Optimized Electrocoagulation Pre-Treatment for Fouling Reduction During Nanofiltration of Lake Water Containing Microcystin-LR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrocoagulation Process
2.3. Sludge Characterizations
2.4. Nanofiltration
3. Results and Discussion
3.1. Sludge Property Characterization
3.2. DOC Removal
3.3. Microcystin-LR Removal
3.4. Fouling Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DLS | Dynamic Light Scattering |
DOC | Dissolved Oxygen Content |
EC | Electrocoagulation |
HAB | Harmful Algal Bloom |
MWCO | Molecular Weight Cut Off |
NF | Nanofiltration |
PAC | Polyaluminum Chloride |
SVI | Sludge Volume Index |
WHO | World Health Organization |
Appendix A. Supplementary Information
References
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful Algal Blooms and Eutrophication: Nutrient Sources, Composition, and Consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Bláha, L.; Babica, P.; Maršálek, B. Toxins Produced in Cyanobacterial Water Blooms—Toxicity and Risks. Interdiscip. Toxicol. 2009, 2, 36. [Google Scholar] [CrossRef]
- Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems. Available online: https://www.epa.gov/sites/default/files/2014-08/documents/cyanobacteria_factsheet.pdf (accessed on 1 September 2023).
- Lone, Y.; Koiri, R.K.; Bhide, M. An Overview of the Toxic Effect of Potential Human Carcinogen Microcystin-LR on Testis. Toxicol. Rep. 2015, 2, 289–296. [Google Scholar] [CrossRef]
- Harmful Algae Present at Lake Fayetteville. Available online: https://www.fayetteville-ar.gov/CivicSend/ViewMessage/message/114543 (accessed on 1 September 2023).
- Zhang, H.; Cheng, M.; Zhang, B. Release and Removal of Intracellular and Extracellular Microcystins (RR, LR) Using Nano-Fe3O4 Particles as a Coagulant Aid for Polyaluminum Chloride. Water-Energy Nexus 2024, 7, 143–150. [Google Scholar] [CrossRef]
- Qi, J.; Ma, M.; Miao, S.; Liu, R.; Hu, C.; Qu, J. Pre-Oxidation Enhanced Cyanobacteria Removal in Drinking Water Treatment: A Review. J. Environ. Sci. 2021, 110, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.L.; Zhao, J.W.; Chai, B.B. Mechanism Studies on Chlorine and Potassium Permanganate Degradation of Microcystin-LR in Water Using High-Performance Liquid Chromatography Tandem Mass Spectrometry. Water Sci. Technol. 2008, 58, 1079–1084. [Google Scholar] [CrossRef]
- Brooke, S.; Newcombe, G.; Nicholson, B.; Klass, G. Decrease in Toxicity of Microcystins LA and LR in Drinking Water by Ozonation. Toxicon 2006, 48, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Chintalapati, P.; Mohseni, M. Degradation of Cyanotoxin Microcystin-LR in Synthetic and Natural Waters by Chemical-Free UV/VUV Radiation. J. Hazard. Mater. 2020, 381, 120921. [Google Scholar] [CrossRef]
- Ho, L.; Lambling, P.; Bustamante, H.; Duker, P.; Newcombe, G. Application of Powdered Activated Carbon for the Adsorption of Cylindrospermopsin and Microcystin Toxins from Drinking Water Supplies. Water Res. 2011, 45, 2954–2964. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Rosa, M.J. How Does the Adsorption of Microcystins and Anatoxin-a on Nanofiltration Membranes Depend on Their Co-Existence and on the Water Background Matrix. Water Sci. Technol. 2012, 66, 976–982. [Google Scholar] [CrossRef]
- Dixon, M.B.; Falconet, C.; Ho, L.; Chow, C.W.K.; O’Neill, B.K.; Newcombe, G. Removal of Cyanobacterial Metabolites by Nanofiltration from Two Treated Waters. J. Hazard. Mater. 2011, 188, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Lebad, M.S.; Ballot, A.; Vogelsang, C.; Abdessemed, D.; Krzeminski, P. Removal of a Cyanotoxins Mixture by Loose Nanofiltration Membranes Applied in Drinking Water Production. J. Water Process Eng. 2024, 57, 104694. [Google Scholar] [CrossRef]
- Dixon, M.B.; Falconet, C.; Ho, L.; Chow, C.W.K.; O’Neill, B.K.; Newcombe, G. Nanofiltration for the Removal of Algal Metabolites and the Effects of Fouling. Water Sci. Technol. 2010, 61, 1189–1199. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Sousa, V.S. Fouling of Nanofiltration Membrane: Effects of NOM Molecular Weight and Microcystins. Desalination 2013, 315, 149–155. [Google Scholar] [CrossRef]
- Guo, Y.; Li, T.Y.; Xiao, K.; Wang, X.M.; Xie, Y.F. Key Foulants and Their Interactive Effect in Organic Fouling of Nanofiltration Membranes. J. Memb. Sci. 2020, 610, 118252. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; McKean, T.; Khalili, M.; Do, S.; Hackett, C.; Liyanage, R.; Qian, X.; Wickramasinghe, R. Synergistic Effect of Electrocoagulation and Antifouling Nanofiltration Membranes for Microcystin Removal. Chemosphere 2025, 376, 144298. [Google Scholar] [CrossRef]
- Gijsbertsen-Abrahamse, A.J.; Schmidt, W.; Chorus, I.; Heijman, S.G.J. Removal of Cyanotoxins by Ultrafiltration and Nanofiltration. J. Membr. Sci. 2006, 276, 252–259. [Google Scholar] [CrossRef]
- Kum, S.; Landsman, M.R.; Su, G.M.; Freychet, G.; Lawler, D.F.; Katz, L.E. Performance of a Hybrid ED−NF Membrane System for Water Recovery Improvement via NOM Fouling Control. ACS ES&T Eng. 2021, 1, 1420–1431. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Rosa, M.J. Integration of Dissolved Gas Flotation and Nanofiltration for M. Aeruginosa and Associated Microcystins Removal. Water Res. 2006, 40, 3612–3620. [Google Scholar] [CrossRef]
- Alhweij, H.; Emanuelsson, E.A.C.; Shahid, S.; Wenk, J. Organic Matter Removal and Antifouling Performance of Sulfonated Polyaniline Nanofiltration (S-PANI NF) Membranes. J. Environ. Chem. Eng. 2022, 10, 107906. [Google Scholar] [CrossRef]
- Mallya, D.S.; Abdikheibari, S.; Dumée, L.F.; Muthukumaran, S.; Lei, W.; Baskaran, K. Removal of Natural Organic Matter from Surface Water Sources by Nanofiltration and Surface Engineering Membranes for Fouling Mitigation—A Review. Chemosphere 2023, 321, 138070. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Li, B.; Ji, J.; Sotto, A.; Van Der Bruggen, B.; Shen, J.; Gao, C. Preparation and Characterization of an Amphiphilic Polyamide Nanofiltration Membrane with Improved Antifouling Properties by Two-Step Surface Modification Method. RSC Adv. 2018, 8, 13353–13363. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Gregory, J. Coagulation by Hydrolysing Metal Salts. Adv. Colloid Interface Sci. 2003, 100–102, 475–502. [Google Scholar] [CrossRef]
- Shen, W.; An, L.; Xu, X.; Yan, F.; Dai, R. Microcystis Aeruginosa Removal and Simultaneous Control of Algal Organic Matter (AOM) Release Using an Electro-Flocculation–Electro-Fenton (EC-EF) System without Chemical Addition. Water 2024, 16, 162. [Google Scholar] [CrossRef]
- Meetiyagoda, T.A.O.K.; Fujino, T. Comparison of Different Anode Materials to Remove Microcystis Aeruginosa Cells Using Electro-Coagulation–Flotation Process at Low Current Inputs. Water 2020, 12, 3528. [Google Scholar] [CrossRef]
- Huang, C.; Huang, W.; Xiong, J.; Song, H.; Wang, S. Advanced Electrochemical Strategies for Simultaneous Removal of Microcystis Aeruginosa and Microcystin-LR: On-Demand Optimization and Mechanistic Insights. Sep. Purif. Technol. 2025, 354, 129283. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, H.; Jiang, L.; Wang, X.; Tang, Y.; Xiao, L. Control of Cyanobacterial Bloom and Purification of Bloom-Laden Water by Sequential Electro-Oxidation and Electro-Oxidation-Coagulation. J. Hazard. Mater. 2024, 462, 132729. [Google Scholar] [CrossRef]
- Liang, D.; Li, N.; An, J.; Ma, J.; Wu, Y.; Liu, H. Fenton-Based Technologies as Efficient Advanced Oxidation Processes for Microcystin-LR Degradation. Sci. Total Env. 2021, 753, 141809. [Google Scholar] [CrossRef]
- Opoku-Duah, S.; Johnson, D. Removal of Perfluorooctanoic Acid and Microcystins from Drinking Water by Electrocoagulation. J. Chem. 2020, 2020, 1836264. [Google Scholar] [CrossRef]
- Ebersbach, I.; Ludwig, S.M.; Constapel, M.; Kling, H.W. An Alternative Treatment Method for Fluorosurfactant-Containing Wastewater by Aerosol-Mediated Separation. Water Res. 2016, 101, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Harif, T.; Khai, M.; Adin, A. Electrocoagulation versus Chemical Coagulation: Coagulation/Flocculation Mechanisms and Resulting Floc Characteristics. Water Res. 2012, 46, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A Comprehensive Review of Electrocoagulation for Water Treatment: Potentials and Challenges. J. Environ. Manage. 2017, 186, 24–41. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Chaabane, T.; Maachi, R.; Darchen, A. Efficiency of a Pretreatment by Electrocoagulation with Aluminum Electrodes in a Nanofiltration Treatment of Polluted Water. Procedia Eng. 2012, 33, 465–474. [Google Scholar] [CrossRef]
- Tavangar, T.; Jalali, K.; Alaei Shahmirzadi, M.A.; Karimi, M. Toward Real Textile Wastewater Treatment: Membrane Fouling Control and Effective Fractionation of Dyes/Inorganic Salts Using a Hybrid Electrocoagulation—Nanofiltration Process. Sep. Purif. Technol. 2019, 216, 115–125. [Google Scholar] [CrossRef]
- Gönder, Z.B.; Balcıoğlu, G.; Vergili, I.; Kaya, Y. An Integrated Electrocoagulation–Nanofiltration Process for Carwash Wastewater Reuse. Chemosphere 2020, 253, 126713. [Google Scholar] [CrossRef]
- Den, W.; Wang, C.J. Removal of Silica from Brackish Water by Electrocoagulation Pretreatment to Prevent Fouling of Reverse Osmosis Membranes. Sep. Purif. Technol. 2008, 59, 318–325. [Google Scholar] [CrossRef]
- Mariam, T.; Nghiem, L.D. Landfill Leachate Treatment Using Hybrid Coagulation-Nanofiltration Processes. Desalination 2010, 250, 677–681. [Google Scholar] [CrossRef]
- Cao, Y.; Malmali, M.; Qian, X.; Wickramasinghe, S.R. Continuous Electrocoagulation-Membrane Distillation Unit for Treating Hydraulic Fracturing Produced Water. J. Water Proc. Eng. 2022, 50, 103219. [Google Scholar] [CrossRef]
- Jebur, M.; Chiao, Y.H.; Matsuyama, H.; Wickramasinghe, S.R. Electrocoagulation as a Pretreatment for Reverse Osmosis for Potable Water from Brackish Groundwater. Water Resour. Ind. 2024, 31, 100243. [Google Scholar] [CrossRef]
- Volk, C.; Wood, L.; Johnson, B.; Robinson, J.; Zhu, H.W.; Kaplan, L. Monitoring Dissolved Organic Carbon in Surface and Drinking Waters. J. Environ. Monit. 2002, 4, 43–47. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sardari, E.; Javadian, H.R.; Katal, R.; Sefti, M.V. Removal of Oil from Biodiesel Wastewater by Electrocoagulation Method. Korean J. Chem. Eng. 2013, 30, 634–641. [Google Scholar] [CrossRef]
- Haggard, B.; Grantz, E.; Austin, B.; Lasater, A.; Haddock, L.; Ferri, A.; Wagner, N.; Scott, J. Microcystin Shows Thresholds and Hierarchical Structure With Physiochemical Properties At Lake Fayetteville, Arkansas, May Through September 2020. J. ASABE 2023, 66, 307–317. [Google Scholar] [CrossRef]
- Jebur, M.; Cao, Y.; Malmali, M.; Qian, X.; Wickramasinghe, S.R. Treating Hydraulic Fracturing Produced Water by Electrocoagulation. Sep. Sci. Technol. 2023, 58, 1111–1120. [Google Scholar] [CrossRef]
- USEPA Method 9060A Total Organic Carbon. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9060a.pdf (accessed on 13 May 2025).
- Gao, S.; Yang, J.; Tian, J.; Ma, F.; Tu, G.; Du, M. Electro-Coagulation–Flotation Process for Algae Removal. J. Hazard. Mater. 2010, 177, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Sun, J.; Wang, S.; Liu, R.; Liu, H.; Qu, J. Enhanced Efficiency in HA Removal by Electrocoagulation through Optimizing Flocs Properties: Role of Current Density and pH. Sep. Purif. Technol. 2017, 175, 248–254. [Google Scholar] [CrossRef]
- Font, R.; García, P.; Rodriguez, M. Sedimentation Test of Metal Hydroxides: Hydrodynamics and Influence of PH. Colloids Surf. A Physicochem. Eng. Asp. 1999, 157, 73–84. [Google Scholar] [CrossRef]
- Khandegar, V.; Saroha, A.K. Electrochemical Treatment of Textile Effluent Containing Acid Red 131 Dye. J. Hazard. Toxic Radioact. Waste 2014, 18, 38–44. [Google Scholar] [CrossRef]
- Zhao, K.; Sun, J.; Hu, C.; Qu, J. Membrane Fouling Reduction through Electrochemically Regulating Flocs Aggregation in an Electro-Coagulation Membrane Reactor. J. Environ. Sci. 2019, 83, 144–151. [Google Scholar] [CrossRef]
Total Nitrogen (mg/L) | 1.434–1.700 |
Total Phosphorus (mg/L) | 0.031–0.048 |
NH4-N (mg/L) | 0.147–0.266 |
Microcystin (µg/L) | 0.069–0.111 |
Water Temp (°C) | 4.7–11.2 |
pH | 8.06–8.88 |
Dissolved Oxygen (mg/L) | 10.23–11.82 |
Conductivity (µS/cm) | 229.1–259.1 |
Alkalinity (mg/L as CaCO3) | 88–100 |
Dissolved Organic Carbon (mg/L) | 5–10 |
Electrode | pH | [PAC] (g/L) | Current (A) |
---|---|---|---|
Al | 4 | 0.88 | 0.49 |
Al | 7 | 0.88 | 0.57 |
Al | 7 | 0.22 | 0.23 |
Fe | 4 | 0.88 | 0.53 |
Fe | 7 | 0.88 | 0.71 |
Fe | 7 | 0.22 | 0.25 |
Zn | 4 | 0.88 | 0.52 |
Zn | 7 | 0.88 | 0.6 |
Zn | 7 | 0.22 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKean, T.; Thamaraiselvan, C.; Do, S.; Wickramasinghe, S.R. Optimized Electrocoagulation Pre-Treatment for Fouling Reduction During Nanofiltration of Lake Water Containing Microcystin-LR. Processes 2025, 13, 1741. https://doi.org/10.3390/pr13061741
McKean T, Thamaraiselvan C, Do S, Wickramasinghe SR. Optimized Electrocoagulation Pre-Treatment for Fouling Reduction During Nanofiltration of Lake Water Containing Microcystin-LR. Processes. 2025; 13(6):1741. https://doi.org/10.3390/pr13061741
Chicago/Turabian StyleMcKean, Thomas, Chidambaram Thamaraiselvan, Sarah Do, and S. Ranil Wickramasinghe. 2025. "Optimized Electrocoagulation Pre-Treatment for Fouling Reduction During Nanofiltration of Lake Water Containing Microcystin-LR" Processes 13, no. 6: 1741. https://doi.org/10.3390/pr13061741
APA StyleMcKean, T., Thamaraiselvan, C., Do, S., & Wickramasinghe, S. R. (2025). Optimized Electrocoagulation Pre-Treatment for Fouling Reduction During Nanofiltration of Lake Water Containing Microcystin-LR. Processes, 13(6), 1741. https://doi.org/10.3390/pr13061741