Photolytic Formation of Polybrominated Dibenzofurans (PBDFs) in Various Simulated Soil-Washing Solutions Containing Polybrominated Diphenyl Ethers (PBDEs)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Setup
2.2.1. Preparation of Simulated Soil-Washing Solutions Containing BDE-28
2.2.2. Photolysis of BDE-28 in Simulated Soil-Washing Solutions
2.2.3. Analysis Method
2.3. Molecular Dynamics Simulation
2.4. Data Processing
2.4.1. Kinetic Fittings
2.4.2. Competition Processes
3. Results and Discussion
3.1. BDE-28 Photolysis and 2,8-BDF Formation in Various Simulated Soil-Washing Solutions
3.2. Formation Behavior of 2,8-BDF in Solutions with Surfactant Concentrations Under CMC
3.3. Effect of Micellar Microenvironment on 2,8-BDF Formation
3.4. Interaction Between BDE-28 and Solubilizer
3.5. Effect of Inorganic Ions on 2,8-BDF Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasi, G.; Li, L.; Breivik, K. Global Historical Stocks and Emissions of PBDEs. Environ. Sci. Technol. 2019, 53, 6330–6340. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, C.; Han, W.; Song, J.; Li, H.; Zhang, Y.; Jing, X.; Wu, W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. Environ. Res. 2020, 187, 109531. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hong, J.; Yu, Z.; Wang, J.; Yang, G.; Sheng, G.; Fu, J. Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: Concentration levels, congener profile, and inventory. Environ. Toxicol. Chem. 2011, 30, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.O.W.; Luksemburg, W.J.; Wong, A.S.; Wong, M.H. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environ. Sci. Technol. 2007, 41, 2730–2737. [Google Scholar] [CrossRef]
- Liu, M.; Huang, B.; Bi, X.H.; Ren, Z.F.; Sheng, G.Y.; Fu, J.M. Heavy metals and organic compounds contamination in soil from an e-waste region in South China. Environ. Sci.-Process. Impacts 2013, 15, 919–929. [Google Scholar] [CrossRef]
- Ma, J.; Addink, R.; Yun, S.; Cheng, J.; Wang, W.; Kannan, K. Polybrominated Dibenzo-p-dioxins/Dibenzofurans and Polybrominated Diphenyl Ethers in Soil, Vegetation, Workshop-Floor Dust, and Electronic Shredder Residue from an Electronic Waste Recycling Facility and in Soils from a Chemical Industrial Complex in Eastern China. Environ. Sci. Technol. 2009, 43, 7350–7356. [Google Scholar] [CrossRef]
- Tang, X.; Zeng, B.; Hashmi, M.Z.; Long, D.; Yu, B.; Ullah, N.; Shen, C.; Chen, Y. PBDEs and PCDD/Fs in surface soil taken from the Taizhou e-waste recycling area, China. Chem. Ecol. 2014, 30, 245–251. [Google Scholar] [CrossRef]
- Wang, J.X.; Liu, L.L.; Wang, J.F.; Pan, B.S.; Fu, X.X.; Zhang, G.; Zhang, L.; Lin, K.F. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environ. Sci. Pollut. Res. 2015, 22, 1020–1033. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.Z.; Huang, H.L.; Niu, Z.C.; Han, W. Characterization of polybrominated diphenyl ethers (PBDEs) and hydroxylated and methoxylated PBDEs in soils and plants from an e-waste area, China. Environ. Pollut. 2014, 184, 405–413. [Google Scholar] [CrossRef]
- Zhang, S.H.; Xu, X.J.; Wu, Y.S.; Ge, J.J.; Li, W.Q.; Huo, X. Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: Distribution, compositional profile, and sources. Chemosphere 2014, 102, 55–60. [Google Scholar] [CrossRef]
- Alabi, O.A.; Bakare, A.A.; Xu, X.J.; Li, B.; Zhang, Y.L.; Huo, X. Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China. Sci. Total Environ. 2012, 423, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Labunsk, I.; Harrad, S.; Santillo, D.; Johnston, P.; Brigden, K. Levels and distribution of polybrominated diphenyl ethers in soil, sediment and dust samples collected from various electronic waste recycling sites within Guiyu town, southern China. Environ. Sci.-Process. Impacts 2013, 15, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiao, X.; Wang, X.; Lu, G.; Gai, N.; Yang, Y. Spatial Distribution of PBDEs in Topsoils from Electronic Waste Dismantling Sites and the Surrounding Areas in Guiyu, Guangdong Province. Rock Miner. Anal. 2012, 31, 1006–1014. [Google Scholar]
- Shah, A.; Shahzad, S.; Munir, A.; Nadagouda, M.N.; Khan, G.S.; Shams, D.F.; Dionysiou, D.D.; Rana, U.A. Micelles as Soil and Water Decontamination Agents. Chem. Rev. 2016, 116, 6042–6074. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. J. Environ. Manag. 2017, 199, 46–61. [Google Scholar] [CrossRef]
- Pei, G.; Zhu, Y.; Cai, X.; Shi, W.; Li, H. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil. Chemosphere 2017, 185, 1112–1121. [Google Scholar] [CrossRef]
- Karthick, A.; Roy, B.; Chattopadhyay, P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. J. Environ. Manag. 2019, 243, 187–205. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015, 285, 419–435. [Google Scholar] [CrossRef]
- Yang, X.; Lu, G.; She, B.; Liang, X.; Yin, R.; Guo, C.; Yi, X.; Dang, Z. Cosolubilization of 4,4′-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles. Chem. Eng. J. 2015, 260, 74–82. [Google Scholar] [CrossRef]
- Trellu, C.; Pechaud, Y.; Oturan, N.; Mousset, E.; van Hullebusch, E.D.; Huguenot, D.; Oturan, M.A. Remediation of soils contaminated by hydrophobic organic compounds: How to recover extracting agents from soil washing solutions? J. Hazard. Mater. 2021, 404, 124137. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, J.; Du, X.; Xie, C.; Zhou, J.; Tao, X.; Dang, Z.; Lu, G. Efficient removal of polybrominated diphenyl ethers from soil washing effluent by dummy molecular imprinted adsorbents: Selectivity and mechanisms. J. Environ. Sci. 2023, 129, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Lu, G.; Wang, R.; Huang, K.; Tao, X.; Yang, Y.; Zou, M.; Xie, Y.; Yin, H.; Shi, Z.; et al. Effects of surfactant on the degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by nanoscale Ag/Fe particles: Kinetics, mechanisms and intermediates. Environ. Pollut. 2019, 245, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, G.; Wang, M. Enhanced solubilization and reductive degradation of 2,2′,4,4′- tretrabromodiphenyl ether by PAC-Pd/Fe nanoparticles in the presence of surfactant. Environ. Sci. Pollut. Res. 2020, 27, 5085–5096. [Google Scholar] [CrossRef]
- Wei, L.; Zhou, B.; Xiao, K.; Yang, B.; Yu, G.; Li, J.; Zhu, C.; Zhang, J.; Duan, H. Highly efficient degradation of 2,2′,4,4′-tetrabromodiphenyl ether through combining surfactant-assisted Zn0 reduction with subsequent Fenton oxidation. J. Hazard. Mater. 2020, 385, 121551. [Google Scholar] [CrossRef]
- Liang, D.-w.; Yang, Y.-h.; Xu, W.-w.; Peng, S.-k.; Lu, S.-f.; Xiang, Y. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics. J. Hazard. Mater. 2014, 278, 592–596. [Google Scholar] [CrossRef]
- Huang, K.; Liu, H.; He, J.; He, Y.; Tao, X.; Yin, H.; Dang, Z.; Lu, G. Application of Ag/TiO2 in photocatalytic degradation of 2,2′,4,4′-tetrabromodiphenyl ether in simulated washing waste containing Triton X-100. J. Environ. Chem. Eng. 2021, 9, 105077. [Google Scholar] [CrossRef]
- Huo, L.; Zhao, C.; Gu, T.; Yan, M.; Zhong, H. Aerobic and anaerobic biodegradation of BDE-47 by bacteria isolated from an e-waste-contaminated site and the effect of various additives. Chemosphere 2022, 294, 133739. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Fang, L.; Yu, G.; Lin, H.; Wang, L. Photodegradation of 2,2′,4,4′-tetrabromodiphenyl ether in nonionic surfactant solutions. Chemosphere 2008, 73, 1594–1601. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Yu, G.; Deng, S. Photodestruction of BDE-99 in micellar solutions of nonionic surfactants of Brij 35 and Brij 58. Chemosphere 2010, 78, 752–759. [Google Scholar] [CrossRef]
- Huang, K.; Lu, G.; Zheng, Z.; Wang, R.; Tang, T.; Tao, X.; Cai, R.; Dang, Z.; Wu, P.; Yin, H. Photodegradation of 2,4,4′-tribrominated diphenyl ether in various surfactant solutions: Kinetics, mechanisms and intermediates. Environ. Sci.-Process. Impacts 2018, 20, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liang, J.; Jafvert, C.T.; Li, Q.; Chen, S.; Tao, X.; Zou, M.; Dang, Z.; Lu, G. Effects of ferric ion on the photo-treatment of nonionic surfactant Brij35 washing waste containing 2,2′,4,4′-terabromodiphenyl ether. J. Hazard. Mater. 2021, 415, 125572. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.F.; Alves, A.; Madeira, L.M. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems—A review. Water Res. 2016, 88, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Luo, Z.; Zhi, D.; Hou, D.; Luo, L.; Du, S.; Zhou, Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. J. Hazard. Mater. 2021, 403, 123674. [Google Scholar] [CrossRef]
- Wang, R.; Tang, T.; Xie, J.B.; Tao, X.Q.; Huang, K.B.; Zou, M.Y.; Yin, H.; Dang, Z.; Lu, G.N. Debromination of polybrominated diphenyl ethers (PBDEs) and their conversion to polybrominated dibenzofurans (PBDFs) by UV light: Mechanisms and pathways. J. Hazard. Mater. 2018, 354, 1–7. [Google Scholar] [CrossRef]
- Du, X.; Li, H.; Liang, J.; Wang, R.; Huang, K.; Hayat, W.; Cai, L.; Tao, X.; Dang, Z.; Lu, G. Hydrogen-Donor-Controlled Polybrominated Dibenzofuran (PBDF) Formation from Polybrominated Diphenyl Ether (PBDE) Photolysis in Solutions: Competition Mechanisms of Radical-Based Cyclization and Hydrogen Abstraction Reactions. Environ. Sci. Technol. 2023, 57, 7777–7788. [Google Scholar] [CrossRef]
- Morillo, E.; Madrid, F.; Lara-Moreno, A.; Villaverde, J. Soil bioremediation by cyclodextrins. A review. Int. J. Pharm. 2020, 591, 119943. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Chem. Phys. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Palazzesi, F.; Calvaresi, M.; Zerbetto, F. A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter 2011, 7, 9148–9156. [Google Scholar] [CrossRef]
- Amani, A.; York, P.; de Waard, H.; Anwar, J. Molecular dynamics simulation of a polysorbate 80 micelle in water. Soft Matter 2011, 7, 2900–2908. [Google Scholar] [CrossRef]
- De Nicola, A.; Kawakatsu, T.; Rosano, C.; Celino, M.; Rocco, M.; Milano, G. Self-Assembly of Triton X-100 in Water Solutions: A Multiscale Simulation Study Linking Mesoscale to Atomistic Models. J. Chem. Theory Comput. 2015, 11, 4959–4971. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. Sobtop, Version 1.0(dev3). Available online: http://sobereva.com/soft/Sobtop (accessed on 2 April 2022).
- Bezares-Cruz, J.; Jafvert, C.T.; Hua, I. Solar photodecomposition of decabromodiphenyl ether: Products and quantum yield. Environ. Sci. Technol. 2004, 38, 4149–4156. [Google Scholar] [CrossRef] [PubMed]
- Erickson, P.R.; Grandbois, M.; Arnold, W.A.; McNeill, K. Photochemical Formation of Brominated Dioxins and Other Products of Concern from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs). Environ. Sci. Technol. 2012, 46, 8174–8180. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Zhou, Q. Surfactant−Surfactant Interactions in Mixed Monolayer and Mixed Micelle Formation. Langmuir 2001, 17, 3532–3537. [Google Scholar] [CrossRef]
- Johnson, S.B.; Drummond, C.J.; Scales, P.J.; Nishimura, S. Electrical double layer properties of hexadecyltrimethylammonium chloride surfaces in aqueous solution. Colloids Surf. A 1995, 103, 195–206. [Google Scholar] [CrossRef]
Solubilizer | Molecular Weight | CMC/μM |
---|---|---|
TX100 | 647.0 | 270 |
TX45 | 382.5 | 360 |
TX165 | 910.0 | 456 |
TX405 | 1966.0 | 793 |
TW80 | 1310.0 | 25 |
CTAB | 364.5 | 786 |
SDBS | 348.5 | 2389 |
SDS | 288.4 | 7767 |
Brij30 | 362.5 | 37 |
Brij35 | 1199.5 | 90 |
β-CD | 1135.0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Du, X.; Zeng, S.; Wen, J.; Luo, J.; Wu, S.; Zhang, Q.; Tao, X.; Lu, G. Photolytic Formation of Polybrominated Dibenzofurans (PBDFs) in Various Simulated Soil-Washing Solutions Containing Polybrominated Diphenyl Ethers (PBDEs). Processes 2025, 13, 1806. https://doi.org/10.3390/pr13061806
Zhang C, Du X, Zeng S, Wen J, Luo J, Wu S, Zhang Q, Tao X, Lu G. Photolytic Formation of Polybrominated Dibenzofurans (PBDFs) in Various Simulated Soil-Washing Solutions Containing Polybrominated Diphenyl Ethers (PBDEs). Processes. 2025; 13(6):1806. https://doi.org/10.3390/pr13061806
Chicago/Turabian StyleZhang, Chenyu, Xiaodong Du, Songhan Zeng, Jinghong Wen, Jielei Luo, Sile Wu, Qian Zhang, Xueqin Tao, and Guining Lu. 2025. "Photolytic Formation of Polybrominated Dibenzofurans (PBDFs) in Various Simulated Soil-Washing Solutions Containing Polybrominated Diphenyl Ethers (PBDEs)" Processes 13, no. 6: 1806. https://doi.org/10.3390/pr13061806
APA StyleZhang, C., Du, X., Zeng, S., Wen, J., Luo, J., Wu, S., Zhang, Q., Tao, X., & Lu, G. (2025). Photolytic Formation of Polybrominated Dibenzofurans (PBDFs) in Various Simulated Soil-Washing Solutions Containing Polybrominated Diphenyl Ethers (PBDEs). Processes, 13(6), 1806. https://doi.org/10.3390/pr13061806