Thermal Characterization of Structured Porous Materials and Phase Change Composites for Heat Sink Applications
Abstract
:1. Introduction
1.1. Role of Thermal Evaluation in Heat Sink Design
1.2. Integration of PCMs in Heat Sinks
1.3. SPM for Thermal Management
- How does the integration of SPM into PCM-based heat sinks affect their overall thermal performance?
- How do Paraffin wax and Erythritol compare as PCMs in terms of heat storage and transfer efficiency?
- Can the synergistic integration of SPMs with PCMs significantly enhance the heat dissipation capability of heat sinks under varying thermal loading conditions?
2. Materials and Methods
2.1. Material Properties
Property | Aluminum (Heat Sink) [44,45] | Paraffin Wax (PCM) [46,47] | Erythritol (PCM) [48] | SPM [49,50] |
---|---|---|---|---|
Density (kg/m3) | 2700 | 800–850 | 1250 | 850–950 |
Specific Heat (J/kg·K) | 900 | 2200 | 2350 | 1500 |
Thermal Conductivity (W/m·K) | 205 | 0.2 | 0.3 | 0.4 |
Latent Heat (J/kg) | - | 150–250 | 270–320 | - |
Melting Point (°C) | - | 46–68 | 118–122 | - |
Viscosity (Pa·s) | - | 0.02–0.05 | 0.08–0.12 | - |
Porosity | - | - | - | 60–80% (typical range) |
2.2. Design and Modeling of Heat Sink with PCM and SPM
2.3. Model Conversion and Importation to ANSYS
2.4. Meshing of the Model
- Size Function: set to adaptive to ensure the mesh refines in areas with higher thermal gradients.
- Relevance Center: set to fine to improve the resolution of the mesh.
- Element Size: set to 0.680 mm, a value chosen to balance accuracy and computational cost.
Mesh Output and Grid Independence Evaluation
- Meshed Model: the meshed model of the heat sink is presented in Figure 4, where each element is shown, and the discretization process is highlighted.
2.5. Application of Thermal Boundary Conditions
- Heat Flow: A constant heat flux of 8 W is applied at the base of the heat sink. This value is selected based on typical power dissipation in small electronic devices.
- Convection Boundary Condition: The convection heat transfer coefficient is taken to be 1900 W/m2·K, which is the rate of heat transfer between the heat sink and the surrounding air. The temperature of the ambient is set to typical room temperature, i.e., 295 K. Figure 5 shows the thermal boundary conditions on the heat sink model, where the heat flux and convection are applied to the model.
2.6. Simulation Setup
2.7. Solver Operations & Nodal Calculations
3. Results and Discussion
3.1. Temperature Distribution
- At 200 s (Figure 7), the temperature of the heat sink reaches 306.94 K, and the PCM temperature reaches 301.97 K. We can see that as the PCM absorbs heat, the temperature continues to rise until the PCM melts slowly.
- At 300 s, the temperature of the heat sink becomes 309.9 K, and the temperature of the PCM comes to 303.72 K as shown in Figure 8. The increasing trend is induced due to the continuous heat absorption by the PCM.
- At 400 s, the heat sink temperature reaches 312 K, with the PCM material maintaining a temperature of 303.72 K. These values are indicative of the efficient heat transfer process and PCM performance, as shown in Figure 9.
3.2. Temperature vs. Time Curve
3.3. Heat Flux Distribution
- Heat Sink Domain: The heat flux vector plot for the entire geometry of the heat sink is shown in Figure 11. The highest magnitude of heat flux is observed at the bottom lattices of the heat sink, with values exceeding 59,965 W/m2. The heat flux is notably higher at the center lattices compared to the edge lattices, which experience a lower heat flux of approximately 26,655 W/m2.
- PCM Domain: The heat flux distribution within the PCM domain is shown in Figure 12. The plot reveals that the highest heat flux occurs at the lower zones of the PCM (near the base), with values reaching up to 613 W/m2. The heat flux decreases as the material moves away from the base, which corresponds to the natural heat distribution expected in PCMs.
3.4. Temperature Distribution in PCM Domain
3.5. Heat Absorption by PCM Materials
Time (s) | Heat Absorption (J)—Paraffin Wax | Heat Absorption (J)—Erythritol |
---|---|---|
50 | 215 | 406 |
100 | 5372.4 | 3886 |
150 | 9805.2 | 6786 |
200 | 13,812 | 9338 |
250 | 17,485.8 | 11,658 |
3.6. Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghadim, H.B.; Godin, A.; Veillere, A.; Duquesne, M.; Haillot, D. Review of Thermal Management of Electronics and Phase Change Materials. Renew. Sustain. Energy Rev. 2025, 208, 115039. [Google Scholar] [CrossRef]
- Siahchehrehghadikolaei, S.; Gholinia, M.; Ghadikolaei, S.S.; Lin, C.-X. A CFD Modeling of CPU Cooling by Eco-Friendly Nanofluid and Fin Heat Sink Passive Cooling Techniques. Adv. Powder Technol. 2022, 33, 103813. [Google Scholar] [CrossRef]
- Rasool, G.; Xinhua, W.; Sun, T.; Hayat, T.; Sheremet, M.; Uddin, A.; Shahzad, H.; Abbas, K.; Razzaq, I.; Yuexin, W. Recent Advancements in Battery Thermal Management System (BTMS): A Review of Performance Enhancement Techniques with an Emphasis on Nano-Enhanced Phase Change Materials. Heliyon 2024, 10, e36950. [Google Scholar] [CrossRef]
- Agarwal, A.; Molwane, O.B.; Pitso, I. Thermal Analysis & Modelling of Phase Change Material Used in Low Temperature Industrial Wastewater Applications. Mater. Today Proc. 2021, 39, 596–605. [Google Scholar] [CrossRef]
- Bianco, V.; De Rosa, M.; Vafai, K. Phase-Change Materials for Thermal Management of Electronic Devices. Appl. Therm. Eng. 2022, 214, 118839. [Google Scholar] [CrossRef]
- Agarwal, A.; Letsatsi, M.T.; Pitso, I. Response Surface Optimization of Heat Sink Used in Electronic Cooling Applications. In Recent Advances in Materials and Modern Manufacturing: Select Proceedings of ICAMMM 2021; Springer Nature: Singapore, 2022; pp. 121–129. [Google Scholar]
- Kumar, H.; Agarwal, A.; Kalenga, M.K.W.; Prasad, R.; Kumar, P.; Chilakamarri, L.A.; Yelamasetti, B. Fabrication of Cu/SiC Surface Composite via Thermo-Mechanical Process (Friction Stir Processing) for Heat Sink Application. Materials 2025, 18, 1179. [Google Scholar] [CrossRef]
- Khan, W.A.; Culham, J.R.; Yovanovich, M.M. Performance of Shrouded Pin-Fin Heat Sinks for Electronic Cooling. J. Thermophys. Heat. Trans. 2006, 20, 408–414. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasnain, S.M.M.; Paramasivam, P.; Ayanie, A.G. Advancing Thermal Management in Electronics: A Review of Innovative Heat Sink Designs and Optimization Techniques. RSC Adv. 2024, 14, 31291–31319. [Google Scholar] [CrossRef]
- Gaikwad, A.; Sathe, A.; Sanap, S. A Design Approach for Thermal Enhancement in Heat Sinks Using Different Types of Fins: A Review. Front. Therm. Eng. 2023, 2, 980985. [Google Scholar] [CrossRef]
- Ahmad, E.Z.; Fazlizan, A.; Jarimi, H.; Sopian, K.; Ibrahim, A. Enhanced Heat Dissipation of Truncated Multi-Level Fin Heat Sink (MLFHS) in Case of Natural Convection for Photovoltaic Cooling. Case Stud. Therm. Eng. 2021, 28, 101578. [Google Scholar] [CrossRef]
- Sun, P.; Ismail, M.A.; Mustaffa, A.F. Metamodel-Based Design Optimization for Heat Transfer Enhancement of Finned Heat Sinks. Int. J. Therm. Sci. 2025, 214, 109896. [Google Scholar] [CrossRef]
- Agarwal, A. Computational Investigation of Vertical Axis Wind Turbine in Hydrogen Gas Generation Using PEM Electrolysis. J. New Mater. Electrochem. Syst. 2022, 25, 172–178. [Google Scholar] [CrossRef]
- Das, A.; Apu, M.M.H.; Akter, A.; Reza, M.M.A.; Mia, R. An Overview of Phase Change Materials, Their Production, and Applications in Textiles. Results Eng. 2025, 25, 103603. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Chiavazzo, E.; Mongibello, L. Trending Applications of Phase Change Materials in Sustainable Thermal Engineering: An up-to-Date Review. Energy Convers. Manag. X 2025, 25, 100862. [Google Scholar] [CrossRef]
- Nayak, K.C.; Saha, S.K.; Srinivasan, K.; Dutta, P. A Numerical Model for Heat Sinks with Phase Change Materials and Thermal Conductivity Enhancers. Int. J. Heat. Mass. Transf. 2006, 49, 1833–1844. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, A.; Samykano, M.; Kalidasan, B.; Said, Z. A Review of Organic Phase Change Materials and Their Adaptation for Thermal Energy Storage. Int. Mater. Rev. 2024, 69, 380–446. [Google Scholar] [CrossRef]
- Hou, X.; Xing, Y.; Xu, Z.; Du, Y.; Gao, Y.; Yin, J.; Wang, S. Design and Experimental Analysis of a Cooling System with Erythritol/Xylitol PCM Thermal Energy Storage. J. Energy Storage 2024, 87, 111452. [Google Scholar] [CrossRef]
- Trigui, A.; Abdelmouleh, M. Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties. Sustainability 2023, 15, 1957. [Google Scholar] [CrossRef]
- Yazdani McCord, M.R.; Seppälä, A.; Pourakbari-Kasmaei, M.; Zimmerman, J.B.; Rojas, O.J. From Low Conductivity to High Energy Efficiency: The Role of Conductive Polymers in Phase Change Materials. Chem. Eng. J. 2025, 508, 160804. [Google Scholar] [CrossRef]
- Rajendran, R.C.; Anto, T.; Agarwal, A.; Ilunga, M.; Jayamani, E.; Natarajan, V.D. Materials Synthesis and Characterization of Nano-Titanium Carbide-Filled Acrylonitrile Butadiene-Styrene Polymer Composites for Electromagnetic Interference Shielding. Rev. Compos. Matériaux Avancés 2024, 34, 673–679. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Khanna, S.; Mallick, T.; Sundaram, S. Multiple Phase Change Material (PCM) Configuration for PCM-Based Heat Sinks—An Experimental Study. Energies 2018, 11, 1629. [Google Scholar] [CrossRef]
- Kothari, R.; Mahalkar, P.; Sahu, S.K.; Kundalwal, S.I. Experimental Investigations on Thermal Performance of PCM Based Heat Sink for Passive Cooling of Electronic Components. In Proceedings of the ASME 2018 16th International Conference on Nanochannels Microchannels, and Minichannels, Dubrovnik, Croatia, 10–13 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Akula, R.; Balaji, C. Characterization of Phase Change Material-Based Heat Sinks for Cyclic Heat Loads. Heat Transf. Eng. 2025, 46, 51–71. [Google Scholar] [CrossRef]
- Dutta, P.P.; Saxena, V.; Sahu, S.K. Thermal Performance Analysis of Phase Change Material-Based Plate Finned Heat Sinks for Thermal Management Applications. In International Conference on Advances in Energy Research; Springer Nature: Singapore, 2023; pp. 485–495. [Google Scholar]
- Ghouchi, T.; Pourfallah, M.; Gholinia, M. The Thermal and Hydrodynamic Analysis in a Heat Sink with Different Configurations of Shark Scales-Based Fins. Appl. Therm. Eng. 2024, 250, 123492. [Google Scholar] [CrossRef]
- Dzikevics, M.; Ansone, A.; Blumberga, D. Modelling of Phase Change in Spheres for Applications in Solar Thermal Heat Storage Systems. Energy Procedia 2016, 95, 112–118. [Google Scholar] [CrossRef]
- Cabaleiro, D.; Hamze, S.; Fal, J.; Marcos, M.A.; Estellé, P.; Żyła, G. Thermal and Physical Characterization of PEG Phase Change Materials Enhanced by Carbon-Based Nanoparticles. Nanomaterials 2020, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.; Huitink, D.; Iradukunda, A.-C.; Eddy, C. Topology Optimized Phase Change Material Integrated Heat Sinks and Validation. In Proceedings of the 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 21–23 July 2020; pp. 703–707. [Google Scholar]
- Zhang, Y.; Wang, H.; Lu, P.; Fan, J.; Tu, Q.; Liu, J. Heat Transfer Analysis of Phase Change Materials with Metal Foams. In Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021; pp. 1–5. [Google Scholar]
- Kant, K.; Biwole, P.H.; Shamseddine, I.; Tlaiji, G.; Pennec, F.; Fardoun, F. Recent Advances in Thermophysical Properties Enhancement of Phase Change Materials for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2021, 231, 111309. [Google Scholar] [CrossRef]
- Raheem Junaidi, M.A. Influence of Advanced Composite Phase Change Materials on Thermal Energy Storage and Thermal Energy Conversion. J. Therm. Anal. Calorim. 2025. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, Y.; Li, Z.; Ding, X.; Yuan, W.; Zhao, X.; Yu, B. Experimental Investigation of a PCM-HP Heat Sink on Its Thermal Performance and Anti-Thermal-Shock Capacity for High-Power LEDs. Appl. Therm. Eng. 2016, 108, 192–203. [Google Scholar] [CrossRef]
- Islam, A.; Pandey, A.K.; Saidur, R.; Aljafari, B.; Tyagi, V.V. Advancements in Foam-Based Phase Change Materials: Unveiling Leakage Control, Enhanced Thermal Conductivity, and Promising Applications. J. Energy Storage 2023, 74, 109380. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, W.; Zhang, X.; Gong, X.; Shuai, Y.; He, S.; Xing, X. Comparative Studies on Thermal Management Performance of PCM-Based Heat Sinks Filled with Various Height Structured Porous Materials. Appl. Therm. Eng. 2025, 263, 125376. [Google Scholar] [CrossRef]
- Boucher, E.A. Porous Materials: Structure, Properties and Capillary Phenomena. J. Mater. Sci. 1976, 11, 1734–1750. [Google Scholar] [CrossRef]
- Bianco, N.; Busiello, S.; Iasiello, M.; Mauro, G.M. Finned Heat Sinks with Phase Change Materials and Metal Foams: Pareto Optimization to Address Cost and Operation Time. Appl. Therm. Eng. 2021, 197, 117436. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, W.; Tian, Y. Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded within Phase Change Materials (PCMs). Sol. Energy 2010, 84, 1402–1412. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Ali, H.M.; Khushnood, S. Recent Advances on Thermal Conductivity Enhancement of Phase Change Materials for Energy Storage System: A Review. Int. J. Heat Mass. Transf. 2018, 127, 838–856. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Lai, L.; Xie, D.; Zhu, Y.; Ding, G.; Xu, Q. Experimental and Numerical Investigation of Hydrothermal Performance of a Microchannel Heat Sink with Pin Fins. Case Stud. Therm. Eng. 2024, 60, 104631. [Google Scholar] [CrossRef]
- Wang, G.; Sheng, K.; Wang, Y.; Ding, G.; Xie, D. Thermal Hydraulic Performance of Tree-like Microchannel Heat Sink with High Branching Level Based on the Improved Murray’s Law. Int. J. Heat Mass. Transf. 2024, 231, 125875. [Google Scholar] [CrossRef]
- Gohar, O.; Zubair Khan, M.; Bibi, I.; Bashir, N.; Tariq, U.; Bakhtiar, M.; Ramzan Abdul Karim, M.; Ali, F.; Bilal Hanif, M.; Motola, M. Nanomaterials for Advanced Energy Applications: Recent Advancements and Future Trends. Mater. Des. 2024, 241, 112930. [Google Scholar] [CrossRef]
- Kazaz, O.; Abu-Nada, E. Thermal Performance of Nano-Architected Phase Change Energetic Materials for a next-Generation Solar Harvesting System. Energy Convers. Manag. 2025, 327, 119541. [Google Scholar] [CrossRef]
- Shackelford, J.F.; Han, Y.-H.; Kim, S.; Kwon, S.-H. CRC Materials Science and Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429130687. [Google Scholar]
- Drofenik, U.; Kolar, J.W. A Thermal Model of a Forced-Cooled Heat Sink for Transient Temperature Calculations Employing a Circuit Simulator. IEEJ Trans. Ind. Appl. 2006, 126, 841–851. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K. Solar Energy Storage Using Phase Change Materials. Renew. Sustain. Energy Rev. 2007, 11, 1913–1965. [Google Scholar] [CrossRef]
- Moeini Sedeh, M.; Khodadadi, J.M. Thermal Conductivity Improvement of Phase Change Materials/Graphite Foam Composites. Carbon 2013, 60, 117–128. [Google Scholar] [CrossRef]
- Ma, C.; Wang, J.; Wu, Y.; Wang, Y.; Ji, Z.; Xie, S. Characterization and Thermophysical Properties of Erythritol/Expanded Graphite as Phase Change Material for Thermal Energy Storage. J. Energy Storage 2022, 46, 103864. [Google Scholar] [CrossRef]
- Hu, X.; Gong, X. Experimental Study on the Thermal Response of PCM-Based Heat Sink Using Structured Porous Material Fabricated by 3D Printing. Case Stud. Therm. Eng. 2021, 24, 100844. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Huang, G.; Gegel, H.; Barker, D. Process Modeling of Ti-6Al-4V SPM Materials. MRS Proc. 1998, 521, 249. [Google Scholar] [CrossRef]
- Theodore, L.; Bergman, A.S.L.; Frank, P. Incropera Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781118137253. [Google Scholar]
- Selection of Heat Sink Materials. Available online: https://www.ppi-uk.com/news/selection-of-heat-sink-materials/ (accessed on 10 April 2023).
- Optimizing Thermal Management with Advanced Heat Sink Solutions. Available online: https://www.jamcorcorp.com/news-and-views/optimizing-thermal-management-with-advanced-heat-sink-solutions.php (accessed on 12 April 2025).
- Li, J. Fundamentals of Heat Sink Design: Principles and Best Practices. Available online: https://firstmold.com/tips/heat-sink-design/ (accessed on 15 January 2025).
- Anagnostopoulos, A.; Navarro, M.E.; Jiang, Z.; Ding, Y. Enhancing Composite Phase Change Material Thermal Performance by Tuning Phase Change Materials Properties with Nanoparticles. Sol. Energy Mater. Sol. Cells 2025, 288, 113615. [Google Scholar] [CrossRef]
- Shodiev, A.; Chouchane, M.; Gaberscek, M.; Arcelus, O.; Xu, J.; Oularbi, H.; Yu, J.; Li, J.; Morcrette, M.; Franco, A.A. Deconvoluting the Benefits of Porosity Distribution in Layered Electrodes on the Electrochemical Performance of Li-Ion Batteries. Energy Storage Mater. 2022, 47, 462–471. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, Y.; Chen, S.; Wang, L.; Li, H.; Li, Y.; Tang, D. Copper Foam Reinforced Polymer-Based Phase Change Material Composites for More Efficient Thermal Management of Lithium-Ion Batteries. J. Energy Storage 2023, 73, 108918. [Google Scholar] [CrossRef]
- Agarwal, A.; Dintwa, E.; Moorad, K.; Noko, L. Design and Investigation of a Low Cost & Portable Thermal Energy Storage System for Domestic Applications. In Proceedings of the Environment and Water Resource Management/837: Health Informatics/838: Modelling and Simulation/839: Power and Energy Systems; ACTAPRESS: Calgary, AB, Canada, 2016. [Google Scholar]
- Agarwal, A.; Kalenga, M.K.W.; Ilunga, M. CFD Simulation of Fluid Flow and Combustion Characteristics in Aero-Engine Combustion Chambers with Single and Double Fuel Inlets. Processes 2025, 13, 124. [Google Scholar] [CrossRef]
- Chang, K.-H. Solid Modeling. In Product Design Modeling Using CAD/CAE; Elsevier: Amsterdam, The Netherlands, 2014; pp. 125–167. [Google Scholar]
- Agarwal, A.; Rimal, A.; Ilunga, M. Non-Linear Contact Analysis and Response Surface Optimization of Railway Wheel Using ANSYS. Math. Model. Eng. Probl. 2024, 11, 2039–2047. [Google Scholar] [CrossRef]
- Agarwal, A.; Dinka, M.O.; Ilunga, M. Enhancing Engine Cylinder Heat Dissipation Capacity Through Direct Optimization (DO) Techniques. Processes 2024, 12, 2659. [Google Scholar] [CrossRef]
- Agarwal, A. Numerical Analysis of Solar Collector Absorber Tubes with C- Shaped Roughness for Enhanced Heat Transfer. E3S Web Conf. 2024, 547, 03019. [Google Scholar] [CrossRef]
- Carvill, J. Thermodynamics and Heat Transfer. In Mechanical Engineer’s Data Handbook; Elsevier: Amsterdam, The Netherlands, 1993; pp. 102–145. [Google Scholar]
Number of Elements | Temperature (K) | Error Percentage |
---|---|---|
64,890 | 312.54 | 2.25 |
65,309 | 313.78 | 2.21 |
67,619 | 314.08 | 1.81 |
69,497 | 315.11 | 1.19 |
69,551 | 315.12 | 0.89 |
Source | Maximum Temperature (K) | Difference (K) |
---|---|---|
Present Work | 315.12 | - |
Literature [49] | 314.15 | +0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Kalenga, M.K.W.; Ilunga, M. Thermal Characterization of Structured Porous Materials and Phase Change Composites for Heat Sink Applications. Processes 2025, 13, 1606. https://doi.org/10.3390/pr13051606
Agarwal A, Kalenga MKW, Ilunga M. Thermal Characterization of Structured Porous Materials and Phase Change Composites for Heat Sink Applications. Processes. 2025; 13(5):1606. https://doi.org/10.3390/pr13051606
Chicago/Turabian StyleAgarwal, Abhishek, Michel Kalenga Wa Kalenga, and Masengo Ilunga. 2025. "Thermal Characterization of Structured Porous Materials and Phase Change Composites for Heat Sink Applications" Processes 13, no. 5: 1606. https://doi.org/10.3390/pr13051606
APA StyleAgarwal, A., Kalenga, M. K. W., & Ilunga, M. (2025). Thermal Characterization of Structured Porous Materials and Phase Change Composites for Heat Sink Applications. Processes, 13(5), 1606. https://doi.org/10.3390/pr13051606