ± 1.14 | 5.22 ± 0.12 | 0.096 ± 0.010 | 10.53 ± 0.31 |
Treatment | Initial TPH (g kg−1) | Final TPH (g kg−1) | Reduction (%) | Significance * |
---|---|---|---|---|
T0 | 50.03 | 46.90 | 6.26 | a |
T1 | 50.03 | 42.60 | 14.85 | b |
T2 | 50.03 | 39.64 | 20.77 | c |
X0 | 50.03 | 47.00 | 6.06 | a |
X1 | 50.03 | 43.80 | 12.45 | b |
X2 | 50.03 | 41.53 | 16.99 | bc |
Concentration (mg L−1) | V. fischeri Inhibition (%) | C. affinis Mortality (%) |
---|---|---|
20 | 74.44 ± 1.8 | 19 ± 2 |
4 | 54.68 ± 2.7 | 17 ± 3 |
2 | 41.44 ± 3.1 | 16 ± 2 |
0.5 | 20.62 ± 2.3 | 8 ± 1 |
0.05 | 5.13 ± 0.9 | 2 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, A.M.; Farrahova, G.R.; Duryagin, A.V.; Bajbulatov, R.Y.; Sutormin, O.S. Application of Tween 80 in the Remediation of Diesel-Contaminated Podzolic Soils Under Boreal Conditions. Processes 2025, 13, 2651. https://doi.org/10.3390/pr13082651
Petrova AM, Farrahova GR, Duryagin AV, Bajbulatov RY, Sutormin OS. Application of Tween 80 in the Remediation of Diesel-Contaminated Podzolic Soils Under Boreal Conditions. Processes. 2025; 13(8):2651. https://doi.org/10.3390/pr13082651
Chicago/Turabian StylePetrova, Anastasiia M., Guzel R. Farrahova, Artur V. Duryagin, Ruslan Ya. Bajbulatov, and Oleg S. Sutormin. 2025. "Application of Tween 80 in the Remediation of Diesel-Contaminated Podzolic Soils Under Boreal Conditions" Processes 13, no. 8: 2651. https://doi.org/10.3390/pr13082651
APA StylePetrova, A. M., Farrahova, G. R., Duryagin, A. V., Bajbulatov, R. Y., & Sutormin, O. S. (2025). Application of Tween 80 in the Remediation of Diesel-Contaminated Podzolic Soils Under Boreal Conditions. Processes, 13(8), 2651. https://doi.org/10.3390/pr13082651