Virtual Model Development and Control for an EV3 BallBot Robotic System
Abstract
1. Introduction
2. Modeling of the EV3BRS in the Simscape™ Environment
2.1. The LEGO® MINDSTORMS® EV3 Kit
2.1.1. EV3 Intelligent Brick
2.1.2. EV3 Gyro Sensor
2.1.3. Large EV3 Servo Motor
2.2. SOLIDWORKS® Assembly of the EV3BRS
2.3. Simscape™ Model of the EV3BRS
2.3.1. Configuration Blocks
2.3.2. Floor Blocks
2.3.3. Ball Blocks
2.3.4. Outputs of the Model
2.3.5. Body, Wheels, Motors, and Inputs to the Model
2.3.6. Collision Blocks
2.3.7. Body’s DoF
3. Mathematical Model and Control Design
3.1. Mathematical Model
- The EV3BRS is composed of two parts: a rigid body on top of a rigid ball.
- The movement of the roll and pitch planes are uncoupled and the equations of motion between the two planes are identical (See Figure 10b).
- The control torques are applied between the body and the ball using the wheels.
- Only viscous friction is considered.
- There is no slip between the ball and the wheels.
3.1.1. Dynamic Model
3.1.2. Dynamic of the Motor
3.1.3. State Space Representation
3.2. Linear Quadratic Regulator (LQR)
3.2.1. Linearization of the EV3BRS’s Model Around
3.2.2. LQR for the EV3BRS
3.3. Takagi–Sugeno Fuzzy Model (TSFM)
3.3.1. Linearization of the EV3BRS’s Model Around
3.3.2. EV3BRS’s TSFM
3.4. Takagi–Sugeno Fuzzy Control (TSFC)
3.4.1. Stable TSFC
3.4.2. TSFC with Attenuation
4. Results
4.1. LQR on Simscape™
4.2. Nominal TSFC on Simscape™
4.3. TSFC with Attenuation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-D | three-dimensional |
BRS | BallBot Robotic System |
CAD | Computer-Aided Design |
DoF | Degrees of Freedom |
EV3BRS | EV3 Ballbot Robotic System |
LMI | Linear Matrix Inequality |
LQR | Linear Quadratic Regulator |
NXTBRS | NXT Ballbot Robotic System |
PDC | Parallel Distributed Compensation |
TSFC | Takagi–Sugeno Fuzzy Controller |
TSFM | Takagi–Sugeno Fuzzy Model |
References
- Schearer, E.M. Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile Robot with Arms. Master’s Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2006. [Google Scholar]
- Hollis, R. BALLBOTS. Sci. AM. 2006, 18, 58–63. [Google Scholar] [CrossRef]
- Lauwers, T.; Kantor, G.; Hollis, R. One Is Enough! In Robotics Research. Springer Tracts in Advanced Robotics; Thrun, S., Brooks, R., Durrant-Whyte, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 327–336. [Google Scholar] [CrossRef]
- Kumagai, M.; Ochiai, T. Development of a robot balancing on a ball. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Republic of Korea, 14–17 October 2008; IEEE: New York, NY, USA, 2008; pp. 433–438. [Google Scholar] [CrossRef]
- Pham, D.B.; Kim, H.; Kim, J.; Lee, S.G. Balancing and Transferring Control of a Ball Segway Using a Double-Loop Approach [Applications of Control]. IEEE Control Syst. Mag. 2018, 38, 15–37. [Google Scholar] [CrossRef]
- Yamamoto, Y. NXT Ballbot Model–Based Design–Control of a Self–Balancing Robot on a Ball, Built with LEGO Mindstorm NXT, 1st ed.; Cybernet Systems: Tokyo, Japan, 2009. [Google Scholar]
- Fong, J.; Uppill, S. 899: Ballbot. Bachelor’s Thesis, University of Adelaide, Adelaide, Australia, 2009. [Google Scholar]
- Sanchez-Prieto, S.; Arribas-Navarro, T.; Gomez-Plaza, M.; Rodriguez-Polo, O. A Monoball Robot Based on LEGO Mindstorms [Focus on Education]. IEEE Control Syst. Mag. 2012, 32, 71–83. [Google Scholar] [CrossRef]
- Enemegio, R.; Jurado, F.; Villanueva-Tavira, J. Experimental Evaluation of a Takagi-Sugeno Fuzzy Controller for an EV3 Ballbot System. Appl. Sci. 2024, 14, 4103. [Google Scholar] [CrossRef]
- Hernandez, R.; Jurado, F. Adaptive Neural Sliding Mode Control of an Inverted Pendulum Mounted on a Ball System. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5–7 September 2018; IEEE: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Maly, J. Usage of the LEGO Mindstorms EV3 Robot- Design and Realization of the “Ball riding robot” for the Promotion of the Faculty. Bachelor’s Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2018. [Google Scholar]
- Iemolo, R. Considerations About the Development of a Ballbot System. Master’s Thesis, Politecnico di Torino, Turín, Italy, 2018. [Google Scholar]
- García-Luengo, O. Diseño, Implementación y Control de un Prototipo de BallBot. Master’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2022. [Google Scholar]
- Parker, B. GrabCAD Community. Available online: https://grabcad.com/library/lego-the-don-open-rescue-1 (accessed on 19 March 2025).
- Zdelarec, I. GrabCAD Community. Available online: https://grabcad.com/library/lego-wheels-1 (accessed on 19 March 2025).
- Downs, A. GrabCAD Community. Available online: https://grabcad.com/library/lego-nxt-light-sensor (accessed on 19 March 2025).
- Akmal, M.A.; Jamin, N.F.; Ghani, N.M.A. Fuzzy logic controller for two wheeled EV3 LEGO robot. In Proceedings of the 2017 IEEE Conference on Systems, Process and Control (ICSPC), Meleka, Malaysia, 15–17 December 2017; IEEE: New York, NY, USA, 2018; pp. 135–139. [Google Scholar] [CrossRef]
- Dionizio, J.I. Desenvolvimento de Tarefas para Robo Segway Controlado por Regulador Linear Quadrático (LQR). Bachelor’s Thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2022. [Google Scholar]
- Ortiz, I.; Jurado, F.; Ollervides-Vazquez, E.J. Discrete–Time Linear Quadratic Regulator for a NXT Ballbot System. In Proceedings of the 2022 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, 5–9 December 2022; IEEE: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Lavretsky, E.; Wise, K.A. Robust and Adaptive Control, 1st ed.; Springer: London, UK, 2013; pp. 51–72. [Google Scholar]
- Wang, L.X. A Course in Fuzzy Systems and Control; Prentice-Hall International: Englewood Cliffs, NJ, USA, 1997; pp. 265–275. [Google Scholar]
- Tanaka, K.; Wang, H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach; John Wiley & Sons: New York, NY, USA, 2001; pp. 5–81. [Google Scholar]
- Lendek, Z.; Guerra, T.M.; Babuška, R.; De Schutter, B. Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models; Springer: Berlin/Heidelberg, Germany, 2010; pp. 5–41. [Google Scholar]
Parameter | Notation | Value | Units |
---|---|---|---|
Armature inductance | mH | ||
Armature resistance | |||
Body–Motor friction coefficient | |||
Back EMF constant | |||
Torque constant | |||
Moment of inertia |
Parameter | Notation | Value | Units |
---|---|---|---|
Body mass | Kg | ||
Ball mass | Kg | ||
Ball radius | m | ||
Wheel radius | m | ||
Distance to the center of mass | L | m | |
Body moment of inertia | |||
Ball moment of inertia | |||
Gear ratio | N | - | |
Body–Ball friction coefficient | |||
Body–Floor friction coefficient | 0 | ||
Gravity acceleration | g |
Index * | LQR | TSFC | TSFC- |
---|---|---|---|
plane | |||
plane | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escandon-Esparza, G.; Jurado, F. Virtual Model Development and Control for an EV3 BallBot Robotic System. Processes 2025, 13, 2616. https://doi.org/10.3390/pr13082616
Escandon-Esparza G, Jurado F. Virtual Model Development and Control for an EV3 BallBot Robotic System. Processes. 2025; 13(8):2616. https://doi.org/10.3390/pr13082616
Chicago/Turabian StyleEscandon-Esparza, Gerardo, and Francisco Jurado. 2025. "Virtual Model Development and Control for an EV3 BallBot Robotic System" Processes 13, no. 8: 2616. https://doi.org/10.3390/pr13082616
APA StyleEscandon-Esparza, G., & Jurado, F. (2025). Virtual Model Development and Control for an EV3 BallBot Robotic System. Processes, 13(8), 2616. https://doi.org/10.3390/pr13082616