Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, N.; Bradley, A.C. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography. J. Chromatogr. A 2012, 1261, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Finch, J.W.; Lavallee, M.J.; Collamati, R.A.; Benevides, C.C.; Gebler, J.C. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations. J. Chromatogr. A 2007, 1147, 30–36. [Google Scholar] [CrossRef]
- Lestremau, F.; Wu, D.; Szücs, R. Evaluation of 1.0mm i.D. Column performances on ultra high pressure liquid chromatography instrumentation. J. Chromatogr. A 2010, 1217, 4925–4933. [Google Scholar] [CrossRef]
- Schweiger, S.; Jungbauer, A. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects. J. Chromatogr. A 2018, 1537, 66–74. [Google Scholar] [CrossRef]
- Fahrner, R.L.; Iyer, H.V.; Blank, G.S. The optimal flow rate and column length for maximum production rate of protein a affinity chromatography. Bioprocess Eng. 1999, 21, 287–292. [Google Scholar] [CrossRef]
- Katz, E.; Ogan, K.L.; Scott, R.P.W. Liquid chromatography column design. J. Chromatogr. A 1984, 289, 65–83. [Google Scholar] [CrossRef]
- Golshan-Shirazi, S.; Guiochon, G. Theory of optimization of the experimental conditions of preparative elution chromatography: Optimization of the column efficiency. Anal. Chem. 1989, 61, 1368–1382. [Google Scholar] [CrossRef]
- Carr, P.W.; Wang, X.; Stoll, D.R. Effect of pressure, particle size, and time on optimizing performance in liquid chromatography. Anal. Chem. 2009, 81, 5342–5353. [Google Scholar] [CrossRef]
- Gritti, F.; Martin, M.; Guiochon, G. Influence of viscous friction heating on the efficiency of columns operated under very high pressures. Anal. Chem. 2009, 81, 3365–3384. [Google Scholar] [CrossRef]
- Fekete, S.; Ganzler, K.; Guillarme, D. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2μm particles. J. Pharm. Biomed. Anal. 2013, 78–79, 141–149. [Google Scholar] [CrossRef]
- Dorn, M.; Hekmat, D. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling. Biotechnol. Prog. 2016, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Norling, L.; Lute, S.; Emery, R.; Khuu, W.; Voisard, M.; Xu, Y.; Chen, Q.; Blank, G.; Brorson, K. Impact of multiple re-use of anion-exchange chromatography media on virus removal. J. Chromatogr. A 2005, 106, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Dorn, M.; Eschbach, F.; Hekmat, D.; Weuster-Botz, D. Influence of different packing methods on the hydrodynamic stability of chromatography columns. J. Chromatogr. A 2017, 1516, 89–101. [Google Scholar] [CrossRef]
- Rathore, A.S.; Mittal, S.; Lute, S.; Brorson, K. Chemometrics applications in biotechnology processes: Predicting column integrity and impurity clearance during reuse of chromatography resin. Biotechnol. Prog. 2012, 28, 1308–1314. [Google Scholar] [CrossRef]
- Keener, R.N.; Maneval, J.E.; Fernandez, E.J. Toward a robust model of packing and scale-up for chromatographic beds. 1. Mechanical compression. Biotechnol. Prog. 2004, 20, 1146–1158. [Google Scholar] [CrossRef]
- Kirkland, J.J.; DeStefano, J.J. The art and science of forming packed analytical high-performance liquid chromatography columns. J. Chromatogr. A 2006, 1126, 50–57. [Google Scholar] [CrossRef]
- Keener, R.N.; Maneval, J.E.; Östergren, K.C.E.; Fernandez, E.J. Mechanical deformation of compressible chromatographic columns. Biotechnol. Prog. 2002, 18, 587–596. [Google Scholar] [CrossRef]
- Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 2014, 1357, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, K. Applications of silica-based monolithic hplc columns. J. Sep. Sci. 2004, 27, 843–852. [Google Scholar] [CrossRef]
- Boi, C.; Malavasi, A.; Carbonell, R.G.; Gilleskie, G. A direct comparison between membrane adsorber and packed column chromatography performance. J. Chromatogr. A 2020, 1612, 460629. [Google Scholar] [CrossRef]
- Vanderheyden, Y.; Cabooter, D.; Desmet, G.; Broeckhoven, K. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core–shell and fully porous particles. J. Chromatogr. A 2013, 1312, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Podgornik, A.; Yamamoto, S.; Peterka, M.; Krajnc, N.L. Fast separation of large biomolecules using short monolithic columns. J. Chromatogr. B 2013, 927, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Teeters, M.A.; Root, T.W.; Lightfoot, E.N. Performance and scale-up of adsorptive membrane chromatography. J. Chromatogr. A 2002, 944, 129–139. [Google Scholar] [CrossRef]
- Yuan, Q.S.; Rosenfeld, A.; Root, T.W.; Klingenberg, D.J.; Lightfoot, E.N. Flow distribution in chromatographic columns1. J. Chromatogr. A 1999, 831, 149–165. [Google Scholar] [CrossRef]
- Ghosh, R. Using a box instead of a column for process chromatography. J. Chromatogr. A 2016, 1468, 164–172. [Google Scholar] [CrossRef]
- Johnson, C.; Natarajan, V.; Antoniou, C. Evaluating two process scale chromatography column header designs using cfd. Biotechnol. Progr. 2014, 30, 837–844. [Google Scholar] [CrossRef]
- Gebauer, K.H.; Luo, X.L.; Barton, N.G.; Stokes, A.N. Efficiency of preparative and process column distribution systems. J. Chromatogr. A 2003, 1006, 45–60. [Google Scholar] [CrossRef]
- Broyles, B.S.; Shalliker, R.A.; Guiochon, G. Visualization of solute migration in chromatographic columns influence of the frit porosity. J. Chromatogr. A 2001, 917, 1–22. [Google Scholar] [CrossRef]
- Shalliker, R.A.; Ritchie, H. Segmented flow and curtain flow chromatography: Overcoming the wall effect and heterogeneous bed structures. J. Chromatogr. A 2014, 1335, 122–135. [Google Scholar] [CrossRef]
- Ghosh, R.; Chen, G. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations. J. Chromatogr. A 2017, 1515, 138–145. [Google Scholar] [CrossRef]
- Chen, G.; Roshankhah, R.; Ghosh, R. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume. J. Chromatogr. A 2021, 1647, 462167. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ghosh, R. Effect of the length-to-width aspect ratio of a cuboid packed-bed device on efficiency of chromatographic separation. Processes 2018, 6, 160. [Google Scholar] [CrossRef]
- Hagemann, F.; Wypysek, D.; Baitalow, K.; Adametz, P.; Thom, V.; Wessling, M. Why device design is crucial for membrane adsorbers. J. Chromatogr. Open 2022, 2, 100029. [Google Scholar] [CrossRef]
Bed Height (mm) | R | |
---|---|---|
5 mL/min | 10 mL/min | |
5 | 0.91 | 0.73 |
10 | 0.91 | 0.71 |
19.5 | 1.06 | 0.83 |
Bed Height (mm) | 25 mL Gradient | 37.5 mL Gradient | 50 mL Gradient | |||
---|---|---|---|---|---|---|
R1 | R2 | R1 | R2 | R1 | R2 | |
5 | 1.28 | 0.81 | 1.48 | 0.95 | 1.64 | 1.05 |
10 | 1.27 | 0.88 | 1.52 | 1.04 | 1.75 | 1.16 |
19.5 | 1.38 | 1.05 | 1.68 | 1.22 | 1.95 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Ghosh, R. Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments. Processes 2025, 13, 1400. https://doi.org/10.3390/pr13051400
Chen G, Ghosh R. Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments. Processes. 2025; 13(5):1400. https://doi.org/10.3390/pr13051400
Chicago/Turabian StyleChen, Guoqiang, and Raja Ghosh. 2025. "Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments" Processes 13, no. 5: 1400. https://doi.org/10.3390/pr13051400
APA StyleChen, G., & Ghosh, R. (2025). Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments. Processes, 13(5), 1400. https://doi.org/10.3390/pr13051400