Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, N.; Bradley, A.C. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography. J. Chromatogr. A 2012, 1261, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Finch, J.W.; Lavallee, M.J.; Collamati, R.A.; Benevides, C.C.; Gebler, J.C. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations. J. Chromatogr. A 2007, 1147, 30–36. [Google Scholar] [CrossRef]
- Lestremau, F.; Wu, D.; Szücs, R. Evaluation of 1.0mm i.D. Column performances on ultra high pressure liquid chromatography instrumentation. J. Chromatogr. A 2010, 1217, 4925–4933. [Google Scholar] [CrossRef]
- Schweiger, S.; Jungbauer, A. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects. J. Chromatogr. A 2018, 1537, 66–74. [Google Scholar] [CrossRef]
- Fahrner, R.L.; Iyer, H.V.; Blank, G.S. The optimal flow rate and column length for maximum production rate of protein a affinity chromatography. Bioprocess Eng. 1999, 21, 287–292. [Google Scholar] [CrossRef]
- Katz, E.; Ogan, K.L.; Scott, R.P.W. Liquid chromatography column design. J. Chromatogr. A 1984, 289, 65–83. [Google Scholar] [CrossRef]
- Golshan-Shirazi, S.; Guiochon, G. Theory of optimization of the experimental conditions of preparative elution chromatography: Optimization of the column efficiency. Anal. Chem. 1989, 61, 1368–1382. [Google Scholar] [CrossRef]
- Carr, P.W.; Wang, X.; Stoll, D.R. Effect of pressure, particle size, and time on optimizing performance in liquid chromatography. Anal. Chem. 2009, 81, 5342–5353. [Google Scholar] [CrossRef]
- Gritti, F.; Martin, M.; Guiochon, G. Influence of viscous friction heating on the efficiency of columns operated under very high pressures. Anal. Chem. 2009, 81, 3365–3384. [Google Scholar] [CrossRef]
- Fekete, S.; Ganzler, K.; Guillarme, D. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2μm particles. J. Pharm. Biomed. Anal. 2013, 78–79, 141–149. [Google Scholar] [CrossRef]
- Dorn, M.; Hekmat, D. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling. Biotechnol. Prog. 2016, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Norling, L.; Lute, S.; Emery, R.; Khuu, W.; Voisard, M.; Xu, Y.; Chen, Q.; Blank, G.; Brorson, K. Impact of multiple re-use of anion-exchange chromatography media on virus removal. J. Chromatogr. A 2005, 106, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Dorn, M.; Eschbach, F.; Hekmat, D.; Weuster-Botz, D. Influence of different packing methods on the hydrodynamic stability of chromatography columns. J. Chromatogr. A 2017, 1516, 89–101. [Google Scholar] [CrossRef]
- Rathore, A.S.; Mittal, S.; Lute, S.; Brorson, K. Chemometrics applications in biotechnology processes: Predicting column integrity and impurity clearance during reuse of chromatography resin. Biotechnol. Prog. 2012, 28, 1308–1314. [Google Scholar] [CrossRef]
- Keener, R.N.; Maneval, J.E.; Fernandez, E.J. Toward a robust model of packing and scale-up for chromatographic beds. 1. Mechanical compression. Biotechnol. Prog. 2004, 20, 1146–1158. [Google Scholar] [CrossRef]
- Kirkland, J.J.; DeStefano, J.J. The art and science of forming packed analytical high-performance liquid chromatography columns. J. Chromatogr. A 2006, 1126, 50–57. [Google Scholar] [CrossRef]
- Keener, R.N.; Maneval, J.E.; Östergren, K.C.E.; Fernandez, E.J. Mechanical deformation of compressible chromatographic columns. Biotechnol. Prog. 2002, 18, 587–596. [Google Scholar] [CrossRef]
- Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 2014, 1357, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, K. Applications of silica-based monolithic hplc columns. J. Sep. Sci. 2004, 27, 843–852. [Google Scholar] [CrossRef]
- Boi, C.; Malavasi, A.; Carbonell, R.G.; Gilleskie, G. A direct comparison between membrane adsorber and packed column chromatography performance. J. Chromatogr. A 2020, 1612, 460629. [Google Scholar] [CrossRef]
- Vanderheyden, Y.; Cabooter, D.; Desmet, G.; Broeckhoven, K. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core–shell and fully porous particles. J. Chromatogr. A 2013, 1312, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Podgornik, A.; Yamamoto, S.; Peterka, M.; Krajnc, N.L. Fast separation of large biomolecules using short monolithic columns. J. Chromatogr. B 2013, 927, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Teeters, M.A.; Root, T.W.; Lightfoot, E.N. Performance and scale-up of adsorptive membrane chromatography. J. Chromatogr. A 2002, 944, 129–139. [Google Scholar] [CrossRef]
- Yuan, Q.S.; Rosenfeld, A.; Root, T.W.; Klingenberg, D.J.; Lightfoot, E.N. Flow distribution in chromatographic columns1. J. Chromatogr. A 1999, 831, 149–165. [Google Scholar] [CrossRef]
- Ghosh, R. Using a box instead of a column for process chromatography. J. Chromatogr. A 2016, 1468, 164–172. [Google Scholar] [CrossRef]
- Johnson, C.; Natarajan, V.; Antoniou, C. Evaluating two process scale chromatography column header designs using cfd. Biotechnol. Progr. 2014, 30, 837–844. [Google Scholar] [CrossRef]
- Gebauer, K.H.; Luo, X.L.; Barton, N.G.; Stokes, A.N. Efficiency of preparative and process column distribution systems. J. Chromatogr. A 2003, 1006, 45–60. [Google Scholar] [CrossRef]
- Broyles, B.S.; Shalliker, R.A.; Guiochon, G. Visualization of solute migration in chromatographic columns influence of the frit porosity. J. Chromatogr. A 2001, 917, 1–22. [Google Scholar] [CrossRef]
- Shalliker, R.A.; Ritchie, H. Segmented flow and curtain flow chromatography: Overcoming the wall effect and heterogeneous bed structures. J. Chromatogr. A 2014, 1335, 122–135. [Google Scholar] [CrossRef]
- Ghosh, R.; Chen, G. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations. J. Chromatogr. A 2017, 1515, 138–145. [Google Scholar] [CrossRef]
- Chen, G.; Roshankhah, R.; Ghosh, R. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume. J. Chromatogr. A 2021, 1647, 462167. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ghosh, R. Effect of the length-to-width aspect ratio of a cuboid packed-bed device on efficiency of chromatographic separation. Processes 2018, 6, 160. [Google Scholar] [CrossRef]
- Hagemann, F.; Wypysek, D.; Baitalow, K.; Adametz, P.; Thom, V.; Wessling, M. Why device design is crucial for membrane adsorbers. J. Chromatogr. Open 2022, 2, 100029. [Google Scholar] [CrossRef]
Bed Height (mm) | R | |
---|---|---|
5 mL/min | 10 mL/min | |
5 | 0.91 | 0.73 |
10 | 0.91 | 0.71 |
19.5 | 1.06 | 0.83 |
Bed Height (mm) | 25 mL Gradient | 37.5 mL Gradient | 50 mL Gradient | |||
---|---|---|---|---|---|---|
R1 | R2 | R1 | R2 | R1 | R2 | |
5 | 1.28 | 0.81 | 1.48 | 0.95 | 1.64 | 1.05 |
10 | 1.27 | 0.88 | 1.52 | 1.04 | 1.75 | 1.16 |
19.5 | 1.38 | 1.05 | 1.68 | 1.22 | 1.95 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Ghosh, R. Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments. Processes 2025, 13, 1400. https://doi.org/10.3390/pr13051400
Chen G, Ghosh R. Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments. Processes. 2025; 13(5):1400. https://doi.org/10.3390/pr13051400
Chicago/Turabian StyleChen, Guoqiang, and Raja Ghosh. 2025. "Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments" Processes 13, no. 5: 1400. https://doi.org/10.3390/pr13051400
APA StyleChen, G., & Ghosh, R. (2025). Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments. Processes, 13(5), 1400. https://doi.org/10.3390/pr13051400