Low-Cost Adsorbents for Water Treatment: A Sustainable Alternative for Pollutant Removal
Abstract
1. Introduction
2. Low Cost Adsorbents
3. Treatments and Modifications to Enhance the Adsorption Capacity of Low-Cost Adsorbents
3.1. Physical Treatments
3.1.1. Thermal Activation and Pyrolysis
3.1.2. Ultrasound- and Microwave-Assisted Processes
3.1.3. Milling and Particle Size Reduction
3.2. Chemical Treatments
3.2.1. Acid Activation
3.2.2. Alkaline Activation
3.2.3. Oxidative Treatments
3.2.4. Specific Covalent Modifications
3.3. Surface Modifications
3.3.1. Impregnation with Metal Oxides
3.3.2. Grafting of Functional Polymers and Biopolymers
4. Removal of Pharmaceuticals Using Low-Cost Adsorbents
5. Using Low-Cost Adsorbents to Remove Pesticides
6. Use of Low-Cost Adsorbents for Dye Removal
7. Low-Cost Adsorbents for Heavy Metal Removal
8. Advantages, Limitations, and Comparison with Conventional Adsorbents
9. Future Perspectives and Emerging Challenges in the Development of Low-Cost Adsorbents for Water Treatment
9.1. Technical and Engineering Challenges in Scaling Up
9.1.1. Performance Consistency and Advanced Modification
9.1.2. Reactor Design, Flow Dynamics, and Regeneration
9.2. Perspectives on Integration and Socioeconomic Impact
9.2.1. Hybrid Systems and Selective Removal
9.2.2. Regulatory Compliance and Vulnerable Communities
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Li, Y.; Zhang, S.; Gao, T.; Gao, Z.; Lai, C.W.; Xiang, P.; Yang, F. Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics 2025, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Siddique, M.S.; Yu, W. A Critical Review of Recent Progress in Global Water Reuse during 2019–2021 and Perspectives to Overcome Future Water Crisis. Environments 2023, 10, 159. [Google Scholar] [CrossRef]
- Singh, B.J.; Chakraborty, A.; Sehgal, R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. J. Environ. Manag. 2023, 348, 119230. [Google Scholar] [CrossRef]
- Swenson, H.; Stadie, N.P. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir 2019, 35, 5409–5426. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 193, 122383. [Google Scholar] [CrossRef]
- Bai, L.; Su, X.; Feng, J.; Ma, S. Preparation of sugarcane bagasse biochar/nano-iron oxide composite and mechanism of its Cr (VI) adsorption in water. J. Clean Prod. 2021, 320, 128723. [Google Scholar] [CrossRef]
- Torres-Castañón, L.A.; Robledo-Peralta, A.; Antileo, C.; de J. Silerio-Vázquez, F.; Proal-Nájera, J.B. Sawdust-based adsorbents for water treatment: An assessment of their potential and challenges in heavy metal adsorption. J. Hazard. Mater. 2025, 18, 100758. [Google Scholar] [CrossRef]
- De Silva, M.; Cao, G.; Tam, K.C. Nanomaterials for the removal and detection of heavy metals: A review. Environ. Sci. Nano 2025, 12, 2154–2176. [Google Scholar] [CrossRef]
- Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef]
- Velkova, Z.; Lazarova, K.; Kirova, G.; Gochev, V. Recent Advances in Pharmaceuticals Biosorption on Microbial and Algal-Derived Biosorbents. Processes 2025, 13, 561. [Google Scholar] [CrossRef]
- Kamarudin, N.S.; Dahalan, F.A.; Hasan, M.; Ibrahim, N.; Lutpi, N.A.; Raja Nazri, R.N.H.; Parmin, N.A.; Syafiuddin, A. The Effects of Particle Size on the Adsorption of Metaldehyde by Oil Palm Kernel Biochar and Rice Husk Biochar. Biointerface Res. Appl. Chem. 2024, 14, 131. [Google Scholar] [CrossRef]
- Souza, C.O.; Teixeira, V.F.; Cardoso, R.S.; Gomes, H.O.; Santos, Y.T.C.; Menezes, J.M.C.; Silva, D.B.; Lima, M.R.P.; Filho, F.J.P.; Teixeira, F.R.P.; et al. Utilization of Tommy Atkins Mango Peel as a Sustainable Biosorbent for the Removal of Pb(II) Ions in Water. Chem. Biodivers. 2025, 22, e202403209. [Google Scholar] [CrossRef]
- Cusioli, L.F.; Mantovani, D.; Bergamasco, R.; Tusset, A.M.; Lenzi, G.G. Preparation of a New Adsorbent Material from Agro-Industrial Waste and Comparison with Commercial Adsorbent for Emerging Contaminant Removal. Processes 2023, 11, 2478. [Google Scholar] [CrossRef]
- Elmorsi, R.R.; El-Wakeel, S.T.; Shehab El-Dein, W.A.; Lotfy, H.R.; Rashwan, W.E.; Nagah, M.; Shaaban, S.A.; Sayed Ahmed, S.A.; El-Sherif, I.Y.; Abou-El-Sherbini, K.S. Adsorption of Methylene Blue and Pb2+ by using acid-activated Posidonia oceanica waste. Sci. Rep. 2019, 9, 3356. [Google Scholar] [CrossRef]
- Daza-López, E.V.; Fernández-Andrade, K.J.; Nóbrega, R.Q.; Zambrano-Intriago, L.Á.; Villanueva Ramos, G.; Quiroz-Fernández, L.S.; Montenegro, M.C.B.S.M.; Rodríguez-Díaz, J.M. Modified or Functionalized Natural Bioadsorbents: New Perspectives as Regards the Elimination of Environmental Pollutants. In Advances in the Domain of Environmental Biotechnology: Microbiological Developments in Industries, Wastewater Treatment and Agriculture; Springer: Singapore, 2021; pp. 195–225. [Google Scholar] [CrossRef]
- Andriambahiny, R.N.A.; Das, J.; Roy, B.; Lodh, B.; Pal, B. A review on the recent advancement of acid modified bio-adsorbents for the removal of methyl orange dye from wastewater treatment. Discov. Chem. 2025, 2, 92. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Leones, A.R.; Farias, B.S.; Silva, M.D.; Jaeschke, D.P.; Fernandes, S.S.; Ribeiro, A.C.; Cadaval, T.R.S., Jr.; Pinto, L.A.A. A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal. Water 2025, 17, 2141. [Google Scholar] [CrossRef]
- Joshi, M.; Bhatt, D.; Srivastava, A. Enhanced Adsorption Efficiency through Biochar Modification: A Comprehensive Review. Ind. Eng. Chem. Res. 2023, 62, 13748–13761. [Google Scholar] [CrossRef]
- Wang, H.; Srinivasakannan, C.; Liu, M.; Xue, G.; Wang, L.; Wang, Y.; Wang, X.; Duan, X. Microwave-assisted synthesis of porous graphitized biochar as a super sorbent for tetracycline separation. Biochem. Eng. J. 2024, 205, 109291. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Fatah, N.M.; Muhammad, K.T. Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. R. Soc. Open Sci. 2024, 11, 232033. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Dai, D.-Q.; Iqbal, R.; Bawazeer, S.; Usman, M.; Rizwan, M.; Iqbal, J.; Akram, M.I.; Althubiani, A.S.; et al. A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Front. Environ. Sci. 2022, 10, 1035865. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Meftah, S.; Meftah, K.; Babassa, N.; Malous, K.; Drissi, M.; Amahrous, A.; Jabri, N.; Fathi, J.; Aguerchi, K.; Laababid, Y.; et al. The versatility and effectiveness of bio-adsorbents in the removal of chemical pollutants from water: Adsorption mechanisms, optimization by ANN and RSM, SWOT analysis, and contribution to the 3rd and 6th Sustainable Development Goals. Discov. Sustain. 2025, 6, 971. [Google Scholar] [CrossRef]
- Hussain, M.K.; Khatoon, S.; Nizami, G.; Fatma, U.K.; Ali, M.; Singh, B.; Quraishi, A.; Assiri, M.A.; Ahamad, S.; Saquib, M. Unleashing the power of bio-adsorbents: Efficient heavy metal removal for sustainable water purification. J. Water Process Eng. 2024, 64, 105705. [Google Scholar] [CrossRef]
- Kumar, A.; Indhur, R.; Sheik, A.G.; Krishna, S.B.N.; Kumari, S.; Bux, F. A review on conventional and novel adsorbents to boost the sorption capacity of heavy metals: Current status, challenges and future outlook. Environ. Technol. Rev. 2024, 13, 521–543. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl. Sci. 2019, 9, 149. [Google Scholar] [CrossRef]
- Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 2023, 263, 126128. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Gupta, V.; Kotnala, S. Fabrication of microwave assisted biogenic magnetite-biochar nanocomposite: A green adsorbent from jackfruit peel for removal and recovery of nutrients in water sample. J. Ind. Eng. Chem. 2021, 100, 134–148. [Google Scholar] [CrossRef]
- Chouchane, T.; Khireddine, O.; Boukari, A. Kinetic studies of Ni(II) ions adsorption from aqueous solutions using the blast furnace slag (BF slag). J. Eng. Appl. Sci. 2021, 68, 34. [Google Scholar] [CrossRef]
- Ndankou, C.S.D.; Ștefan, D.S.; Nsami, N.J.; Daouda, K.; Bosomoiu, M. Evaluation of Phenobarbital Adsorption Efficiency on Biosorbents or Activated Carbon Obtained from Adansonia Digitata Shells. Materials 2024, 17, 1591. [Google Scholar] [CrossRef]
- Agoe, A.K.; Poulopoulos, S.G.; Sarbassov, Y.; Shah, D. Investigation of Sewage Sludge–Derived Biochar for Enhanced Pollutant Adsorption: Effect of Particle Size and Alkali Treatment. Energies 2024, 17, 4554. [Google Scholar] [CrossRef]
- Amutova, F.; Turganova, R.; Konuspayeva, G.; Gaspard, S.; Mamirova, A.; Michaux, F.; Hartmeyer, P.; Soligot, C.; Djansugurova, L.; Jurjanz, S.; et al. The Effect of Granulometry of Carbonaceous Materials and Application Rates on the Availability of Soil-Bound Dichlorodiphenyltrichloroethane (DDT) and Its Metabolites. J. Xenobiot. 2024, 14, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Wazir, A.H.; Ullah, I.; Yaqoob, K. Chemically Activated Carbon Synthesized from Rice Husk for Adsorption of Methylene Blue in Polluted Water. Environ. Eng. Sci. 2023, 40, 307–317. [Google Scholar] [CrossRef]
- Mahdi, Z.; El Hanandeh, A.; Yu, Q.J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions. J. Environ. Chem. Eng. 2019, 7, 103379. [Google Scholar] [CrossRef]
- Zeng, H.; Zeng, H.; Zhang, H.; Shahab, A.; Zhang, K.; Lu, Y.; Nabi, I.; Naseem, F.; Ullah, H. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. J. Clean Prod. 2021, 286, 124964. [Google Scholar] [CrossRef]
- Correa-Navarro, Y.M.; Moreno-Piraján, J.C.; Giraldo, L. Competitive Adsorption of Caffeine and Diclofenac Sodium onto Biochars Derived from Fique Bagasse: An Immersion Calorimetry Study. ACS Omega 2023, 8, 1967–1978. [Google Scholar] [CrossRef]
- Shirani, Z.; Song, H.; Bhatnagar, A. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total Environ. 2020, 745, 140789. [Google Scholar] [CrossRef]
- Kohira, Y.; Akizuki, S.; Mihretie, F.A.; Meselu, D.F.; Legesse, S.A.; Sato, S. Enhancement of alkali- and oxidation-modified biochars derived from water hyacinth for ammonium adsorption capacity. Soil Sci. Plant Nutr. 2024, 70, 21–33. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Madonia, E.; Librici, C.; Bambina, P.; Chillura Martino, D.; Guernelli, S.; Lo Meo, P.; Conte, P. A Study on the Oxidative Functionalization of a Poplar Biochar. Molecules 2025, 30, 1048. [Google Scholar] [CrossRef]
- Ding, D.; Zhou, L.; Kang, F.; Yang, S.; Chen, R.; Cai, T.; Duan, X.; Wang, S. Synergistic Adsorption and Oxidation of Ciprofloxacin by Biochar Derived from Metal-Enriched Phytoremediation Plants: Experimental and Computational Insights. ACS Appl. Mater. Interfaces 2020, 12, 53788–53798. [Google Scholar] [CrossRef]
- Güzel, F.; Sayğılı, H.; Sayğılı, G.A.; Koyuncu, F.; Yılmaz, C. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J. Clean Prod. 2017, 144, 260–265. [Google Scholar] [CrossRef]
- Li, R.; Zhang, T.; Zhong, H.; Song, W.; Zhou, Y.; Yin, X. Bioadsorbents from algae residues for heavy metal ions adsorption: Chemical modification, adsorption behaviour and mechanism. Environ. Technol. 2021, 42, 3132–3143. [Google Scholar] [CrossRef]
- Flores, K.; Gonzalez, D.F.; Morales, H.M.; Mar, A.; Garcia-Segura, S.; Gardea-Torresdey, J.L.; Parsons, J.G. Amino-modified upcycled biochar achieves selective chromium removal in complex aqueous matrices. J. Environ. Manag. 2024, 360, 121160. [Google Scholar] [CrossRef] [PubMed]
- Toy, M.; Recepoğlu, Y.K.; Arar, Ö. Sulfonated Cellulose: A Strategy for Effective Methylene Blue Sequestration. ACS Omega 2025, 10, 8696–8708. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Qin, J.; Wu, Y.; Feng, F. Tetracycline adsorption on magnetic sludge biochar: Size effect of the Fe3O4 nanoparticles. R. Soc. Open Sci. 2022, 9, 210805. [Google Scholar] [CrossRef]
- Azizzadeh, S.E.; Bariki, S.G.; Movahedirad, S. Magnetic orange leaf biochar for favipiravir removal from wastewater. Sci. Rep. 2025, 15, 25388. [Google Scholar] [CrossRef]
- Cai, X.; Li, J.; Liu, Y.; Yan, Z.; Tan, X.; Liu, S.; Zeng, G.; Gu, Y.; Hu, X.; Jiang, L. Titanium dioxide-coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants. J. Chem. Technol. Biotechnol. 2018, 93, 783–791. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Yin, Z.; Feng, D.; Lv, H. Preparation and adsorption properties of magnetic chitosan/sludge biochar composites for removal of Cu2+ ions. Sci. Rep. 2023, 13, 20937. [Google Scholar] [CrossRef]
- Mojiri, A.; Kazeroon, R.A.; Gholami, A. Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: Optimization by the artificial neural network. Water 2019, 11, 551. [Google Scholar] [CrossRef]
- Osman, A.I.; Abd El-Monaem, E.M.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; López-Maldonado, E.A.; Ihara, I.; et al. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett. 2023, 21, 2337–2398. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. Adsorption of pollutants by plant bark derived adsorbents: An empirical review. J. Water Process Eng. 2020, 35, 101228. [Google Scholar] [CrossRef]
- Barszcz, W.; Łożyńska, M.; Molenda, J. Impact of pyrolysis process conditions on the structure of biochar obtained from apple waste. Sci. Rep. 2024, 14, 10501. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Mood, S.H.; Pelaez-Samaniego, M.R.; Han, Y.; Mainali, K.; Garcia-Perez, M. Iron- and Nitrogen-Modified Biochar for Nitrate Adsorption from Aqueous Solution. Sustainability 2024, 16, 5733. [Google Scholar] [CrossRef]
- Qi, J.Y.; Sato, S. Magnesium-modified biochars for nitrate adsorption and removal in continuous flow system. Bull. Plankton Eco-Eng. Res. 2021, 1, 32–46. [Google Scholar]
- Kumar, S.; Tewari, C.; Philip, L.; Sahoo, N.G. Enhanced physicochemical properties of Himalayan Weeping Bamboo-biochar for rapid multicomponent textile dyes uptake under classical and ultrasound irradiation: A comparative study. Next Sustain. 2025, 5, 100089. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Akinnawo, S.O.; Adebusuyi, T.A.; Ajala, O.A.; Adegoke, R.O.; Maxakato, N.W.; Bello, O.S. Modified biomass adsorbents for removal of organic pollutants: A review of batch and optimization studies. Int. J. Environ. Sci. Technol. 2023, 20, 11615–11644. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Dyes removal from textile wastewater by agricultural waste as an absorbent—A review. Clean. Waste Syst. 2022, 3, 100051. [Google Scholar] [CrossRef]
- Liu, G.; Dai, Z.; Liu, X.; Dahlgren, R.A.; Xu, J. Modification of agricultural wastes to improve sorption capacities for pollutant removal from water—A review. Carbon Res. 2022, 1, 24. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review. J. Environ. Chem. Eng. 2023, 11, 110986. [Google Scholar] [CrossRef]
- Coria-Zamudio, I.; Vázquez-Guerrero, A.; Tapia-Quiroz, G.E.; Valencia-Leal, S.A.; Espino-Valencia, J.; Alfaro-Cuevas-Villanueva, R.; Cortés-Martínez, R. Removal of Diclofenac from Aqueous Solutions Using Surfactant-Modified Guava Seeds as Biosorbent. Surfaces 2025, 8, 70. [Google Scholar] [CrossRef]
- Ertaş, E.; Tural, B.; Tural, S. Biosorption of Diclofenac by Magnetic Biosorbent (M-EColi). Iran. J. Chem. Chem. Eng. 2024, 43, 1482–1494. [Google Scholar]
- Tang, Q.; Qiu, C.; Zhang, Y.; Zhang, X.; Yuan, Z.; Tan, H.; Wang, L.; de Hoop, C.F.; Qi, J.; Huang, X. Effective Adsorption of Diclofenac Sodium from Wastewater by Nanocellulose/Alum/Chitosan/Polyethyleneimine Biohybrid Aerogel Beads Adsorbent. J. Polym. Environ. 2023, 31, 1129–1143. [Google Scholar] [CrossRef]
- El Naga, A.O.A.; El Saied, M.; Shaban, S.A.; El Kady, F.Y. Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J. Mol. Liq. 2019, 285, 9–19. [Google Scholar] [CrossRef]
- Cui, C.; Yang, M.; Zhai, J.; Bai, W.; Dai, L.; Liu, L.; Jiang, S.; Wang, W.; Ren, E.; Cheng, C.; et al. Bamboo cellulose–derived activated carbon aerogel with controllable mesoporous structure as an effective adsorbent for tetracycline hydrochloride. Environ. Sci. Pollut. Res. 2023, 30, 12558–12570. [Google Scholar] [CrossRef]
- Cusioli, L.F.; de Souza, R.M.; Beltran, L.B.; Bergamasco, R. Use of low-cost adsorbent functionalized with iron oxide nanoparticles for ivermectin removal. S. Afr. J. Chem. Eng. 2024, 47, 142–149. [Google Scholar] [CrossRef]
- de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Disley, J.; Gil-Ramirez, G.; Gonzalez-Rodriguez, J. A review of different removal techniques for pesticides found in European waters identified by the European Environmental Agency. Environ. Sci. Policy 2025, 172, 104194. [Google Scholar] [CrossRef]
- Coldebella, P.F.; Valverde, K.C.; Yamaguchi, N.U.; Ferreira, M.E.C.; Camacho, F.P.; Silva, M.F.; Bittencourt, P.R.S.; Fagundes-Klen, M.R.; Bergamasco, R. Exploring the eco-friendly potential of Moringa oleifera parts as biosorbents for atrazine removal. Int. J. Environ. Sci. Technol. 2024, 21, 6445–6458. [Google Scholar] [CrossRef]
- Cadorna, R.; Labistre, R.J.; Cainoy, J.D.; Bade, L.; Rabongue, A.; Tizo, M.; Labadan, R.J.; Arazo, R. Circular Economy-Driven Methomyl Pesticide Removal from Water through Peanut Shell Activated Carbon Adsorption. Circ. Econ. Sustain. 2025, 5, 1053–1073. [Google Scholar] [CrossRef]
- Yamaguchi, N.U.; Cusioli, L.F.; Quesada, H.B.; Ferreira, M.E.C.; Fagundes-Klen, M.R.; Salcedo Vieira, A.M.; Gomes, R.G.; Vieira, M.F.; Bergamasco, R. A review of Moringa oleifera seeds in water treatment: Trends and future challenges. Process Saf. Environ. Prot. 2021, 147, 405–420. [Google Scholar] [CrossRef]
- Bergamasco, R.; Mantovani, D.; Diório, A.; Bezerra, C.O.; Quesada, H.B.; Wernke, G.; Fagundes-Klen, M.R.; Cusioli, L.F. Adsorption of Atrazine from Synthetic Contaminated Water Using a Packed-Bed Column with a Low-Cost Adsorbent (Moringa oleifera Lam.). Water 2023, 15, 1260. [Google Scholar] [CrossRef]
- Kalsoom; Khan, S.; Ullah, R.; Adil, M.; Waheed, A.; Khan, K.A.; Ghramh, H.A.; Alharby, H.F.; Alzahrani, Y.M.; Alghamdi, S.A.; et al. Adsorption of Pesticides Using Wood-Derived Biochar and Granular Activated Carbon in a Fixed-Bed Column System. Water 2022, 14, 2937. [Google Scholar] [CrossRef]
- Mnyango, J.I.; Nyoni, B.; Phiri, C.; Fouda-Mbanga, B.G.; Amusat, S.O.; Maringa, A.; Yalala-Ndlovu, B.; Hlabano-Moyo, B.; Tywabi-Ngeva, Z.; Hlangothi, S.P. Sustainable wastewater treatment: Mechanistic, environmental, and economic insights into biochar for synthetic dye removal. Next Mater. 2025, 9, 100974. [Google Scholar] [CrossRef]
- Parida, V.K.; Singh, N.; Priyadarshini, M.; Kumari, P.; Datta, D.; Tambi, A. Insights into the synthetic dye contamination in textile wastewater: Impacts on aquatic ecosystems and human health, and eco-friendly remediation strategies for environmental sustainability. J. Ind. Eng. Chem. 2025, 150, 247–264. [Google Scholar] [CrossRef]
- Ahmad, S.; Mujtaba, G.; Zubair, M.; Ul Hassan Shah, M.; Daud, M.; Mu’azu, N.D.; Al-Harthi, M.A. A review of performance, mechanism, and challenges of layered double hydroxide-based biocomposites for the adsorptive removal of dye contaminants from water and wastewater. J. Water Process Eng. 2025, 70, 106837. [Google Scholar] [CrossRef]
- Akhtar, M.; Sarfraz, M.; Ahmad, M.; Raza, N.; Zhang, L. Use of low-cost adsorbent for waste water treatment: Recent progress, new trend and future perspectives. Desalin. Water Treat. 2025, 321, 100914. [Google Scholar] [CrossRef]
- Çatlıoğlu, F.; Akay, S.; Turunç, E.; Gözmen, B.; Anastopoulos, I.; Kayan, B.; Kalderis, D. Preparation and application of Fe-modified banana peel in the adsorption of methylene blue: Process optimization using response surface methodology. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100517. [Google Scholar] [CrossRef]
- Natal, J.P.S.; Cusioli, L.F.; Magalhães-Ghiotto, G.A.V.; Bergamasco, R.; Gomes, R.G. Removal of methylene blue and safranin orange pollutants from liquid effluents by soy residue. Can. J. Chem. Eng. 2023, 101, 5561–5575. [Google Scholar] [CrossRef]
- Vidovix, T.B.; Januário, E.F.D.; Cusioli, L.F.; Quesada, H.B.; Bergamasco, R.; Vieira, A.M.S. Low-cost adsorbent prepared from soybean hulls residues as potential alternative for cationic dyes removal. J. Dispers. Sci. Technol. 2023, 44, 2034–2044. [Google Scholar] [CrossRef]
- Kuyucu, A.E.; Selçuk, A.; Önal, Y.; Alacabey, İ.; Erol, K. Effective removal of dyes from aqueous systems by waste-derived carbon adsorbent: Physicochemical characterization and adsorption studies. Sci. Rep. 2025, 15, 28835. [Google Scholar] [CrossRef]
- Abate, G.Y.; Alene, A.N.; Habte, A.T.; Getahun, D.M. Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environ. Syst. Res. 2020, 9, 29. [Google Scholar] [CrossRef]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015, 22, 15386–15415. [Google Scholar] [CrossRef]
- Shabbirahmed, A.M.; Jacob, A.; Dey, P.; Somu, P.; Haldar, D. Biomass as eco-friendly adsorbents for the removal of emerging pollutants from wastewater: A review. Discov. Appl. Sci. 2025, 7, 771. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process. 2016, 3, 495–523. [Google Scholar] [CrossRef]
- Didaran, A.; Sadeghi, M.S.; Manavi, P.N.; Rabbani, M. Characterization of Heavy Metal Ions Removal from Water by Improved Cuttlebone Powder with Magnetic Fe3O4 Nanoparticle as a Bioadsorbent. Glob. Chall. 2025, 9, 2400107. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Al Bakky, A.; Ismail, Z.; Ibrahim, K.A.; Idris, A.M. Assessing chemical properties and heavy metals in groundwater resources in a developing country: A baseline study. Sci. Rep. 2025, 15, 29628. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Pakade, Y.; Pandey, A.; Mahurkar, M.; Kadaverugu, R. Potential of Bio-Adsorbent in Heavy Metal Removal from Wastewater: An end-to-end Review. Water Air Soil Pollut. 2024, 235, 756. [Google Scholar] [CrossRef]
- Madjar, R.M.; Scăețeanu, G.V. An Overview of Heavy Metal Contamination in Water from Agriculture: Origins, Monitoring, Risks, and Control Measures. Sustainability 2025, 17, 7368. [Google Scholar] [CrossRef]
- Ameri, A.; Tamjidi, S.; Dehghankhalili, F.; Farhadi, A.; Saati, M.A. Application of algae as low cost and effective bio-adsorbent for removal of heavy metals from wastewater: A review study. Environ. Technol. Rev. 2020, 9, 85–110. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Pal, S.L.; Srivastava, N.; Shah, M.; Ahmad, I.; Alshahrani, M.Y.; Pal, D.B. Bioadsorbent and adsorbent-based heavy metal removal technologies from wastewater: New insight. Biomass Conv. Bioref. 2023, 13, 13335–13356. [Google Scholar] [CrossRef]
- Mathew, S.; Soans, J.C.; Rachitha, R.; Shilpalekha, M.S.; Gowda, S.G.S.; Juvvi, P.; Chakka, A.K. Green technology approach for heavy metal adsorption by agricultural and food industry solid wastes as bio-adsorbents: A review. J. Food Sci. Technol. 2023, 60, 1923–1932. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Taleb, M.A.; Halawani, R.; Neamtallah, A.; Kumar, R.; Barakat, M. Hybrid bioadsorbents for heavy metal decontamination from wastewater: A review. Int. J. Mater. Technol. Innov. 2022, 2, 5–19. [Google Scholar] [CrossRef]
- Shafiq, M.; Alazba, A.A.; Amin, M.T. Removal of heavy metals from wastewater using date palm as a biosorbent: A comparative review. Sains Malays. 2018, 47, 35–49. [Google Scholar] [CrossRef]
- Pathirana, C.; Ziyath, A.M.; Jinadasa, K.B.S.N.; Egodawatta, P.; Sarina, S.; Goonetilleke, A. Quantifying the influence of surface physico-chemical properties of biosorbents on heavy metal adsorption. Chemosphere 2019, 234, 488–495. [Google Scholar] [CrossRef]
- Saxena, A.; Bhardwaj, M.; Allen, T.; Kumar, S.; Sahney, R. Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents. Water Sci. 2017, 31, 189–197. [Google Scholar] [CrossRef]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.; Muddada, S. Application of Biosorption for Removal of Heavy Metals from Wastewater. In Biosorption; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Muthusamy, P.; Murugan, S.; Mandal, S.K.; Mishra, B.; Mohanta, Y.K.; Sarma, H.; Narayan, M. Utilizing banana peduncle as an affordable bio-adsorbent for efficient removal of lead ions from water and industrial effluents. Sustain. Chem. Environ. 2024, 7, 100150. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Nguyen, M.T.; Vu, A.T. Production of green biosorbent from chemically modified moringa leaves for enhanced removal of heavy metal in aqueous environment. Biomass Convers. Biorefin. 2025, 15, 13933–13953. [Google Scholar] [CrossRef]
- Helmi, L.; Sunoqrot, S.; Hijazi, A.; Alayli, M.; Rajha, H.N.; Al Bakri, M.; El-Dakdouki, M.H.; El Darra, N. Tomato leaves as a sustainable biosorbent for the effective removal of some organic dyes and lead from water. Front. Environ. Sci. 2025, 13, 1615815. [Google Scholar] [CrossRef]
- Erlangga, R.; Sari, D.A.; Wahyuningtyas, A. Characterization of Eichhornia crassipes bio-adsorbent activated by H3PO4 for the removal of lead ion (Pb2+) from wastewater of battery industry. Sinergi 2025, 29, 279–286. [Google Scholar] [CrossRef]
- Vu, T.Q.; Pham, T.-H.; Kim, J.; Thanh, D.M.; Thang, P.Q.; Le, Q.V.; Jung, S.H.; Kim, T. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere 2021, 284, 131312. [Google Scholar] [CrossRef]
- Liu, X.; Han, Z.; Lin, N.; Hao, Y.; Qu, J.; Gao, P.; He, X.; Liu, B.; Duan, X. Immature persimmon residue as a novel biosorbent for efficient removal of Pb(II) and Cr(VI) from wastewater: Performance and mechanisms. Int. J. Biol. Macromol. 2024, 266, 131083. [Google Scholar] [CrossRef]
- Mili, A.; Kadouche, S.; Vievard, J.; Mourad, F.; Tafer, R.; Devouge-Boyer, C.; Boulkamh, A.; Mignot, M. Synthesis of a Novel Bio-adsorbent Composite Combining Chitosan Powder and Opuntia ficus-indica Cladodes: Characterization and Application for Heavy Metal Removal from Water. Arab. J. Sci. Eng. 2025. [Google Scholar] [CrossRef]
- Ganji, H.; Taghavijeloudar, M.; Khodashenas, S.R. A sustainable approach for heavy metals removal from surface water by sand column amendment with bio-adsorbent of pistachio hull waste (PHW): Batch and fixed-bed column adsorption. J. Water Process Eng. 2024, 67, 106061. [Google Scholar] [CrossRef]
- Megersa, N.; Legesse, A.; Getachew, H.; Mulatu, A.; Kebede, T. Biosorbent residues of the traditionally fermented Ethiopian honey wine (Tej) for quantitative removal of heavy metals from contaminated waters: Adsorption kinetics, thermodynamics and equilibrium studies. Sci. Afr. 2025, 29, e02821. [Google Scholar] [CrossRef]
- Bonilla Mancilla, H.D.; Del Pino Moreyra, J.; Bullon Rosas, J.J.; Bernal Marcelo, A.R.; Tejada Tovar, C.; Jindal, M.K.; Kumar, D.; Sillanpää, M.; Ghernaout, D. Pinus radiata forest residue: A bio-adsorbent of choice for Cr (VI) removal from aqueous solution. Environ. Nanotechnol. Monit. Manag. 2025, 23, 101042. [Google Scholar] [CrossRef]
- Koçyiğit, H.; Gök, G.; Çelebi, H. From garbage to biosorbent: Overview raw and hexane purified almond shells for nickel (II) ions removal. Appl. Water Sci. 2025, 15, 165. [Google Scholar] [CrossRef]
- Hummadi, K.K.; Zhu, L.; He, S. Bio-adsorption of heavy metals from aqueous solution using the ZnO-modified date pits. Sci. Rep. 2023, 13, 22779. [Google Scholar] [CrossRef]
- Sultana, S.; Maliat, N.; Khan, F.; Paul, A.; Tasnim, R.; Jahan, N. Utilization of Catla catla Fish Scale for Eliminating Cr (III) and Co (II) Heavy Metals From Wastewater. Nano Select 2025, 6, e202400164. [Google Scholar] [CrossRef]
- Echeofun, O.M.; Luntsi, J.; Chukwudera, C.F.; Bambur, B.C.; Olatunji, A.; Fanwi, J.S.; Danlami, K.; Eunice, H.N. Corn Stalk Biomass as an Efficient Biosorbent for Aqueous Cobalt (II) Ions Removal. Asian J. Chem. Sci. 2025, 15, 100–108. [Google Scholar] [CrossRef]
- Hussain, M.; Ali, A.S.; Haruna, A.; Kousar, T.; Zango, Z.U.; Mahmood, F.; Adamu, H.; Kotp, M.G.; Abdulganiyyu, I.A.; Keshta, B.E. Efficient removal of manganese (II) ions from aqueous solution using biosorbent derived from rice husk. Sustain. Chem. One World. 2025, 5, 100047. [Google Scholar] [CrossRef]
- Khodadadei, M.T.; Mansouri, H.; Salari, H. Investigating the Removal of Arsenic (III) from Water Using a Biosorbent Containing Chlorella sorokiniana Microalgae. Water Air Soil Pollut. 2025, 236, 962. [Google Scholar] [CrossRef]
- Tamjidi, S.; Ameri, A. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environ. Sci. Pollut. Res. 2020, 27, 31105–31119. [Google Scholar] [CrossRef] [PubMed]
- Nady, D.S.; Abdel-Halim, S.; Hegazy, M.E.F.; El-Desouky, M.A.; Hanna, D.H. Use of Carica papaya waste as bio-adsorbent for sewage wastewater treatment. Biomass Convers. Biorefin. 2025, 15, 15921–15938. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2017, 7, 387–419. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.; Mtei, K. A comprehensive review on the decontamination of lead(ii) from water and wastewater by low-cost biosorbents. RSC Adv. 2022, 12, 11233–11254. [Google Scholar] [CrossRef]
- Tewari, A.; Bhutada, D.S.; Wadgaonkar, V. Heavy Metal Remediation from Water/Wastewater Using Bioadsorbents—A Review. Nat. Environ. Pollut. Technol. 2023, 22, 2039–2053. [Google Scholar] [CrossRef]
- Bankole, D.T.; Oluyori, A.P.; Inyinbor, A.A. The removal of pharmaceutical pollutants from aqueous solution by Agro-waste. Arab. J. Chem. 2023, 16, 104699. [Google Scholar] [CrossRef]
- Caixeta, A.L.; da Silva, A.C.N.; da Silva, S.K.S.; de Carvalho Dias, M.; Cholant, C.M.; Volkmer, T.M.; Missio, A.L.; de Oliveira, A.D.; Ferrer, M.M.; Anwar, Y.; et al. Review: Sustainable Biosorbent and Biopolymeric Materials for Heavy Metal Adsorption—Advances, Challenges, and Perspectives. Materials 2025, 18, 4752. [Google Scholar] [CrossRef] [PubMed]
- Madeła, M.; Skuza, M. Towards a circular economy: Analysis of the use of biowaste as biosorbent for the removal of heavy metals. Energies 2021, 14, 5427. [Google Scholar] [CrossRef]
- Chaukura, N.; Gwenzi, W.; Tavengwa, N.; Manyuchi, M.M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries. Environ. Dev. 2016, 19, 84–89. [Google Scholar] [CrossRef]
- Kaur, J.; Sengupta, P.; Mukhopadhyay, S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind. Eng. Chem. Res. 2022, 61, 1921–1954. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. (Eds.) Green Adsorbents for Pollutant Removal: Innovative Materials; Springer: Berlin/Heidelberg, Germany, 2018; Volume 19. [Google Scholar]
- Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Araujo, L.A.; Bezerra, C.O.; Cusioli, L.F.; Rodríguez, M.T.; Gomes, R.G.; Bergamasco, R. Diclofenac adsorption using a low-cost adsorbent derived from Guazuma ulmifolia Lam. fruit via chemical and thermal treatment. J. Environ. Chem. Eng. 2021, 9, 106629. [Google Scholar] [CrossRef]
| Category | Modification Method | Main Effects | Impact on Adsorption | Article |
|---|---|---|---|---|
| Physical Treatments | Thermal activation (pyrolysis) | Increased surface area; development of micro-/mesopores | Higher adsorption capacity and improved intraparticle diffusion | [27,28,29] |
| Ultrasound treatment | Pore opening via acoustic cavitation | Enhanced adsorption of dyes and pharmaceuticals | [26] | |
| Microwave activation | Rapid pore formation through dielectric heating | Improved adsorption of diclofenac and tetracycline | [30] | |
| Particle size reduction | Increased external surface; reduced diffusion resistance | Higher removal efficiency of metals, pesticides, and drugs | [12,31,32,33,34] | |
| Chemical Treatments | Acid activation | Removal of impurities; introduction of –COOH/–OH groups | Improved adsorption of dyes and Cr(VI) | [7,15,35,36,37] |
| Alkaline activation | Increased basicity; structural opening | Enhanced adsorption of metals and pharmaceuticals | [38,39] | |
| Oxidative treatments | Enrichment of reactive oxygenated groups | Improved hydrogen bonding, complexation, and electrostatic interactions | [40,41,42,43] | |
| Covalent modifications | Introduction of selective functional groups (–COOH, –NH2, –SO3H) | High selectivity for metals and dyes | [44,45,46] | |
| Surface Modifications | Metal oxide impregnation (Fe3O4, TiO2, ZnO, Al2O3) | Formation of complexation sites; magnetic properties | Higher efficiency + magnetic regeneration | [47,48,49] |
| Polymer/biopolymer grafting (e.g., chitosan) | Addition of functional groups; increased active site density | Improved adsorption of pharmaceuticals and metal ions | [50,51] |
| Pharmaceutical | Adsorbent/Modification | Adsorption Capacity (qe) | Reference |
|---|---|---|---|
| Diclofenac (DCF) | Surfactant-Modified Guava Seeds | 38.0 mg g−1 | [64] |
| Escherichia coli biomass coated with magnetite (Fe3O4) | 46.01 ± 0.12 mg g−1 | [65] | |
| Porous wood sponges (Nanocellulose) | 321.3 mg g−1 | [66] | |
| Biohybrid Aerogel Beads | 321.3 mg g−1 | [63] | |
| Sugarcane bagasse activated carbon (H3PO4) | 233.6 mg g−1 | [67] | |
| Tetracycline (TC) | Porous wood sponges (Bamboo cellulose-derived activated carbon aerogel) | 863.8 mg g−1 | [68] |
| Ivermectin | Moringa oleifera seed husks functionalized with iron oxide nanoparticles | 143.76 mg g−1 | [69] |
| Pesticides | Adsorbent/Modification | Adsorption Capacity (qe) | Removal Efficiency (%) | Reference |
|---|---|---|---|---|
| Atrazine | Moringa oleifera—seed husk, seed pulp, pod husk/ (Particle sized reduction) | 2.99, 0.86 and 0.31 mg g−1 | 85%/73%/60% | [72] |
| Methomyl Carbamate | Peanut husk activated carbon/ (HNO3) | 56.62 mg g−1 | 94.06% | [73] |
| Diuron | Moringa oleifera—seed husk/ (HNO3 and pyrolysis) | 25.36 mg g−1 | 84.56% | [14] |
| Dye | Adsorbent/Modification | Adsorption Capacity (qe) | Reference |
|---|---|---|---|
| Methylene Blue (MB) | Iron-modified banana peels | 28.1 mg g−1 | [81] |
| Okara (soymilk residue) | 93.20 mg g−1 | [82] | |
| Safranin Orange | Okara (soymilk residue) | 184.59 mg g−1 | [82] |
| Soybean hulls | 221.74 mg g−1 | [83] | |
| Neutral Red | Soybean hulls | 287.30 mg g−1 | [83] |
| Reactive Blue 19 | Walnut shells carbon derived (KOH) | 1227.17 mg g−1 | [84] |
| Reactive Red 195 | Walnut shells activated carbon (KOH) | 235.74 mg g−1 | [84] |
| Malachite green dye | Catha edulis stems activated carbon | 5.62 mg g−1 | [85] |
| Heavy Metal | Adsorbent/Modification | Adsorption Capacity (qe) | Reference |
|---|---|---|---|
| Pb(II) | Mango peel | 9.65 mg g−1 | [13] |
| Modified banana peduncle (acid/base) | 2.49 mg g−1 | [103] | |
| Moringa oleifera + HNO3 | 208.12 mg g−1 | [104] | |
| Tomato leaves | 45.77 mg g−1 | [105] | |
| Eichhornia crassipes + H3PO4 | 3.99 mg g−1 | [106] | |
| Coffee husk biochar | 116.3 mg g−1 | [107] | |
| Persimmon residues | 68.79 mg g−1 | [108] | |
| Opuntia ficus-indica + chitosan | 102.00 mg g−1 | [109] | |
| Pistachio shells | 29.00 mg g−1 | [110] | |
| Honey waste + HNO3 | 17.24 mg g−1 | [111] | |
| Cd(II) | Coffee husk biochar | 139.5 mg g−1 | [107] |
| Opuntia ficus-indica + chitosan | 20.30 mg g−1 | [109] | |
| Honey waste + HNO3 | 16.13 mg g−1 | [111] | |
| Cr(VI) | Persimmon residues | 139.40 mg g−1 | [108] |
| Pinus radiata + NaOH | 13.95 mg g−1 | [112] | |
| Ni(II) | Opuntia ficus-indica + chitosan | 26.00 mg g−1 | [109] |
| Pistachio shells | 29.30 mg g−1 | [110] | |
| Almond shells chemically modified | 5.67 mg g−1 | [113] | |
| Date pit + ZnO | 71.90 mg g−1 | [114] | |
| Cu(II) | Opuntia ficus-indica + chitosan | 34.70 mg g−1 | [109] |
| Pistachio shells | 24.50 mg g−1 | [110] | |
| Honey waste + HNO3 | 16.96 mg g−1 | [111] | |
| Date pit + ZnO | 82.40 mg g−1 | [114] | |
| Cr(III) | Catla catla fish scale waste | 304.88 mg g−1 | [115] |
| Co(II) | Pistachio shells | 23.00 mg g−1 | [110] |
| Corn stalk activated carbon | 202.68 mg g−1 | [116] | |
| Catla catla fish scale waste | 383.14 mg g−1 | [115] | |
| Zn(II) | Honey waste + HNO3 | 16.67 mg g−1 | [111] |
| Date pit + ZnO | 66.30 mg g−1 | [114] | |
| Mn(II) | Rice husk + HNO3 | 60.24 mg g−1 | [117] |
| As(III) | Chlorella sorokiniana + kaolin + FeCl3 | 17 mg g−1 | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, L.; Ribeiro, A.C.; Paraíso, C.M.; Cusioli, D.A.G.; Beltran, L.B.; Cusioli, L.F.; Bergamasco, R. Low-Cost Adsorbents for Water Treatment: A Sustainable Alternative for Pollutant Removal. Processes 2025, 13, 4088. https://doi.org/10.3390/pr13124088
Nishi L, Ribeiro AC, Paraíso CM, Cusioli DAG, Beltran LB, Cusioli LF, Bergamasco R. Low-Cost Adsorbents for Water Treatment: A Sustainable Alternative for Pollutant Removal. Processes. 2025; 13(12):4088. https://doi.org/10.3390/pr13124088
Chicago/Turabian StyleNishi, Leticia, Anna Carla Ribeiro, Carolina Moser Paraíso, Diana Aline Gomes Cusioli, Laiza Bergamasco Beltran, Luís Fernando Cusioli, and Rosângela Bergamasco. 2025. "Low-Cost Adsorbents for Water Treatment: A Sustainable Alternative for Pollutant Removal" Processes 13, no. 12: 4088. https://doi.org/10.3390/pr13124088
APA StyleNishi, L., Ribeiro, A. C., Paraíso, C. M., Cusioli, D. A. G., Beltran, L. B., Cusioli, L. F., & Bergamasco, R. (2025). Low-Cost Adsorbents for Water Treatment: A Sustainable Alternative for Pollutant Removal. Processes, 13(12), 4088. https://doi.org/10.3390/pr13124088

