A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Microorganisms
2.2. Production of the Crude Enzymatic Extract (CEE)
2.3. Characterization of the CEE
2.3.1. Chemical Composition of the CEE
2.3.2. Toxicity of the CEE
2.3.3. Antioxidant Activity, Total Phenolic Compounds (TPC), and Total Flavonoid Content (TFC)
2.3.4. Antibacterial Activity
2.4. Downstream Processing (Purification)
2.5. Evaluation and Characterization of the Enzyme Present in the CEE
2.5.1. Enzymatic Activity
2.5.2. Effect of Temperature, pH, and Metal Ions on Enzymatic Activity
2.5.3. Thermal Stability of the Enzyme
2.5.4. Assessment of Starch Degradation and Glucose Release
2.5.5. Evaluation of Enzymatic Activity After Lyophilization
2.6. Storage Stability of the CEE
2.7. Determination of Enzyme Molecular Weight of PE by SDS-PAGE
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of CEE
3.2. Toxicity Test
3.3. Antioxidant Tests, TPC, and TFC
3.4. Antibacterial Activity of CEE
3.5. Evaluation and Characterization of the Enzyme Present in CEE and PE
3.5.1. Effect of Temperature, pH, and Metal Ions on the Enzymatic Activity of CEE
3.5.2. Thermal Stability of CEE and PE
3.5.3. Evaluation of Starch Hydrolysis and Reducing Sugar Release
3.5.4. Enzymatic Activity After Lyophilization of CEE
3.6. Stability of CEE at Freezing, Refrigeration, and Room Temperatures
3.7. Determination of PE Molecular Weight via SDS-PAGE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Zhang, Y.; Wang, X.; Shang, J.; Li, Y.; Zhang, H.; Lu, F.; Liu, F. Biochemical Characterization and Molecular Mechanism of Acid Denaturation of a Novel α-Amylase from Aspergillus Niger. Biochem. Eng. J. 2018, 137, 222–231. [Google Scholar] [CrossRef]
- Carvalho, F.; Fernandes, P. Enzymes in Sweeteners Production. In Green Bio-Processes: Enzymes in Industrial Food Processing; Parameswaran, B., Varjani, S., Raveendran, S., Eds.; Springer: Singapore, 2019; pp. 151–179. ISBN 978-981-13-3263-0. [Google Scholar]
- Jujjavarapu, S.E.; Dhagat, S. Evolutionary Trends in Industrial Production of α-Amylase. Recent Pat. Biotechnol. 2019, 13, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ali, S.; Hassan, A.; Tahir, H.M.; Mumtaz, S.; Mumtaz, S. Biosynthesis and industrial applications of α-amylase: A review. Arch. Microbiol. 2021, 203, 1281–1292. [Google Scholar] [CrossRef]
- Jaiswal, N.; Jaiswal, P. Thermostable α-Amylases and Laccases: Paving the Way for Sustainable Industrial Applications. Processes 2024, 12, 1341. [Google Scholar] [CrossRef]
- Adroit Market Research. Alpha Amylase Market By Type (Plants, Bacteria, Fungi), By Application (Fruit Ripening, Medical Diagnostics, Flour Improvers, Malt Production) and By Region (North America, Latin America, Asia Pacific, Europe, and Middle East & Africa), and COVID-19 Analysis—Global Forecast 2024 to 2030. Available online: https://www.adroitmarketresearch.com/industry-reports/alpha-amylase-market (accessed on 9 April 2025).
- Daiha, K.d.G.; Brêda, G.C.; Larentis, A.L.; Freire, D.M.G.; Almeida, R.V. Enzyme Technology in Brazil: Trade Balance and Research Community. Braz. J. Sci. Technol. 2016, 3, 17. [Google Scholar] [CrossRef]
- Stojković, D.; Reis, F.S.; Barros, L.; Glamočlija, J.; Irić, A.; van Griensven, L.J.I.D.; Soković, M.; Ferreira, I.C.F.R. Nutrients and Non-Nutrients Composition and Bioactivity of Wild and Cultivated Coprinus comatus (O.F.Müll.) Pers. Food Chem. Toxicol. 2013, 59, 289–296. [Google Scholar] [CrossRef]
- Poomsuk, N.; Dinawong, M.; Phimbupha, P.; Wisetsai, A.; Pattumma, P.; Arthan, S. α-Glucosidase and Tyrosinase Inhibitory Guided Isolation, Identification of Major Compound and in Silico Study from Edible Mushroom Coprinus comatus. Suranaree J. Sci. Technol. 2024, 31, 030217. [Google Scholar] [CrossRef]
- Tang, X.; Liu, B.; Deng, Q.; Zhang, R.; Li, X.; Xu, H. Strengthening Detoxication Impacts of Coprinus comatus on Nickel and Fluoranthene Co-Contaminated Soil by Bacterial Inoculation. J. Environ. Manag. 2018, 206, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, B.; Chen, N.; Wang, C.; Feng, S.; Xu, H. Combined Bioremediation of Soil Co-Contaminated with Cadmium and Endosulfan by Pleurotus Eryngii and Coprinus comatus. J. Soils Sediments 2018, 18, 2136–2147. [Google Scholar] [CrossRef]
- Rouhana-Toubi, A.; Wasser, S.P.; Fares, F. The Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes) Extract Induces Apoptosis in Ovarian Cancer Cells via Extrinsic and Intrinsic Apoptotic Pathways. Int. J. Med. Mushrooms 2015, 17, 1127–1136. [Google Scholar] [CrossRef]
- Stojkovic, D.; Smiljkovic, M.; Ciric, A.; Glamoclija, J.; Van Griensven, L.; Ferreira, I.C.F.R.; Sokovic, M. An Insight into Antidiabetic Properties of Six Medicinal and Edible Mushrooms: Inhibition of α-Amylase and α-Glucosidase Linked to Type-2 Diabetes. S. Afr. J. Bot. 2019, 120, 100–103. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Lai, Q.; Yang, Q.; Dong, Y.; Liu, X.; Wang, W.; Zhang, J.; Jia, L. Antioxidant and Hepatoprotective Activities of Modified Polysaccharides from Coprinus comatus in Mice with Alcohol-Induced Liver Injury. Int. J. Biol. Macromol. 2019, 127, 476–485. [Google Scholar] [CrossRef]
- Frantz, S.C.; Paludo, L.C.; Stutz, H.; Spier, M.R. Production of Amylases from Coprinus comatus under Submerged Culture Using Wheat-Milling by-Products: Optimization, Kinetic Parameters, Partial Purification and Characterization. Biocatal. Agric. Biotechnol. 2019, 17, 82–92. [Google Scholar] [CrossRef]
- USDA Grain. World Markets and Trade; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, 2021; pp. 1–11.
- Coêlho, J.D. Trigo: Produção e Mercados. In Caderno Setorial ETENE; Banco do Nordeste do Brasil: Fortaleza, Brazil, 2021; pp. 1–14. [Google Scholar]
- Paludo, L.C.; Frantz, S.C.; Ançay, R.; Stutz, H.; Dantas, T.L.P.; Spier, M.R. Optimization, Kinetic and Bioprocess Parameters of Amylases Production from Coprinus comatus under Submerged Culture Using Starch-Based Simple Medium: Partial Enzyme Characterization. Biocatal. Agric. Biotechnol. 2018, 16, 529–537. [Google Scholar] [CrossRef]
- Bhatia, K.; Mal, G.; Bhar, R.; Jyoti; Attri, C.; Seth, A. Purification and Characterization of Thermostable Superoxide Dismutase from Anoxybacillus Gonensis KA 55 MTCC 12684. Int. J. Biol. Macromol. 2018, 117, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Kilikian, B.V.; Pessoa Júnior, A. Purificação de Produtos Biotecnológicos: Operações e Processos Com Aplicação Industrial, 2nd ed.; Blucher: São Paulo, Brazil, 2020. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; 4 rev.; AOAC International: Arlington, VA, USA, 1998; ISBN 0935584544. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Bellatto, G.A.; Braguini, W.L. Assessment of the Use of Cooked Araucaria Angustifolia Seed Coats Extract as Food for Brine Shrimp. J. Environ. Sci. Health Part B 2020, 55, 813–819. [Google Scholar] [CrossRef]
- Salama, A.; Chavez, M.; Hinestrosa, A. Fito y bioanálisis de algunas plantas utilizadas en la medicina popular con posible actividad farmacológica. Ver. Col. Cien. Quim. Farm. 1996, 25, 44–51. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Arriola, N.A.; dos Santos, G.D.; Prudêncio, E.S.; Vitali, L.; Petrus, J.C.C.; Castanho Amboni, R.D.M. Potential of Nanofiltration for the Concentration of Bioactive Compounds from Watermelon Juice. Int. J. Food Sci. Technol. 2014, 49, 2052–2060. [Google Scholar] [CrossRef]
- CLSI—Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 8th ed.; Clinical and Laboratory Standards Institute: Wayne, MI, USA, 2003. [Google Scholar]
- Fuwa, H. A New Method for Microdetermination of Amylase Activity by the Use of Amylose as the Substrate. J. Biochem. 1954, 41, 583–603. [Google Scholar] [CrossRef]
- Ramesh, V.; Ramachandra Murty, V. Sequential Statistical Optimization of Media Components for the Production of Glucoamylase by Thermophilic Fungus Humicola Grisea MTCC 352. Enzyme Res. 2014, 2014, 317940. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Rezessy-Szabó, J.M.; Claeyssens, M.; Stals, I.; Hoschke, Á. Purification and Characterisation of Amylolytic Enzymes from Thermophilic Fungus Thermomyces Lanuginosus Strain ATCC 34626. Enzyme Microb. Technol. 2002, 31, 345–352. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Spier, M.R.; Fendrich, R.C.; Almeida, P.C.; Noseda, M.; Greiner, R.; Konietzny, U.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Phytase Produced on Citric Byproducts: Purification and Characterization. World J. Microbiol. Biotechnol. 2011, 27, 267–274. [Google Scholar] [CrossRef]
- Stilinović, N.; Čapo, I.; Vukmirović, S.; Rašković, A.; Tomas, A.; Popović, M.; Sabo, A. Chemical Composition, Nutritional Profile and in Vivo Antioxidant Properties of the Cultivated Mushroom Coprinus comatus: Comprimus Comatus Properties. R. Soc. Open Sci. 2020, 7, 200900. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Vega-Villasante, F.; Ruiz-González, L.E.; Guerrero-Galván, S.R.; Guzmán-Dávalos, L. Evaluación de La Toxicidad de Psilocybe Cubensis (Agaricales, Basidiomycota) Sobre Artemia Franciscana (Crustacea, Anostraca). Rev. Iberoam. Micol. 2013, 30, 54–56. [Google Scholar] [CrossRef]
- Ruiz-González, L.E.; Vázquez-Zea, J.A.; Vega-Villasante, F.; Guzmán-Dávalos, L.; Guerrero-Galván, S.R. Evaluación Del Efecto Tóxico de Hongos Basidiomycota En La Eclosión de Quistes de Artemia Franciscana. Rev. Iberoam. Micol. 2017, 34, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Nieto, I.J.R.; Salama, A.M.; Cataño, J.E.P.; Chegwin, C.A. Determinación de La Toxicidad de Pleurotus Ostreatus, Pleurotus Pulmonarius y Paxillus Involutus Sobre Artemia Salina. Rev. Iberoam. Micol. 2008, 25, 186–187. [Google Scholar] [CrossRef]
- Dharmasena, W.G.B.P.; Silva, A.B.G.; Udugama, S.S.T.T.A.; Wijeyaratne, S.C.; Munasinghe, D.H.H. Domestication Potential, Acute Toxicity, and Nutritional Properties of a White Strain of Pleurotus djamor Rumph. Ex Fr. (Agaricales, Basidiomycota) from Sri Lanka. Curr. Res. Environ. Appl. Mycol. 2024, 14, 301–332. [Google Scholar] [CrossRef]
- Oliveira, V.B.; Zuchetto, M.; Oliveira, C.F.; Paula, C.S.; Duarte, A.F.S.; Miguel, M.D.; Miguel, O.G. Efeito de Diferentes Técnicas Extrativas No Rendimento, Atividade Antioxidante, Doseamentos Totais e No Perfil Por Clae-Dad de Dicksonia Sellowiana (Presl.). Hook, Dicksoniaceae. Rev. Bras. Plantas Med. 2016, 18, 230–239. [Google Scholar] [CrossRef]
- Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio Compounds of Edible Mushrooms: In Vitro Antioxidant and Antimicrobial Activities. LWT 2019, 107, 214–220. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Lee, M.W.; Yoon, K.N.; Kim, H.Y.; Jin, G.-H.; Choi, J.-H.; Im, K.H.; Lee, T.S. In Vitro Antioxidant, Anti-Diabetic, Anti-Cholinesterase, Tyrosinase and Nitric Oxide Inhibitory Potential of Fruiting Bodies of Coprinellus Micaceus. J. Mushroom 2014, 12, 330–340. [Google Scholar] [CrossRef]
- Tešanović, K.; Pejin, B.; Šibul, F.; Matavulj, M.; Rašeta, M.; Janjušević, L.; Karaman, M. A Comparative Overview of Antioxidative Properties and Phenolic Profiles of Different Fungal Origins: Fruiting Bodies and Submerged Cultures of Coprinus comatus and Coprinellus Truncorum. J. Food Sci. Technol. 2017, 54, 430–438. [Google Scholar] [CrossRef]
- Zengin, G.; Karanfil, A.; Uren, M.C.; Kocak, M.S.; Sarikurkcu, C.; Gungor, H.; Nancy Picot, C.M.; Mahomoodally, M.F. Phenolic Content, Antioxidant and Enzyme Inhibitory Capacity of Two: Trametes Species. RSC Adv. 2016, 6, 73351–73357. [Google Scholar] [CrossRef]
- Elhassaneen, Y.E.A.; Saad, H.H.; Mehram, E.B. Effect of solvents with different polarity on the extraction of bioactive compounds from reishi mushroom (Ganoderma lucidum) and their antioxidant and free radicals scavenging activities: Application in buffalo meatballs. Egypt. J. Chem. 2025, 68, 113–128. [Google Scholar] [CrossRef]
- Silva, N.G. Estudo Da Capacidade Antioxidante de Cogumelos Comestíveis. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between in Vivo and in Vitro Samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Orhan, I.; Üstün, O. Determination of Total Phenol Content, Antioxidant Activity and Acetylcholinesterase Inhibition in Selected Mushrooms from Turkey. J. Food Compos. Anal. 2011, 24, 386–390. [Google Scholar] [CrossRef]
- Fonseca, L.S. Fenóis Totais e Atividade Antioxidante de Cogumelos Destoxificantes e Seus Resíduos Pós-Cultivo; Trabalho de Conclusão de Curso; Universidade de Brasília: Brasília, Brazil, 2017. [Google Scholar]
- Martínez-Escobedo, N.A.; Vázquez-González, F.J.; Valero-Galván, J.; Álvarez-Parrilla, E.; Garza-Ocañas, F.; Najera-Medellin, J.A.; Quiñónez-Martínez, M. Actividad Antimicrobiana, Contenido de Compuestos Fenólicos y Capacidad Antioxidante de Cuatro Hongos Macromicetos Comestibles de Chihuahua, México. TIP Rev. Espec. Cienc. Químico-Biológicas 2021, 24, e318. [Google Scholar] [CrossRef]
- Boonthatui, Y.; Chongsuwat, R.; Kittisakulnam, S. Production of Antioxidant Bioactive Compounds during Mycelium Growth of Schizophyllum Commune on Different Cereal Media. Chiang Mai Univ. J. Nat. Sci. 2021, 20, e2021032. [Google Scholar] [CrossRef]
- Keypour, S.; Riahi, H.; Moradali, M.-F.; Rafati, H. Investigation of the Antibacterial Activity of a Chloroform Extract of Ling Zhi or Reishi Medicinal Mushroom, Ganoderma Lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), from Iran. Int. J. Med. Mushrooms 2008, 10, 345–349. [Google Scholar] [CrossRef]
- Quereshi, S.; Pandey, A.K.; Sandhu, S.S. Evaluation of Antibacterial Activity of Different Ganoderma Lucidum Extracts. People’s J. Sci. Res. 2010, 3, 9–13. [Google Scholar]
- Kandasamy, S.; Chinnappan, S.; Thangaswamy, S.; Balakrishnan, S.; Khalifa, A.Y.Z. Assessment of Antioxidant, Antibacterial Activities and Bioactive Compounds of the Wild Edible Mushroom Pleurotus Sajor-Caju. Int. J. Pept. Res. Ther. 2020, 26, 1575–1581. [Google Scholar] [CrossRef]
- Nowakowski, P.; Naliwajko, S.K.; Markiewicz-Żukowska, R.; Borawska, M.H.; Socha, K. The Two Faces of —Functional Properties and Potential Hazards. Phytother. Res. 2020, 34, 2932–2944. [Google Scholar] [CrossRef] [PubMed]
- Modi, H.A.; Sanjay Parihar, S.P.; Pithawala, E.A.; Jain, N.K. Preliminary Phytochemical Screening and Antibacterial Activity of Wild Edible Mushrooms Collected from Mahal Forest of Dang District, Gujarat, India. World J. Pharm. Pharm. Sci. 2014, 3, 1164–1174. [Google Scholar]
- Kalaw, S.; Albinto, R. Functional Activities of Philippine Wild Strain of Coprinus comatus (O. F. Müll.: Fr.) Pers and Pleurotus Cystidiosus, O. K. Miller Grown on Rice Straw Based Substrate Formulation. Mycosphere 2014, 5, 646–655. [Google Scholar] [CrossRef]
- de Carvalho, M.P.; Gulotta, G.; do Amaral, M.W.; Lünsdorf, H.; Sasse, F.; Abraham, W.-R. Coprinuslactone Protects the Edible Mushroom Coprinus comatus against Biofilm Infections by Blocking Both Quorum-Sensing and MurA. Environ. Microbiol. 2016, 18, 4254–4264. [Google Scholar] [CrossRef]
- Ali, F.; Silvy, T.N.; Hossain, T.J.; Uddin, M.K.; Uddin, M.S. Prevalence and Antimicrobial Resistance Phenotypes of Salmonella Species Recovered at Various Stages of Broiler Operations in Hathazari, Bangladesh. Int. J. One Health 2021, 7, 158–164. [Google Scholar] [CrossRef]
- Bonev, B.; Hooper, J.; Parisot, J. Principles of Assessing Bacterial Susceptibility to Antibiotics Using the Agar Diffusion Method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef]
- Hossain, T.J. Methods for Screening and Evaluation of Antimicrobial Activity: A Review of Protocols, Advantages, and Limitations. Eur. J. Microbiol. Immunol. 2024, 14, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Avci, E.; Alp Avci, G.; Köse, D. Determination of Antioxidant and Antimicrobial Activities of Medically Important Mushrooms Using Different Solvents and Chemical Composition via GC/MS Analyses. J. Food Nutr. Res. 2014, 2, 429. [Google Scholar] [CrossRef]
- Tene Stephano, T.; Julie Mathilde, K.; Houketchang Serge Cyrille, N.; Boungo Gires, T.; Foffe Hermann Arantes, K.; Hilaire Macaire, W. Characterisation of Amylase Crude Extracts of Germinated Corn (Kassaï and Atp Varieties) and Sweet Potato Flours (Local and 1112 Varieties). Int. J. Adv. Res. Biol. Sci. 2018, 5, 230–240. [Google Scholar] [CrossRef]
- de Almeida, P.Z.; Pereira, M.G.; de Carvalho, C.C.; Heinen, P.R.; Ziotti, L.S.; Messias, J.M.; Jorge, J.A.; Polizeli, M.d.L.T.d.M. Bioprospection and Characterization of the Amylolytic Activity by Filamentous Fungi from Brazilian Atlantic Forest. Biota Neotrop. 2017, 17, e20170337. [Google Scholar] [CrossRef]
- Abdulaal, W.H. Purification and Characterization of α-Amylase from Trichoderma Pseudokoningii. BMC Biochem. 2018, 19, 4. [Google Scholar] [CrossRef]
- Karim, K.M.R.; Husaini, A.; Sing, N.N.; Sinang, F.M.; Roslan, H.A.; Hussain, H. Purification of an Alpha Amylase from Aspergillus Flavus NSH9 and Molecular Characterization of Its Nucleotide Gene Sequence. 3 Biotech 2018, 8, 204. [Google Scholar] [CrossRef]
- Jonathan, S.G.; Adeoyo, O.R. Evaluation of Ten Wild Nigerian Mushrooms for Amylase and Cellulase Activities. Mycobiology 2011, 39, 103–108. [Google Scholar] [CrossRef]
- Božić, N.; Lončar, N.; Slavić, M.Š.; Vujčić, Z. Raw Starch Degrading α-Amylases: An Unsolved Riddle. Amylase 2017, 1, 12–25. [Google Scholar] [CrossRef]
- Du, F.; Wang, H.X.; Ng, T.B. An Amylase from Fresh Fruiting Bodies of the Monkey Head Mushroom Hericium Erinaceum. Appl. Biochem. Microbiol. 2013, 49, 23–27. [Google Scholar] [CrossRef]
- Irshad, M. Muhammad Irshad Purification and Characterization of α-Amylase from Ganoderma Tsuage Growing in Waste Bread Medium. Afr. J. Biotechnol. 2012, 11, 3643. [Google Scholar] [CrossRef]
- Bernardes, A.V.; Martins, E.D.S.; Da Mata, J.F.; Ferreira, O.E. Utilização de Subprodutos Agroindustriais Para Produção de α-Amilase Por Rhizomucor Miehei. Rev. Bras. Tecnol. Agroind. 2014, 8, 1439–1451. [Google Scholar] [CrossRef]
- Nwagu, T.N.; Okolo, B.N. Extracellular Amylase Production of a Thermotolerant Fusarium Sp. Isolated from Eastern Nigerian Soil. Arch. Biol. Technol. 2011, 54, 649–658. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.; Sachan, S. Enzymes Used in the Food Industry: Friends or Foes? In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects; Academic Press: Cambridge, MA, USA, 2019; pp. 827–843. [Google Scholar] [CrossRef]
- Khodarahmi, R.; Yazdanparast, R. Suppression Effect of Guanidine Hydrochloride on α-Cyclodextrin-Assisted Refolding of Denatured α-Amylase. Process Biochem. 2005, 40, 2973–2979. [Google Scholar] [CrossRef]
- Wei, X.; Huang, W.; Teng, M.; Shen, H.; Feng, B.; Chen, L.; Yang, F.; Wang, L.; Yu, S. Allosteric Regulation of α-Amylase Induced by Ligands Binding. Int. J. Biol. Macromol. 2023, 243, 125131. [Google Scholar] [CrossRef]
- Paludo, L.C.; Biz, A.P.; Gonçalves, K.M.; Strobel, C.S.; Vaz, M.R.F.; Spier, M.R. Validation of Mathematical Models as a Tool for Prediction of α-Amylase Production by Coprinus comatus in a Low-Cost Culture Medium. Acta Sci.-Technol. 2023, 45, e63415. [Google Scholar] [CrossRef]
- Kalia, S.; Bhattacharya, A.; Prajapati, S.K.; Malik, A. Utilization of Starch Effluent from a Textile Industry as a Fungal Growth Supplement for Enhanced α-Amylase Production for Industrial Application. Chemosphere 2021, 279, 130554. [Google Scholar] [CrossRef]
- de Oliveira Rodrigues, P.; de Cássia Pereira, J.; dos Santos, D.Q.; Gurgel, L.V.A.; Pasquini, D.; Baffi, M.A. Synergistic Action of an Aspergillus (Hemi-)Cellulolytic Consortium on Sugarcane Bagasse Saccharification. Ind. Crops Prod. 2017, 109, 173–181. [Google Scholar] [CrossRef]
- Song, J.; Shen, X.; Liu, F.; Zhao, X.; Wang, Y.; Wang, S.; Wang, P.; Wang, J.; Su, F.; Li, S. Ca2+-Based Metal-Organic Framework as Enzyme Preparation to Promote the Catalytic Activity of Amylase. Mater. Today Chem. 2023, 30, 101522. [Google Scholar] [CrossRef]
- Astolpho, H.A.; Júnior Do Carmo, E.; Astolfi-Filho, S. Expressão e Caracterização de α-Amilase de Bacillus Licheniformis DSM13 Em Levedura Pichia Pastoris. Sci. Amazon 2017, 6, 107–118. [Google Scholar]
- Muruci, L.N.M.; Santos, R.R.S.; Viana, L.A.N.; Damaso, M.C.T.; Couri, S.; Penha, E.M. Estudo Da Estabilidade a Temperatura, PH e a Estocagem, de Lipase Produzida Por Aspergillus Niger Em Fermentação Semi-Sólida. In ENZITC—X Brazilian Seminar on Enzyme Technology; Fundação Universidade Regional de Blumenau: Blumenau, Brazil, 2012. [Google Scholar]
- Ramachandran, S.; Patel, A.K.; Madhavan Nampoothiri, K.; Chandran, S.; Szakacs, G.; Soccol, C.R.; Pandey, A. Alpha Amylase from a Fungal Culture Grown on Oil Cakes and Its Properties. Braz. Arch. Biol. Technol. 2004, 47, 309–317. [Google Scholar] [CrossRef]
- Egbune, E.O.; Avwioroko, O.J.; Anigboro, A.A.; Aganbi, E.; Amata, A.I.; Tonukari, N.J. Characterization of a Surfactant-Stable α-Amylase Produced by Solid-State Fermentation of Cassava (Manihot Esculenta Crantz) Tubers Using Rhizopus Oligosporus: Kinetics, Thermal Inactivation Thermodynamics and Potential Application in Laundry Industries. Biocatal. Agric. Biotechnol. 2022, 39, 102290. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Tong, B.; Chen, X.; Chen, J. Purification and Biochemical Characterization of a Thermostable and Acid-Stable Alpha-Amylase from Bacillus Licheniformis B4-423. Int. J. Biol. Macromol. 2018, 109, 329–337. [Google Scholar] [CrossRef] [PubMed]
Antioxidant Activity | CEE C. comatus |
---|---|
DPPH (µmol TE·gDE−1) | 213.34 ± 1.60 |
ABTS (µmol TE·gDE−1 | 11.28 ± 0.46 |
FRAP (µmol TE·gDE−1) | 0.33 ± 0.04 |
TPC (mg GAE·gDE−1) | 8.01 ± 0.39 |
TFC (mg CE·gDE−1) | 285.39 ± 3.53 |
Relative Activity (%) of α-Amylase | ||||||
---|---|---|---|---|---|---|
CaCl2·2H2O | MgSO4 | MnSO4·H2O | Fe2(SO)4·7H2O | CuSO4 | ||
CEE | Control | 100 c | 100 c | 100 a | 100 a | 100 a |
1 mM | 145 b | 121 a | 107 a | 78 b | 75 b | |
2.5 mM | 162 a | 107 bc | 105 a | 75 b | 63 b | |
5 mM | 155 ab | 115 ab | 94 a | 73 b | 59 b | |
PE | Control | 100.00 a | 100.00 ab | 100.00 a | 100.00 a | 100.00 a |
1 mM | 109.39 a | 84.13 c | 91.78 b | 94.33 a | 96.02 ab | |
2.5 mM | 116.68 a | 106.41 a | 98.04 a | 82.58 b | 85.28 b | |
5 mM | 114.99 a | 93.86 bc | 98.51 a | 90.88 ab | 70.70 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paludo, L.C.; Peron-Schlosser, B.; Ramos, R.M.B.; Monteiro, P.I.; Gerhardt, E.C.M.; Chubatsu, L.S.; Spier, M.R. A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products. Processes 2025, 13, 1815. https://doi.org/10.3390/pr13061815
Paludo LC, Peron-Schlosser B, Ramos RMB, Monteiro PI, Gerhardt ECM, Chubatsu LS, Spier MR. A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products. Processes. 2025; 13(6):1815. https://doi.org/10.3390/pr13061815
Chicago/Turabian StylePaludo, Luana Cristina, Bianca Peron-Schlosser, Rúbia Martins Bernardes Ramos, Pablo Inocêncio Monteiro, Edileusa Cristina Marques Gerhardt, Leda Satie Chubatsu, and Michele Rigon Spier. 2025. "A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products" Processes 13, no. 6: 1815. https://doi.org/10.3390/pr13061815
APA StylePaludo, L. C., Peron-Schlosser, B., Ramos, R. M. B., Monteiro, P. I., Gerhardt, E. C. M., Chubatsu, L. S., & Spier, M. R. (2025). A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products. Processes, 13(6), 1815. https://doi.org/10.3390/pr13061815