Trends and Hotspots in Soil Minerals’ Impacts on Carbon Stability Research: A Bibliometric Analysis Based on Web of Science
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collation
2.2. Statistical Method
3. Results and Discussion
3.1. Trends in the Number of Publications
3.2. Top 10 Countries/Regions in Terms of Total Number of Publications
3.3. Key Research Institutions
3.4. Main Publication Journals
3.5. Discipline Co-Occurrence Analysis
3.6. Analysis of Research Hotspots and Frontiers at Home and Abroad
3.6.1. Research Hotspots at Home and Abroad
3.6.2. Analysis of Research Frontiers
4. Conclusions
- (1)
- Global Research Trends and Collaboration: Research on the stability and interactions of soil minerals and SOC has continuously grown worldwide, particularly in Asia, Europe, and North America. While China and the United States lead in publication volume, research collaboration among countries shows distinct regional characteristics. Specifically, China collaborates more closely with countries in the Asia-Pacific region, while the United States primarily cooperates with European and North American countries. Nevertheless, there remains significant potential for further enhancement of international cooperation and knowledge sharing in this field.
- (2)
- Major Research Institutions and Journals: The Chinese Academy of Sciences leads global research in this field, followed closely by the University of California, Berkeley. Regarding journal publications, Nature Communications, Nature, and Science are the most frequently cited journals in this area, indicating that research in this field has reached the international forefront.
- (3)
- Co-occurrence Analysis: Environmental science is highly central to research on the impacts of soil minerals on organic carbon stability, serving as a key intersection between disciplines. However, over the past decade, research publications in this field have been relatively few, with only 136 papers, suggesting that environmental science’s potential has not been fully realized. Future research should strengthen interdisciplinary collaboration between environmental science, chemistry, cell biology, and other fields to promote a deeper exploration of the mechanisms underlying the impacts of soil minerals on organic carbon stability.
- (4)
- Research Themes and Future Directions: Current research primarily focuses on the mineral-mediated catalytic transformation of SOC, redox reactions, co-precipitation mechanisms, and adsorption mechanisms. However, some research gaps remain, such as the multi-factor interactions between minerals and SOC, the role of amorphous minerals, and the impact of environmental changes (e.g., climate change) on carbon stability. Future research should emphasize these complex interaction mechanisms, particularly the long-term effects of different environmental factors and time scales on soil carbon stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Irshad, A.; Margenot, A.; Zamanian, K.; Li, N.; Ullah, S.; Mehmood, K.; Ajmal Khan, M.; Siddique, N.; Zhou, J.; et al. Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis. Geoderma 2024, 443, 116831. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, I.; Jones, M.W.; Sullivan, O.M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Xu, Z.; Tsang, D.C.W. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. Eco-Environ. Health 2024, 3, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Sokol, N.W.; Sanderman, J.; Bradford, M.A. Pathways of mineral-associated soil organic matter formation Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 2018, 25, 12–24. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Fu, Y.; Lin, D.; Hou, M.; Li, X.; Hu, D.; Wang, Z. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: A review. J. Soils Sediment. 2022, 23, 1485–1500. [Google Scholar] [CrossRef]
- Feng, X.; Dai, G.; Liu, T.; Jia, J.; Zhu, E.; Liu, C.; Zhao, Y.; Wang, Y.; Kang, E.; Xiao, J.; et al. Understanding the mechanisms and potential pathways of soil carbon sequestration from the biogeochemistry perspective. Sci. China Earth Sci. 2024, 67, 3386–3396. [Google Scholar] [CrossRef]
- Jenkinson, D.S. Studies on decomposition of plant material in soil. V. The effects of plant cover and the soil type on the loss of carbon from 14C-labelled rye grass decomposition under field conditions. J. Soil Sci. 1977, 28, 424–434. [Google Scholar] [CrossRef]
- Melillo, J.M.; Aber, J.D.; Muratore, J.F. Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics. Ecology 1982, 63, 621–626. [Google Scholar] [CrossRef]
- Kiem, R.; Kögel-Knabner, I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol. Biochem. 2003, 35, 101–118. [Google Scholar] [CrossRef]
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. FPB 2003, 30, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Wang, L.; Ying, R.R.; Shi, J.Q.; Long, T.; Lin, Y.S. Advancement in study on adsorption of organinc matter on soil mineral and its mechanism. Acta Pedol. Sin. 2017, 54, 805–818. [Google Scholar]
- Throckmorton, H.M.; Bird, J.A.; Monte, N.; Doane, T.; Firestone, M.K.; Horwath, W.R. The soil matrix increases microbial C stabilization in temperate and tropical forest soils. Biogeochemistry 2015, 122, 35–45. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Mcnally, S.R.; Beare, M.H.; Curtin, D.; Meenken, E.D.; Kelliher, F.M.; Calvelo Pereira, R.; Shen, Q.; Baldock, J. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Glob. Chang. Biol. 2017, 23, 4544–4555. [Google Scholar] [CrossRef]
- Schrumpf, M.; Kaiser, K.; Guggenberger, G.; Persson, T.; Kögel-Knabner, I.; Schulze, E.D. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 2013, 10, 1675–1691. [Google Scholar] [CrossRef]
- Li, H.; Reinhart, B.; Moller, S.; Herndon, E. Effects of C/Mn Ratios on the Sorption and Oxidative Degradation of Small Organic Molecules on Mn-Oxides. Environ. Sci. Technol. 2022, 57, 741–750. [Google Scholar] [CrossRef]
- Hui, L.; Fernanda, S.; Kristen, B.; Elizabeth, H. A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. Environ. Sci. Technol. 2021, 55, 12136–12152. [Google Scholar] [CrossRef]
- Sunda, W.G.; Kieber, D.J. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 1994, 367, 62–64. [Google Scholar] [CrossRef]
- Fang, Q.; Lu, A.; Hong, H.; Kuzyakov, Y.; Algeo, T.J.; Zhao, L.; Olshansky, Y.; Moravec, B.; Barrientes, D.M.; Chorover, J. Mineral weathering is linked to microbial priming in the critical zone. Nat. Commun. 2023, 14, 345. [Google Scholar] [CrossRef] [PubMed]
- Karen, J.; Graham, P.; Elisa, L.; Caroline, P.; Neil, G.; Thomas, W.; Christian, M.; Leon, B.; Jesus, O.; Nina, F.; et al. Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nat. Commun. 2015, 6, 7628. [Google Scholar] [CrossRef]
- Kleber, M.; Sollins, P.; Sutton, R. A Conceptual Model of Organo-Mineral Interactions in Soils: Self-Assembly of Organic Molecular Fragments into Zonal Structures on Mineral Surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar] [CrossRef]
- Faust, J.C.; Tessin, A.; Fisher, B.J.; Zindorf, M.; Papadaki, S.; Hendry, K.R.; Doyle, K.A.; März, C. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat. Commun. 2021, 12, 275. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Xiao, K.; Zhao, Y.; Liang, C.; Zhao, M.; Moore, O.W.; Otero-Fariña, A.; Zhu, Y.; Johnson, K.; Peacock, C.L. Introducing the soil mineral carbon pump. Nat. Rev. Earth Environ. 2023, 4, 135–136. [Google Scholar] [CrossRef]
- Moore, O.W.; Curti, L.; Woulds, C.; Bradley, J.A.; Babakhani, P.; Mills, B.J.W.; Homoky, W.B.; Xiao, K.; Bray, A.W.; Fisher, B.J.; et al. Long-term organic carbon preservation enhanced by iron and manganese. Nature 2023, 621, 312–317. [Google Scholar] [CrossRef]
- Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W. Weathering controls on mechanisms of carbon storage in grassland soils. Glob. Biogeochem. Cycles 2004, 18, GB4023. [Google Scholar] [CrossRef]
- Franks, M.; Duncan, E.; King, K.; Vázquez-Ortega, A. Role of Fe- and Mn-(oxy)hydroxides on carbon and nutrient dynamics agricultural soils: A chemical sequential extraction approach. Chem. Geol. 2021, 561, 120035. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, J.; Hu, S.; Polizzotto, M.L.; Zhao, F.; McGrath, S.P.; Li, H.; Ran, W.; Shen, Q. Mineral Availability as a Key Regulator of Soil Carbon Storage. Environ. Sci. Technol. 2017, 51, 4960–4969. [Google Scholar] [CrossRef] [PubMed]
- Synnestvedt, M.C.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA. Annual Symposium proceedings/AMIA Symposium. AMIA Symp. 2005, 2005, 724. [Google Scholar]
- Garfield, E.; Paris, S.W.; Stock, W.G. HistCite: A software tool for informetric analysis of citation linkage. NFD Inf. -Wiss. Und Prax. 2006, 57, 391–400. [Google Scholar]
- Eck, N.J.P.V.; Waltman, L.R. VOSviewer: A Computer Program for Bibliometric Mapping. ERIM Rep. Ser. Res. Manag. 2009, 84, 523–538. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, C.L.; Wang, H.; Liang, B.M.; Lv, S.J. Research status and hotspots of green infrastructure in the field of ecological environment. Acta Ecol. Sin. 2022, 42, 2510–2521. [Google Scholar]
- Kodaira, H. Responding to climate change and expectations for research. Paddy Water Environ. 2014, 12, 211–212. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Xie, S. Bibliometric analysis: Global research trends in biogenic volatile organic compounds during 1991–2014. Environ. Earth Sci. 2017, 76, 1–13. [Google Scholar] [CrossRef]
- Hu, J.; Dong, J.; Xu, D.; Yang, Q.; Liang, J.; Li, N.; Wang, H. Trends in Global Agricultural Carbon Emission Research: A Bibliometric Analysis. Agronomy 2024, 14, 2617. [Google Scholar] [CrossRef]
- Zhao, H.; Jia, J.; Zhao, Q.; Wang, J.; Gao, Y.; Huang, Y.; Chen, G. Soil organic carbon stabilization and associated mineral protection in typical coastal wetlands under different hydrologic conditions. Front. Mar. Sci. 2022, 9, 1031561. [Google Scholar] [CrossRef]
- Yang, J.; Li, A.; Yang, Y.; Li, G.; Zhang, F. Soil organic carbon stability under natural and anthropogenic-induced perturbations. Earth-Sci. Rev. 2020, 205, 103199. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Xiao, H.B.; Nie, X.D.; Li, Z.W.; Deng, C.X.; Zhou, M. Evolution of research on soil erosion at home and abroad in the past 30 years—Based on bibliometric analysis. Acta Pedol. Sin. 2020, 57, 797–810. [Google Scholar]
- Kleber, M.; Bourg, I.C.; Coward, E.K.; Hansel, C.M.; Myneni, S.C.B.; Nunan, N. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2021, 2, 402–421. [Google Scholar] [CrossRef]
- Chacon, S.S.; García-Jaramillo, M.; Liu, S.Y.; Ahmed, M.; Kleber, M. Differential capacity of kaolinite and birnessite to protect surface associated proteins against thermal degradation. Soil Biol. Biochem. 2018, 119, 101–109. [Google Scholar] [CrossRef]
- Aldersley, M.F.; Joshi, P.C.; Price, J.D.; Ferris, J.P. The role of montmorillonite in its catalysis of RNA synthesis. Appl. Clay Sci. 2011, 54, 1–14. [Google Scholar] [CrossRef]
- Laszlo, P. Chemical Reactions on Clays. Science 1987, 235, 1473–1477. [Google Scholar] [CrossRef]
- Wu, D.; Huang, S.; Zhang, X.; Ren, H.; Jin, X.; Gu, C. Iron Minerals Mediated Interfacial Hydrolysis of Chloramphenicol Antibiotic under Limited Moisture Conditions. Environ. Sci. Technol. 2021, 55, 9569–9578. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, J.; Dong, H. Effects of Organic Ligands on the Antibacterial Activity of Reduced Iron-Containing Clay Minerals: Higher Extracellular Hydroxyl Radical Production Yet Lower Bactericidal Activity. Environ. Sci. Technol. 2023, 57, 6888–6897. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, Y.; Xu, X.; Tsang, D.C.W.; Yao, C.; Fan, J.; Zhao, L.; Qiu, H.; Cao, X. Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon. Environ. Sci. Technol. 2022, 56, 1724–1735. [Google Scholar] [CrossRef]
- Liu, X.; Dong, H.; Zeng, Q.; Yang, X.; Zhang, D. Synergistic Effects of Reduced Nontronite and Organic Ligands on Cr(VI) Reduction. Environ. Sci. Technol. 2019, 53, 13732–13741. [Google Scholar] [CrossRef]
- Singh, M.; Sarkar, B.; Sarkar, S.; Churchman, J.; Bolan, N.; Mandal, S.; Menon, M.; Purakayastha, T.J.; Beerling, D.J. Chapter Two —Stabilization of Soil Organic Carbon as Influenced by Clay Mineralogy. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 148, pp. 33–84. ISBN 0065-2113. [Google Scholar]
- Chen, N.; Fu, Q.; Wu, T.; Cui, P.; Fang, G.; Liu, C.; Chen, C.; Liu, G.; Wang, W.; Wang, D.; et al. Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environ. Sci. Technol. 2021, 55, 14281–14293. [Google Scholar] [CrossRef]
- Trusiak, A.; Treibergs, L.A.; Kling, G.W.; Cory, R.M. The role of iron and reactive oxygen species in the production of CO 2 in arctic soil waters. Geochim. Cosmochim. Acta 2018, 224, 80–95. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, J.; Zhu, R.; Zhu, J.; Chen, Q.; Liang, X.; He, H. Photoreductive Dissolution of Iron (Hydr)oxides and Its Geochemical Significance. ACS Earth Space Chem. 2022, 6, 811–829. [Google Scholar] [CrossRef]
- Sipos, P.; Tóth, A.; Kis, V.K.; Balázs, R.; Kovács, I.; Németh, T. Partition of Cd, Cu, Pb and Zn among mineral particles during their sorption in soils. J. Soils Sediment. 2019, 19, 1775–1787. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, J.; Wang, Z.; Xie, L.; Liu, Q.; Zeng, H. Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals. Environ. Sci. Technol. 2023, 57, 24. [Google Scholar] [CrossRef]
- Willemsen, J.A.R.; Bourg, I.C. Molecular dynamics simulation of the adsorption of per- and polyfluoroalkyl substances (PFASs) on smectite clay. J. Colloid Interface Sci. 2021, 585, 337–346. [Google Scholar] [CrossRef]
- Wang, X.; Lee, C. Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments. Mar. Chem. 1993, 44, 1–23. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Guggenberger, G.; Kuzyakov, Y.; Liu, B.-F.; Wu, J. Direct evidence for thickening nanoscale organic films at soil biogeochemical interfaces and its relevance to organic matter preservation. Environ. Sci. Nano 2020, 7, 2747–2758. [Google Scholar] [CrossRef]
- Chen, M.D.; Cui, X.Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals. Chin. J. Eco-Agric. 2022, 30, 175–183. [Google Scholar] [CrossRef]
- Soylak, M.; Akkaya, Y.; Elçi, L. Monitoring trace metal levels in Yozgat-Turkey: Determinations of some metal ions in roadside soils. Trace Elem. Electrolytes 2001, 18, 176–180. [Google Scholar]
- Turkoglu, O.; Saraçoğlu, S.; Soylak, M. Trace metal levels in soil samples from crossroads in Kayseri-Ankara motorway. Trace Elem. Electrolytes 2003, 20, 225–229. [Google Scholar]
- Qiu, L.; Suo, C.; Zhang, N.; Yuan, R.; Chen, H.; Zhou, B. Adsorption of heavy metals by activated carbon: Effect of natural organic matter and regeneration methods of the adsorbent. Desalination Water Treat. 2022, 252, 148–166. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I. Removal of lead and chromium from wastewater using bagasse fly ash—A sugar industry waste. J. Colloid Interface Sci. 2004, 271, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Renu; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalination 2016, 7, 387–419. [Google Scholar] [CrossRef]
- Mikutta, R.; Lorenz, D.; Guggenberger, G.; Haumaier, L.; Freund, A. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption. Geochim. Et Cosmochim. Acta 2014, 144, 258–276. [Google Scholar] [CrossRef]
- Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.; Soper, A.K.; Greathouse, J.A. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA 1999, 96, 3358–3364. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Hu, Y.; Rumpel, C.; Bolan, N.; Sparks, D. Molecular-level understanding of malic acid retention mechanisms in ternary kaolinite-Fe(III)-malic acid systems: The importance of Fe speciation. Chem. Geol. 2017, 464, 69–75. [Google Scholar] [CrossRef]
- Benke, M.B.; Mermut, A.R.; Shariatmadari, H. Retention of dissolved organic carbon from vinasse by a tropical soil, kaolinite, and Fe-oxides. Geoderma 1999, 91, 47–63. [Google Scholar] [CrossRef]
- Kaiser, K.; Zech, W. Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. Eur. J. Soil Sci. 2000, 51, 403–411. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kleber, M.; Kögel-Knabner, I. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 2003, 34, 1591–1600. [Google Scholar] [CrossRef]
- Quideau, S.A.; Chadwick, O.A.; Trumbore, S.E.; Johnson-Maynard, J.L.; Graham, R.C.; Anderson, M.A. Vegetation control on soil organic matter dynamics. Org. Geochem. 2001, 32, 247–252. [Google Scholar] [CrossRef]
- Scharpenseel, H.; Becker-Heidmann, P. Shifts in 14C Patterns of Soil Profiles Due to Bomb Carbon, Including Effects of Morphogenetic and Turbation Processes. Radiocarbon 1989, 31, 627–636. [Google Scholar] [CrossRef]
- Balesdent, J. The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur. J. Soil Sci. 1996, 47, 485–493. [Google Scholar] [CrossRef]
- Xu, J.; Sun, Y.; Gao, L.; Cui, X. A review of the factors influencing soil organic carbon stability. Chin. J. Eco-Agric. 2018, 26, 222–230. [Google Scholar] [CrossRef]
- Keuper, F.; Dorrepaal, E.; van Bodegom, P.M.; van Logtestijn, R.; Venhuizen, G.; van Hal, J.; Aerts, R. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 2017, 23, 4257–4266. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yang, Y.J.; Chen, L.; Liu, S.R. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in the Castanopsis hystrix plantation. J. Beijing For. Univ. 2022, 44, 102–111. [Google Scholar] [CrossRef]
- Mathew, S.; Tiwari, D.K.; Tripathi, D. Interaction of carbon nanotubes with plant system: A review. Carbon Lett. 2020, 31, 167–176. [Google Scholar] [CrossRef]
- Li, G.L.; Zhou, C.H.; Fiore, S.; Yu, W.H. Interactions between microorganisms and clay minerals: New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar] [CrossRef]
- Konrad-Schmolke, M.; Halama, R.; Wirth, R.; Thomen, A.; Klitscher, N.; Morales, L.; Schreiber, A.; Wilke, F.D.H. Mineral dissolution and reprecipitation mediated by an amorphous phase. Nat. Commun. 2018, 9, 1637. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Guo, X.; Xiao, L.; Yang, Y.; Luo, Y.; Mishra, U.; Luo, Z. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Chang. 2024, 14, 98–105. [Google Scholar] [CrossRef]
- Zhang, T.T.; He, D.; Feng, S.; Chen, K. Status and trends of global protected area management—Based on bibliometric analysis. For. Econ. 2021, 43, 35–59. [Google Scholar] [CrossRef]
- Li, J.; Cai, B.Q.; Xu, L. Research on cyberspace security in China based on CiteSpace. J. Fujian Univ. Technol. 2018, 16, 174–178. [Google Scholar] [CrossRef]
- Spears, D. Introduction to Clay Minerals. Chemistry, Origins, Uses and Environmental Significance. Clay Miner.-Clay Min. 1993, 28, 161–162. [Google Scholar] [CrossRef]
- Pinheiro, É.F.M.; de Campos, D.V.B.; de Carvalho Balieiro, F.; Anjos, L.H.C.D.; Pereira, M.G. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agric. Syst. 2015, 132, 35–39. [Google Scholar] [CrossRef]
- Lelde, K.; Gry, L.; Anders, T.; Per, P. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis. Environ. Sci. Technol. 2017, 51, 9053–9061. [Google Scholar] [CrossRef]
- Studenroth, S.; Huber, S.G.; Kotte, K.; Schöler, H.F. Natural abiotic formation of oxalic acid in soils: Results from aromatic model compounds and soil samples. Environ. Sci. Technol. 2013, 47, 1323–1329. [Google Scholar] [CrossRef]
- Stendahl, J.; Berg, B.; Lindahl, B.D. Manganese availability is negatively associated with carbon storage in northern coniferous forest humus layers. Sci. Rep. 2017, 7, 15487. [Google Scholar] [CrossRef]
- Sun, Z.; Qian, X.; Shaaban, M.; Wu, L.; Hu, J.; Hu, R. Effects of iron(III) reduction on organic carbon decomposition in two paddy soils under flooding conditions. Environ. Sci. Pollut. Res. 2019, 26, 12481–12490. [Google Scholar] [CrossRef]
- Gu, Y.; Lensu, A.; Ki, S.; Ojala, A.; Talo, A. Iron and pH Regulating the Photochemical Mineralization of Dissolved Organic Carbon. ACS Omega 2017, 2, 1905–1914. [Google Scholar] [CrossRef]
- Page, S.E.; Logan, J.R.; Cory, R.M.; McNeill, K. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. Environ. Sci. Process. Impacts 2014, 16, 807–822. [Google Scholar] [CrossRef]
- Chen, C.; Hall, S.J.; Coward, E.; Thompson, A. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat. Commun. 2020, 11, 2255. [Google Scholar] [CrossRef]
Country | Records | Total Local Citation Score (TLCS) | Total Local Citation Score per Research Paper (TLCSPR) | Total Global Citation Score (TGCS) | Total Global Citation Score per Research Paper (TGCSPR) |
---|---|---|---|---|---|
USA | 846 | 1385 | 1.64 | 291,602 | 344.68 |
China | 673 | 479 | 0.71 | 156,013 | 231.82 |
Germany | 245 | 324 | 1.32 | 72,253 | 294.91 |
UK | 228 | 164 | 0.72 | 59,700 | 261.84 |
Japan | 129 | 158 | 1.22 | 43,746 | 339.12 |
Australia | 124 | 50 | 0.40 | 33,501 | 270.17 |
France | 121 | 74 | 0.61 | 28,870 | 238.60 |
Canada | 103 | 190 | 1.84 | 35,800 | 347.57 |
Switzerland | 103 | 147 | 1.43 | 30,626 | 297.34 |
Saudi Arabia | 91 | 19 | 0.21 | 14,463 | 158.93 |
Institution | Records | Total Local Citation Score (TLCS) | Total Local Citation Score per Research Paper (TLCSPR) | Total Global Citation Score (TGCS) | Total Global Citation Score per Research Paper (TGCSPR) |
---|---|---|---|---|---|
Chinese Academy of Sciences | 176 | 142 | 0.81 | 49,833 | 283.14 |
Stanford University | 78 | 211 | 2.71 | 29,181 | 374.12 |
University of California, Berkeley | 76 | 319 | 4.20 | 29,542 | 388.71 |
University of Chinese Academy of Sciences | 62 | 47 | 0.76 | 16,700 | 269.35 |
Massachusetts Institute of Technology | 51 | 51 | 1.00 | 21,763 | 426.73 |
California Institute of Technology | 49 | 123 | 2.51 | 13,714 | 279.88 |
Lawrence Berkeley National Laboratory | 46 | 161 | 3.50 | 13,904 | 302.26 |
Columbia University | 45 | 167 | 3.71 | 20,739 | 460.87 |
Harvard University | 43 | 69 | 1.60 | 22,383 | 520.53 |
Tsinghua University | 40 | 61 | 1.53 | 12,259 | 306.48 |
Journals | Records | Total Local Citation Score (TLCS) | Total Global Citation Score (TGCS) | Important Factor (5 Years) | Important Factor (2020) | Country |
---|---|---|---|---|---|---|
Nature Communications | 248 | 190 | 77,630 | 17 | 16.6 | UK |
Nature | 146 | 214 | 63,463 | 60.9 | 64.8 | UK |
Science | 112 | 223 | 44,760 | 54.5 | 56.9 | USA |
Proceedings of The National Academy of Sciences of The United States of America | 71 | 194 | 22,750 | 12 | 11.1 | USA |
Journal of The American Chemical Society | 69 | 237 | 24,154 | 15.1 | 15 | USA |
Scientific Reports | 56 | 70 | 9966 | 4.9 | 4.6 | UK |
Angewandte Chemie-International Edition | 47 | 115 | 14,114 | 15.3 | 16.6 | Germany |
Science Advances | 31 | 113 | 6027 | 15.4 | 13.6 | USA |
Frontiers in Plant Science | 29 | 83 | 3458 | 6.8 | 5.6 | Switzerland |
Advanced Science | 27 | 61 | 4261 | 16.7 | 15.1 | USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Xia, B.; Gao, W.; Chen, W.; He, Q.; Qian, J.; Chen, Z.; Chen, H.; Zhang, X.; Ying, R. Trends and Hotspots in Soil Minerals’ Impacts on Carbon Stability Research: A Bibliometric Analysis Based on Web of Science. Processes 2025, 13, 821. https://doi.org/10.3390/pr13030821
Meng X, Xia B, Gao W, Chen W, He Q, Qian J, Chen Z, Chen H, Zhang X, Ying R. Trends and Hotspots in Soil Minerals’ Impacts on Carbon Stability Research: A Bibliometric Analysis Based on Web of Science. Processes. 2025; 13(3):821. https://doi.org/10.3390/pr13030821
Chicago/Turabian StyleMeng, Xiaoyu, Bing Xia, Wenjing Gao, Wei Chen, Qianjia He, Jiazhong Qian, Zhixiang Chen, Hongfeng Chen, Xiaoyu Zhang, and Rongrong Ying. 2025. "Trends and Hotspots in Soil Minerals’ Impacts on Carbon Stability Research: A Bibliometric Analysis Based on Web of Science" Processes 13, no. 3: 821. https://doi.org/10.3390/pr13030821
APA StyleMeng, X., Xia, B., Gao, W., Chen, W., He, Q., Qian, J., Chen, Z., Chen, H., Zhang, X., & Ying, R. (2025). Trends and Hotspots in Soil Minerals’ Impacts on Carbon Stability Research: A Bibliometric Analysis Based on Web of Science. Processes, 13(3), 821. https://doi.org/10.3390/pr13030821