Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives
Abstract
1. Introduction
2. Two-Stage Model for Multi-Objective Programming and Decision-Making in PIES Investment
2.1. Multi-Objective 0–1 Programming Model for PIES Projects
2.1.1. Objectives Functions
2.1.2. Constraints
2.1.3. Optimization Algorithm
2.2. MCDM for Selecting PIES Project Portfolios
2.2.1. Evaluation Index System of the PIES Project Portfolio Selection
2.2.2. Weight Determination Based on AHP and the Entropy Technique
2.2.3. Rank the Alternatives of the PIES Project Portfolio by TOPSIS
3. Case Study
3.1. PEIS Project Description
3.2. Pareto Frontier Solution Set—PIES Project Portfolio
3.3. PIES Project Portfolio Selection
3.3.1. Weighting Process
3.3.2. Comprehensive Evaluation Results of PIES Project Portfolios and Analysis
3.4. Robustness Analysis
3.5. Benchmark Comparative Analysis
4. Conclusions
- (1)
- In the investment decision-making process of PIES projects, solely pursuing economic benefits or environmental benefits is not reasonable. For example, for the seven selected PIES project portfolios, the ranking only considering the economic benefits is P4 > P1 > P2 > P6 > P3 > P5 > P7, while the ranking only considering the environmental benefits is P7 > P3 > P5 > P4 > P2 > P1 > P6. Pursuing higher NPV per unit investment will lead to an increase in CO2 emissions, and vice versa. This means that different portfolios may show different types, like the high-profit with high-emission type or the low-profit with low-emission type. Moreover, pursuing a single objective may lead to a significant decline in the investment capital allocation efficiency. Therefore, only by taking into account both economic and environmental benefits can the investment decision be more scientific.
- (2)
- The AHP–entropy–TOPSIS-based MCDM technique can rank the PIES project alternative portfolios exported from the MO 0–1 programming model. It can not only coordinate the economic and environmental benefits but also intuitively demonstrate the relative gaps among various alternative portfolios. P3 outperformed the other portfolios because the weights of the advantageous indicators were relatively high and, at the same time, the data of these indicators for P3 showed an excellent performance. On the contrary, certain indicators (S7, S8, S6, S10) with large weights for P2 showed unsatisfactory performance, resulting in the last rank.
- (3)
- The robustness analysis was conducted from two aspects. On one hand, the convergence speed and the solution set distribution of the MAQMOGWO algorithm outperformed those obtained by the other three algorithms mentioned in Section 3.2. In addition, the MAQMOGWO algorithm had a smaller Spacing Metric (SP) value and standard deviation, which indicated a more uniform distribution of the Pareto frontiers and stronger robustness. On the other hand, the stability of the hybrid MCDM-based evaluation technique was also verified. By changing the combined weights of the indicators, the ranking for the seven selected PIES project portfolios showed almost no change, which validated the effectiveness and the feasibility of the MCDM evaluation method. Through the benchmark comparative analysis, the two-stage investment decision framework showed better performance not only in fund utilization efficiency but also in promoting the balance between the economic benefits and the environmental benefits.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, L.Q.; Li, T.; Zhang, T. Optimal investment selection of regional integrated energy system under multiple strategic objectives portfolio. Energy 2021, 218, 119409. [Google Scholar] [CrossRef]
- Shi, C.; Yu, M. Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Mater. 2023, 57, 429–459. [Google Scholar] [CrossRef]
- Zeng, M. Integrated Energy System; China Electric Power Press: Beijing, China, 2020. [Google Scholar]
- Dong, W.; Chen, C.F.; Fang, X.L.; Zhang, F.; Yang, Q. Enhanced integrated energy system planning through unified model coupling multiple energy and carbon emission flows. Energy 2024, 307, 132799. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Zhuo, Z.Y.; Kang, C.Q.; Kirschen, D. Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Appl. Energy 2018, 210, 1141–1150. [Google Scholar] [CrossRef]
- Park, H.; Baldick, R. Optimal Capacity planning of generation system integrating uncertain solar and wind energy with seasonal variability. Electr. Power Syst. Res. 2020, 180, 106072. [Google Scholar] [CrossRef]
- Alizad, E.; Hasanzad, F.; Rastegar, H. A tri-level hybrid stochastic-IGDT dynamic planning model for resilience enhancement of community-integrated energy systems. Sustain. Cities Soc. 2024, 117, 105948. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Ahmarinejad, A.; Ansarian, M.; Javadi, M.S.; Catalao, J.P.S. Stochastic planning and operation of energy hubs considering demand response programs using benders decomposition approach. Int. J. Electr. Power Energy Syst. 2020, 120, 106030. [Google Scholar] [CrossRef]
- Gai, C.; Zhang, K.; Chen, J.; Chi, X.W.; Liu, Y. Research on the planning for integrated energy system planning of typical scenarios considering demand response. Shandong Electr. Power 2023, 50, 75–86. [Google Scholar] [CrossRef]
- Shabanian-Poodeh, M.; Hooshmand, R.A.; Shafie-khah, M. Reliability-constrained configuration optimization for integrated power and natural gas energy systems: A stochastic approach. Reliab. Eng. Syst. Saf. 2025, 254, 110600. [Google Scholar] [CrossRef]
- Beuzekom, I.V.; Hodge, B.M.; Slootweg, H. Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems. Appl. Energy 2021, 292, 116880. [Google Scholar] [CrossRef]
- Wu, M.; Xu, J.; Zeng, L.; Li, C.; Liu, Y.; Yi, Y.; Wen, M.; Jiang, Z. Two-stage robust optimization model for park integrated energy system based on dynamic programming. Appl. Energy 2022, 308, 118249. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, D.; Jia, H.; Li, J.; Chen, J.; Li, J.; Yang, Z. Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties. Appl. Energy 2021, 300, 117224. [Google Scholar] [CrossRef]
- Peng, C.; Fan, G.; Xiong, Z.; Zeng, X.; Sun, H.; Xu, X. Integrated energy system planning considering renewable energy uncertainties based on multi-scenario confidence gap decision. Renew. Energy 2023, 216, 119100. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Dong, H.; Ma, Y.; Yang, J.; Zhang, F.; Zhu, J.; Li, S. Capacity planning and optimization of business park-level integrated energy system based on investment constraints. Energy 2019, 189, 116345. [Google Scholar] [CrossRef]
- Shi, J.Y.; Xu, J.; Zeng, B.; Zhang, J.H. A bi-level optimal operation for energy hub based on regulating heat-to-electric ratio mode. Power Syst. Technol. 2016, 40, 2959–2966. [Google Scholar] [CrossRef]
- Gu, W.; Lu, S.; Wang, J.; Xiang, Y.; Zhang, C.; Wang, Z. Modeling of the heating network for multi-district integrated energy system and its operation optimization. Proc. CSEE 2017, 37, 1305–1315. [Google Scholar] [CrossRef]
- Ma, W.; Deng, W.; Pei, W.; Yang, H.; Wang, Y.; Wang, L.; Li, Q.; Zhang, L.; Wan, L.; Liang, Z. Operation optimization of electric power-hot water-steam integrated energy system. Energy Rep. 2022, 8, 475–482. [Google Scholar] [CrossRef]
- Gu, J.; Bai, K.F.; Shi, Y.J. Optimized operation of regional integrated energy system based on multi-agent master-slave game optimization interaction mechanism. Power Syst. Technol. 2019, 43, 3119–3129. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Huang, Y.; Yang, J.; Ma, Y.; Yu, H.; Zeng, M.; Zhang, F.; Zhang, Y. Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network. Appl. Energy 2019, 251, 113410. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.S. Research on Multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response. Energy 2023, 283, 129117. [Google Scholar] [CrossRef]
- Kim, J.-K.; Park, H.; Kim, S.-J.; Lee, J.; Song, Y.; Yi, S.C. Optimization models for the cost-effective design and operation of renewable-integrated energy systems. Renew. Sustain. Energy Rev. 2023, 183, 113429. [Google Scholar] [CrossRef]
- Zhen, J.L.; Liu, X.R.; Wu, C.B.; Ji, L.; Huang, G.H. Operation optimization and performance evaluation of photovoltaic-wind-hydrogen-based integrated energy system under carbon trading mechanism and uncertainty for urban communities. J. Clean. Prod. 2024, 476, 143688. [Google Scholar] [CrossRef]
- Mahmud, S.; Ponkiya, B.; Katikaneni, S.; Pandey, S.; Mattimadugu, K.; Yi, Z.; Walker, V.; Wang, C.; Westover, T.; Javaid, A.Y.; et al. Design and optimization of a modular hydrogen-based integrated energy system to maximize revenue via nuclear-renewable sources. Energy 2024, 313, 133763. [Google Scholar] [CrossRef]
- Diao, H.B.; Li, P.Q.; Wang, J.F.; Wang, D.; Li, Z.S. Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage. Trans. China Electrotech. Soc. 2020, 35, 4532–4543. [Google Scholar] [CrossRef]
- Cin, E.D.; Carraro, G.; Volpato, G.; Lazzaretto, A.; Tsatsaronis, G. DOMES: A general optimization method for the integrated design of energy conversion, storage and networks in multi-energy systems. Appl. Energy 2025, 377, 124702. [Google Scholar] [CrossRef]
- Shafiei, K.; Seifi, A.; Hagh, M.T. A Novel Multi-objective optimization approach for resilience enhancement considering integrated energy systems with renewable energy, Energy Storage, Energy Sharing, and Demand-side Management. J. Energy Storage 2025, 115, 115966. [Google Scholar] [CrossRef]
- Zhang, R.F.; Chen, Y.; Li, Z.M.; Jiang, T.; Li, X. Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties. Appl. Energy 2024, 371, 123690. [Google Scholar] [CrossRef]
- Zhang, X.; Zhan, Y.; Zhao, T.; Mei, J.; Jiao, F.; Zeng, R.; Sun, X.; Wang, M. Three-stage optimization of integrated energy system considering source/load uncertainties and orderly charging of NEVs. Energy 2024, 313, 133717. [Google Scholar] [CrossRef]
- Xu, H.; Dong, S.F.; He, Z.X.; Shi, Y.H. Comprehensive energy system with multi-energy synergistic optimization in a factory considering energy cascade utilization. Autom. Electr. Power Syst. 2018, 42, 123–130. [Google Scholar] [CrossRef]
- Zhang, S.T.; Lu, H.; Lin, X.J.; Zhong, W.; Liu, S.B. Operation scheduling optimization of integrated-energy system in industrial park in consideration of energy storage. High Volt. Eng. 2021, 47, 93–103. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, K.; Zhang, C.H.; Ma, X. Distributed coordinative optimal operation of community integrated energy system based on stackelberg game. Proc. CSEE 2020, 40, 5435–5444. [Google Scholar] [CrossRef]
- Ma, L.; Xie, L.R.; Ye, J.H.; Bian, Y.F. Two-stage dispatching strategy for park-level integrated energy systems based on a master-slave-cooperative hybrid game model. Renew. Energy 2024, 232, 120971. [Google Scholar] [CrossRef]
- Dong, Y.C.; Wuken, E.; Zhang, H.L.; Ren, P.; Zhou, X.J. Bi-level coordinated operation optimization of multi-park integrated energy systems considering categorized demand response and uncertainty: A unified adaptive robust optimization approach. Renew. Energy 2025, 241, 122331. [Google Scholar] [CrossRef]
- Zhao, E.M.; Zhang, B.; Li, H.Z.; Wu, Z.C.; Lei, X. Economic benefit evaluation of regional integrated energy systems based on an improved minimum cross-entropy method. Electr. Power Eng. Technol. 2022, 41, 215–223. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, H.H.; Gu, C.H.; Shen, X.D. Cost-benefit analysis of integrated energy system planning considering demand response. Energy 2020, 192, 116632. [Google Scholar] [CrossRef]
- Guo, Y.T.; Xiang, Y. Cost–benefit Analysis of Photovoltaic-storage investment in integrated energy systems. Energy Rep. 2022, 8, 66–71. [Google Scholar] [CrossRef]
- Abdussami, M.R.; Verma, A. Future Energy Landscapes: Analyzing the cost-effectiveness of nuclear-renewable integrated energy systems in retrofitting of coal power plants. Appl. Energy 2025, 377 Pt A, 124460. [Google Scholar] [CrossRef]
- Ba-swaimi, S.; Verayiah, R.; Ramachandaramurthy, V.K.; ALAhmad, A.K.; Abu-Rayash, A. Development and techno-economic assessment of an optimized and integrated solar/wind energy system for remote health applications. Energy Convers. Manag. 2025, 26, 100985. [Google Scholar] [CrossRef]
- Gimelli, A.; Iossa, R.; Karimi, A.; Muccillo, M.; Braccio, S.; Phan, H. Energy-saving and economic feasibility of a battery-integrated combined cooling, heating and power (CCHP) plant through waste heat recovery for H2O-NH3 based absorption, power and cooling (APC) system. Energy 2025, 317, 134640. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, L.; Liu, X.M. A comprehensive evaluation method for the operational benefits of integrated energy systems considering uncertainties. Renew. Energy Resour. 2019, 37, 1671–1678. [Google Scholar] [CrossRef]
- Zhou, P.C.; Cheng, Y.X.; Zeng, M. Research on supply and demand characteristics and comprehensive benefit evaluation of multi-energy system for smart city. Shandong Electr. Power 2019, 46, 1–7. [Google Scholar]
- Kim, M.; Kim, K.; Kim, T.-H.; Kim, J. Economic and environmental benefit analysis of a renewable energy supply system integrated with carbon capture and utilization framework. Chem. Eng. Res. Des. 2019, 147, 200–213. [Google Scholar] [CrossRef]
- Ba-swaimi, S.; Verayiah, R.; Ramachandaramurthy, V.K.; Alahmad, A.K. An integrated and optimized framework for hybrid renewable and hydrogen energy systems in the healthcare sector: Economic, technical, and environmental assessment. Int. J. Hydrogen Energy 2025, 115, 361–378. [Google Scholar] [CrossRef]
- Zhou, X.J.; Tan, W.; Sun, Y.; Huang, T.W.; Yang, C.H. Multi-objective optimization and decision making for integrated energy system using STA and fuzzy TOPSIS. Expert Syst. Appl. 2024, 240, 122539. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhang, T.; Deng, L.; Song, Z.C.; Li, T. Research on investment selection of park-level integrated energy system considering electricity-heat-cooling-storage based on matter element extension. Energy 2024, 304, 132054. [Google Scholar] [CrossRef]
- Aragonés-Beltrán, P.; Chaparro-González, F.; Pastor-Ferrando, J.-P.; Pla-Rubio, A. An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy 2014, 66, 222–238. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Zhou, J.; He, F.; Xu, C.; Zhang, B.; Zhang, T. An investment decision framework for photovoltaic power coupling hydrogen storage project based on a mixed evaluation method under intuitionistic fuzzy environment. J. Energy Storage 2020, 30, 101601. [Google Scholar] [CrossRef]
- Manirathinam, T.; Narayanamoorthy, S.; Geetha, S.; Othman, M.F.I.; Alotaibi, B.S.; Ahmadian, A.; Kang, D. Sustainable renewable energy system selection for self-sufficient households using integrated fermatean neutrosophic fuzzy stratified AHP-MARCOS approach. Renew. Energy 2023, 218, 119292. [Google Scholar] [CrossRef]
- Ji, Z.S.; Yu, X.Y.; Li, W.Y.; Niu, D.X. A multi-criteria decision-making framework for distributed generation projects investment considering the risk of electricity market trading. J. Clean. Prod. 2023, 416, 137837. [Google Scholar] [CrossRef]
- Silva, N.F.; dos Santos, M.; Simões Gomes, F.S.; de Andrade, L.P. An integrated CRITIC and grey relational analysis approach for investment portfolio selection. Decis. Anal. J. 2023, 8, 100285. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, J.; Meng, J.; Fang, S.; Zhuang, S. Comprehensive evaluation for plan selection of urban integrated energy systems: A novel multi-criteria decision-making framework. Sustain. Cities Soc. 2022, 81, 103837. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Li, P.; Wang, H. Bloch coordinates-based quantum particle swarm optimization algorithm and its application. Comput. Syst. Appl. 2012, 21, 76–79, 84. [Google Scholar]
- Li, P.; Wang, Q.; Shi, G. Quantum Particle Swarm Optimization Algorithm Based on Bloch Spherical Search. Chin. J. Comput. Phys. 2013, 30, 454–462. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, B.; Sun, Z.; Wang, X. Optimal configuration optimization of islanded microgrid using improved grey wolf optimizer algorithm. Acta Energiae Solaris Sin. 2022, 43, 256–262. [Google Scholar]
- Heidari, A.A.; Aljarah, I.; Faris, H.; Chen, H.; Luo, J.; Mirjalili, S. An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput. Appl. 2020, 32, 5185–5211. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, G.; Wu, W.; Liao, S. Multicriteria comprehensive evaluation framework for industrial park-level distributed energy system considering weights uncertainties. J. Clean. Prod. 2021, 282, 124530. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.; Liu, Y.; Xie, N.; Xu, L. Investment evaluation method of integrated energy system. Smart Power 2020, 48, 20–27. [Google Scholar]
- Zhong, Y.; Wang, L.; Zheng, Y.; Yin, J.; Guo, Z.; Li, Z. Comprehensive evaluation index system for integrated energy system in industrial park. Power Demand Side Manag. 2020, 22, 51–56. [Google Scholar]
- Li, J.; Xu, W.; Feng, X.; Lu, H.; Qiao, B.; Gu, W.; Zhang, G.; Jiao, Y. Comprehensive evaluation system for optimal configuration of multi-energy systems. Energy Build. 2021, 252, 111367. [Google Scholar] [CrossRef]
- Aghdam, F.H.; Mohammadi-ivatloo, B.; Abapour, M.; Marzband, M.; Rasti, M.; Pongracz, E. Enhancing the risk-oriented participation of wind power plants in day-ahead, balancing, and hydrogen markets with shared multi-energy storage systems. J. Energy Storage 2025, 107, 114911. [Google Scholar] [CrossRef]
- Raos, S.; Hranić, J.; Rajšl, I. Multi-criteria decision-making method for evaluation of investment in enhanced geothermal systems projects. Energy AI 2024, 17, 100390. [Google Scholar] [CrossRef]
- Leng, Y.-J.; Peng, D.; Zhang, H. Integrated energy system evaluation method based on dimensionality reduction and indexes updating with incomplete information. Energy 2023, 277, 127552. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Zhang, K. Comprehensive Evaluation Method and Application Study of Campus-level Regional Integrated Energy System. J. Beijing Inst. Technol. 2022, 24, 52–65. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, J.; Goodsite, M.E.; Xu, G. Waste-to-energy, municipal solid waste treatment, and best available technology: Comprehensive evaluation by an interval-valued fuzzy multi-criteria decision making method. J. Clean. Prod. 2018, 172, 887–899. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Wang, Y.; Guo, L.; Zhou, M. Research on integrated energy system planning optimization based on fixed investment. Power Demand Side Manag. 2020, 22, 38–44, 57. [Google Scholar]
- Microgrid. N.E.A.W.G.O. Technical Design and Operational Management of Microgrid in Three Typical Areas. 2013. Available online: http://www.efchina.org/Attachments/Report/report-cre-20151126/ (accessed on 16 July 2025).
- Guo, L.; Liu, W.; Cai, J.; Hong, B.; Wang, C. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system. Energy Convers. Manag. 2013, 74, 433–445. [Google Scholar] [CrossRef]
- Ma, W.; Fang, S.; Liu, G. Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump. Energy 2017, 141, 1439–1455. [Google Scholar] [CrossRef]
- Wu, D.; Han, Z.; Liu, Z.; Zhang, H. Study on configuration optimization and economic feasibility analysis for combined cooling, heating and power system. Energy Convers. Manag. 2019, 190, 91–104. [Google Scholar] [CrossRef]
- Dou, C. Study of Combined Cooling Heating and Power System Coupled with Ground Source Heat Pump. Master’s Thesis, North China Electric Power University, Beijing, China, 2018. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Jangir, P.; Mirjalili, S.Z.; Saremi, S.; Trivedi, I.N. Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 2017, 134, 50–71. [Google Scholar] [CrossRef]
- Zhou, B.; Cao, Y.; Li, C.; Wu, Q.; Liu, N.; Huang, S.; Wang, H. Many-criteria optimality of coordinated demand response with heterogeneous households. Energy 2020, 207, 118267. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, Z.Y.; Li, C. An investment decision-making approach for power grid projects: A multi-objective optimization model. Energies 2022, 15, 1112. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Teng, F.; Wang, L.; Gao, Z.; Wang, G. A new investment decision-making model of hydrogen energy storage technology based on real-time operation optimization and learning effects. J. Energy Storage 2024, 96, 112745. [Google Scholar] [CrossRef]
Goal | Criteria | Indicators |
---|---|---|
Investment selection for PIES project portfolios (A) | Economic benefit (B1) | energy supply benefit per unit of investment (S1) |
return on investment (S2) | ||
revenue per unit of power generation (S3) | ||
market share (S4) | ||
project operation capability (S5) | ||
Environmental benefit (B2) | CO2 emission reduction per unit energy supply (S6) | |
ratio of clean energy installed capacity (S7) | ||
covered area per unit installed capacity (S8) | ||
renewable energy penetration rate (S9) | ||
solid waste emission level (S10) |
Scale | Definition Explanation | Scale | Definition Explanation |
---|---|---|---|
1 | equally important | 3 | slightly more important |
5 | obviously important | 7 | strongly important |
9 | extremely important | 2, 4, 6, 8 | intermediate value |
No | Detailed Information for PIES Projects |
---|---|
PIES1 | 4 MW WT, 0.7 MW PV, 8 MW CCHP, 1.8 MW EES, 4 MW GB |
PIES2 | 2.4 MW WT, 1 MW PV, 5 MW CCHP, 1.5 MW EES, 3.4 MW GB |
PIES3 | 1.7 MW WT, 2.6 MW PV, 8 MW CCHP, 2.4 MW EES, 3.9 MW GB |
PIES4 | 1 MW WT, 0.7 MW PV, 5.5 MW CCHP, 1 MW EES, 2.5 MW GB |
PIES5 | 3.3 MW WT, 1.2 MW PV, 7.3 MW CCHP, 1.5 MW EES, 2 MW GB |
PIES6 | 4 MW WT, 0.6 MW PV, 6 MW CCHP, 2.2 MW EES, 2.8 MW GB, 5 MW EC |
PIES7 | 3.8 MW WT, 0.8 MW PV, 2 MW CCHP, 3 MW EES, 2 MW GB, 4 MW EC |
PIES8 | 3 MW WT, 2 MW PV, 9 MW CCHP, 2.3 MW EES, 3.2 MW GB |
PIES9 | 2.3 MW WT, 2.2 MW PV, 6 MW CCHP, 1.2 MW EES, 3.7 MW GB |
PIES10 | 4.4 MW WT, 0.6 MW PV, 1.8 MW CCHP, 3.2 MW EES, 1.9 MW GB, 5 MW EC |
Type | Value | Explanation |
---|---|---|
Ns | 200 | Population size |
T | 100 | Maximum number of iterations |
Archive | 200 | Archive quantity |
§ | 10 | Domain weight vector |
B | 10 | Search intensity |
SP | MAQMOGWO | MOGWO | MOMVO | NSGAII |
---|---|---|---|---|
Maximum value | 6.93 × 10−1 | 5.51 × 10−1 | 3.96 × 100 | 6.76 × 10−1 |
Minimum value | 5.09 × 10−3 | 7.07 × 10−2 | 2.62 × 10−1 | 1.10 × 10−1 |
Average value | 1.33 × 10−2 | 8.29 × 10−2 | 2.11 × 100 | 2.93 × 10−3 |
Standard deviation | 2.17 × 10−2 | 1.42 × 10−1 | 3.48 × 100 | 3.17 × 10−2 |
Indicator | AHP Weight | Entropy Weight | Combined Weight |
---|---|---|---|
S1 | 0.0395 | 0.1150 | 0.077 |
S2 | 0.1160 | 0.1289 | 0.123 |
S3 | 0.1066 | 0.1368 | 0.122 |
S4 | 0.0551 | 0.0855 | 0.070 |
S5 | 0.2506 | 0.1025 | 0.177 |
S6 | 0.1475 | 0.0860 | 0.117 |
S7 | 0.0339 | 0.0767 | 0.055 |
S8 | 0.0664 | 0.0781 | 0.072 |
S9 | 0.0419 | 0.0767 | 0.059 |
S10 | 0.1426 | 0.1136 | 0.128 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
P1 | 0.032 | 0.000 | 0.254 | 0.208 | 0.128 | 0.209 | 0.085 | 0.071 | 0.089 | 0.270 |
P2 | 0.081 | 0.256 | 0.151 | 0.101 | 0.034 | 0.000 | 0.141 | 0.288 | 0.186 | 0.000 |
P3 | 0.279 | 0.013 | 0.293 | 0.310 | 0.286 | 0.092 | 0.000 | 0.178 | 0.000 | 0.097 |
P4 | 0.000 | 0.092 | 0.141 | 0.195 | 0.248 | 0.197 | 0.099 | 0.086 | 0.083 | 0.185 |
P5 | 0.105 | 0.320 | 0.000 | 0.000 | 0.000 | 0.096 | 0.279 | 0.190 | 0.285 | 0.083 |
P6 | 0.297 | 0.213 | 0.101 | 0.125 | 0.156 | 0.095 | 0.172 | 0.186 | 0.182 | 0.087 |
P7 | 0.154 | 0.128 | 0.000 | 0.088 | 0.211 | 0.311 | 0.227 | 0.000 | 0.174 | 0.278 |
Ranking | ||||
---|---|---|---|---|
P1 | 0.427 | 0.351 | 0.451 | 6 |
P2 | 0.432 | 0.35 | 0.447 | 7 |
P3 | 0.38 | 0.448 | 0.541 | 1 |
P4 | 0.374 | 0.349 | 0.482 | 4 |
P5 | 0.453 | 0.378 | 0.455 | 5 |
P6 | 0.354 | 0.349 | 0.497 | 3 |
P7 | 0.388 | 0.409 | 0.513 | 2 |
0.3–0.7 | 0.4–0.6 | 0.5–0.5 | 0.6–0.4 | 0.7–0.3 | |
---|---|---|---|---|---|
P1 | 6 | 6 | 6 | 6 | 6 |
P2 | 7 | 7 | 7 | 7 | 7 |
P3 | 1 | 1 | 1 | 1 | 1 |
P4 | 3 | 5 | 4 | 5 | 4 |
P5 | 5 | 4 | 5 | 4 | 5 |
P6 | 4 | 3 | 3 | 3 | 3 |
P7 | 2 | 2 | 2 | 2 | 2 |
Scenario 1 | Scenario 2 | Scenario 3 | |
---|---|---|---|
Capital utilization efficiency | 87.31% | 74.52% | 43.37% |
NPV of unit investment | CNY 12.90694 million | CNY 11.17463 million | CNY 13.92334 million |
Carbon emissions | 70,125.006 tons | 67,248.038 tons | 60,222.145 tons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Sun, W.; Ma, R.; Li, B. Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives. Processes 2025, 13, 2362. https://doi.org/10.3390/pr13082362
Yu J, Sun W, Ma R, Li B. Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives. Processes. 2025; 13(8):2362. https://doi.org/10.3390/pr13082362
Chicago/Turabian StyleYu, Jiaxuan, Wei Sun, Rongwei Ma, and Bingkang Li. 2025. "Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives" Processes 13, no. 8: 2362. https://doi.org/10.3390/pr13082362
APA StyleYu, J., Sun, W., Ma, R., & Li, B. (2025). Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives. Processes, 13(8), 2362. https://doi.org/10.3390/pr13082362