Antibacterial Potential and Cytotoxicity Assessment of Zinc-Based Ternary Deep Eutectic Solvents: Towards Innovative Applications in Dental Medicine
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of DESs
2.2. Characterization of DESs
2.2.1. FTIR
2.2.2. LDI MS
2.3. Antibacterial Activity Assessment
2.3.1. Bacterial Strains
2.3.2. Bacterial Cultivation
2.3.3. Assessment of Antibacterial Activity Using Microdilution Assay
2.4. Cytotoxicity Assessment
2.4.1. Cell Culture and Treatment
2.4.2. Viability Assays (XTT and Trypan Blue Exclusion Assay)
2.5. Intracellular ROS Production (DCF Assay)
2.6. Statistical Analysis
3. Results
3.1. Characterization of DESs
3.1.1. FTIR Analysis of DESs
3.1.2. LDI MS
3.2. Antimicrobial Activity of DESs
3.3. Cytotoxicity of DESs
3.4. Intracellular ROS Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J.S. Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives. Energies 2023, 16, 5852. [Google Scholar] [CrossRef]
- Munir, N.; Awang, R.A.; Muhammad, N.; Ismail, N.H.; Khan, A.S.; Inayat, N. Potential Applications of Ionic Liquids in Dentistry: A Narrative Review. ChemBioEng Rev. 2023, 10, 1073–1082. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Yu, Q.; Baker, S.N.; Li, H.; Larm, N.E.; Baker, G.A.; Chen, L.; Tan, J.; Chen, M. Incorporation of Antibacterial Agent Derived Deep Eutectic Solvent into an Active Dental Composite. Dent. Mater. 2017, 33, 1445–1455. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Juan, E.; López, S.; Abia, R.; Muriana, F.J.G.; Fernández-Bolaños, J.; García-Borrego, A. Antimicrobial Activity on Phytopathogenic Bacteria and Yeast, Cytotoxicity and Solubilizing Capacity of Deep Eutectic Solvents. J. Mol. Liq. 2021, 337, 116343. [Google Scholar] [CrossRef]
- Hayyan, M.; Hashim, M.A.; Al-Saadi, M.A.; Hayyan, A.; AlNashef, I.M.; Mirghani, M.E.S. Assessment of Cytotoxicity and Toxicity for Phosphonium-Based Deep Eutectic Solvents. Chemosphere 2013, 93, 455–459. [Google Scholar] [CrossRef]
- Ferreira, I.J.; Oliveira, F.; Jesus, A.R.; Paiva, A.; Duarte, A.R.C. Current Methodologies for the Assessment of Deep Eutectic Systems Toxicology: Challenges and Perspectives. J. Mol. Liq. 2022, 362, 119675. [Google Scholar] [CrossRef]
- Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M.; Sá-Nogueira, I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Dissolution Enhancement of Active Pharmaceutical Ingredients by Therapeutic Deep Eutectic Systems. Eur. J. Pharm. Biopharm. 2016, 98, 57–66. [Google Scholar] [CrossRef]
- Zakrewsky, M.; Banerjee, A.; Apte, S.; Kern, T.L.; Jones, M.R.; Sesto, R.E.D.; Koppisch, A.T.; Fox, D.T.; Mitragotri, S. Choline and Geranate Deep Eutectic Solvent as a Broad-Spectrum Antiseptic Agent for Preventive and Therapeutic Applications. Adv. Healthc. Mater. 2016, 5, 1282–1289. [Google Scholar] [CrossRef]
- Nakajima, M.; Tanner, E.E.; Nakajima, N.; Ibsen, K.N.; Mitragotri, S. Topical Treatment of Periodontitis Using an Iongel. Biomaterials 2021, 276, 121069. [Google Scholar] [CrossRef] [PubMed]
- Wikene, K.O.; Rukke, H.V.; Bruzell, E.; Tønnesen, H.H. Physicochemical Characterisation and Antimicrobial Phototoxicity of an Anionic Porphyrin in Natural Deep Eutectic Solvents. Eur. J. Pharm. Biopharm. 2016, 105, 75–84. [Google Scholar] [CrossRef]
- Janić, M.; Zdolšek, N.; Marinković, J.; Lazarević-Pašti, T.; Momić, T.; Brković, S.; Valenta Šobot, A.; Filipović Tričković, J. Sustainable Green Extraction of Selected Polyphenols from Salvia Officinalis L. with Choline Chloride-Based NADES: Phytochemical Screening and Bioactivity. J. Mol. Liq. 2025, 434, 127995. [Google Scholar] [CrossRef]
- Macário, I.P.E.; Oliveira, H.; Menezes, A.C.; Ventura, S.P.M.; Pereira, J.L.; Gonçalves, A.M.M.; Coutinho, J.A.P.; Gonçalves, F.J.M. Cytotoxicity Profiling of Deep Eutectic Solvents to Human Skin Cells. Sci. Rep. 2019, 9, 3932. [Google Scholar] [CrossRef]
- Jurić, T.; Ždero Pavlović, R.; Uka, D.; Beara, I.; Majkić, T.; Savić, S.; Žekić, M.; Popović, B.M. Natural Deep Eutectic Solvents-Mediated Extraction of Rosmarinic Acid from Lamiaceae Plants: Enhanced Extractability and Anti-Inflammatory Potential. Ind. Crops Prod. 2024, 214, 118559. [Google Scholar] [CrossRef]
- Jurić, T.; Mićić, N.; Potkonjak, A.; Milanov, D.; Dodić, J.; Trivunović, Z.; Popović, B.M. The Evaluation of Phenolic Content, in Vitro Antioxidant and Antibacterial Activity of Mentha Piperita Extracts Obtained by Natural Deep Eutectic Solvents. Food Chem. 2021, 362, 130226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, X.; Zheng, H.; Wang, Y.; Zhang, L. Advances and Challenges in Drug Design against Dental Caries: Application of in Silico Approaches. J. Pharm. Anal. 2025, 15, 101161. [Google Scholar] [CrossRef]
- Pérez-Nicolás, C.; Pecci-Lloret, M.P.; Guerrero-Gironés, J. Use and Efficacy of Mouthwashes in Elderly Patients: A Systematic Review of Randomized Clinical Trials. Ann. Anat. 2023, 246, 152026. [Google Scholar] [CrossRef]
- Poppolo Deus, F.; Ouanounou, A. Chlorhexidine in Dentistry: Pharmacology, Uses, and Adverse Effects. Int. Dent. J. 2022, 72, 269–277. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Ritty Mohan, J.P. Green Synthesis of ZnO Nanoparticles in Zinc Chloride: Choline Chloride Deep Eutectic Solvent-Characterization Antibacterial and Antioxidant Agents. J. Indian Chem. Soc. 2024, 101, 101375. [Google Scholar] [CrossRef]
- Uwitonze, M.A.; Nkemcho, O.; Julienne, M.; Azeddine, A.; Razzaque, M.S. Optimal Oral Health. Nutrients 2020, 12, 949. [Google Scholar] [CrossRef] [PubMed]
- Lynch, R.J.M. Zinc in the Mouth, Its Interactions with Dental Enamel and Possible Effects on Caries; A Review of the Literature. Int. Dent. J. 2011, 61, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Almoudi, M.M.; Hussein, A.S.; Abu Hassan, M.I.; Mohamad Zain, N. A Systematic Review on Antibacterial Activity of Zinc against Streptococcus Mutans. Saudi Dent. J. 2018, 30, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.R.; Dilarri, G.; Forsan, C.F.; de Sapata, V.M.R.; Lopes, P.R.M.; de Moraes, P.B.; Montagnolli, R.N.; Ferreira, H.; Bidoia, E.D. Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Sci. Rep. 2022, 12, 2658. [Google Scholar] [CrossRef]
- Abdelraheem, W.M.; Kamel, H.S.; Gamil, A.N. Evaluation of Anti-Biofilm and Anti-Virulence Effect of Zinc Sulfate on Staphylococcus Aureus Isolates. Sci. Rep. 2024, 14, 25747. [Google Scholar] [CrossRef]
- Deumić, S.; El Sayed, A.; Hsino, M.; Kulesa, A.; Crnčević, N.; Vladavić, N.; Borić, A.; Avdić, M. Investigating the Effect of Zinc Salts on Escherichia Coli and Enterococcus Faecalis Biofilm Formation. Appl. Sci. 2025, 15, 8383. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Li, J.; Khan, M.Z.H.; Ma, F.; Liu, X. A Novel Zinc Complex with Antibacterial and Antioxidant Activity. BMC Chem. 2021, 15, 17. [Google Scholar] [CrossRef]
- Ohiagu, F.O.; Chidoka, P.; Ahaneku, C.C. Human Exposure to Heavy Metals: Toxicity Mechanisms and Health Implications. Mater. Sci. Eng. 2022, 6, 78–87. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P.; Guo, J.; Ma, T.; Hu, Y.; Huang, L.; Xing, B.; He, Y.; Xi, J. Zinc Overload Induces Damage to H9c2 Cardiomyocyte Through Mitochondrial Dysfunction and ROS-Mediated Mitophagy. Cardiovasc. Toxicol. 2023, 23, 388–405. [Google Scholar] [CrossRef]
- Pavlica, S.; Gaunitz, F.; Gebhardt, R. Comparative in Vitro Toxicity of Seven Zinc-Salts towards Neuronal PC12 Cells. Toxicol. Vitr. 2009, 23, 653–659. [Google Scholar] [CrossRef]
- Janković, B.; Manić, N.; Perović, I.; Vujković, M.; Zdolšek, N. Thermal Decomposition Kinetics of Deep Eutectic Solvent (DES) Based on Choline Chloride and Magnesium Chloride Hexahydrate: New Details on the Reaction Mechanism and Enthalpy–Entropy Compensation (EEC). J. Mol. Liq. 2023, 374, 121274. [Google Scholar] [CrossRef]
- Hillenkamp, F.; Beavis, R.C.; Brian, T. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Anal. Chem. 1991, 63, 1193A–1203A. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- Lasch, P.; Beyer, W.; Bosch, A.; Borriss, R.; Drevinek, M.; Dupke, S.; Ehling-schulz, M.; Gao, X.; Grunow, R.; Jacob, D.; et al. A MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Bacteria. Sci. Data 2025, 12, 187. [Google Scholar] [CrossRef]
- Marinković, J.; Marković, T.; Brkić, S.; Radunović, M.; Soldatović, I.; Ćirić, A.; Marković, D. Microbiological Analysis of Primary Infected Root Canals with Symptomatic and Asymptomatic Apical Periodontitis of Young Permanent Teeth. Balk. J. Dent. Med. 2020, 24, 170–177. [Google Scholar] [CrossRef]
- Diouchi, J.; Marinković, J.; Nemoda, M.; El Rhaffari, L.; Toure, B.; Ghoul, S. In Vitro Methods for Assessing the Antibacterial and Antibiofilm Properties of Essential Oils as Potential Root Canal Irrigants—A Simplified Description of the Technical Steps. Methods Protoc. 2024, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Roehm, N.W.; Rodgers, G.H.; Hatfield, S.M.; Glasebrook, A.L. An Improved Colorimetric Assay for Cell Proliferation and Viability Utilizing the Tetrazolium Salt XTT. J. Immunol. Methods 1991, 142, 257–265. [Google Scholar] [CrossRef]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef] [PubMed]
- Matijević, M.; Žakula, J.; Korićanac, L.; Radoičić, M.; Liang, X.; Mi, L. Controlled Killing of Human Cervical Cancer Cells by Combined Action of Blue Light and C-Doped TiO2 Nanoparticles. Photochem. Photobiol. Sci. 2021, 20, 1087–1098. [Google Scholar] [CrossRef]
- Coşkun Demirkalp, A.N. Use and Comparison of MTT, XTT and ICELLigence Methods in the Evaluation of Drug Toxicity. Med. Palliat. Care 2025, 6, 66–71. [Google Scholar] [CrossRef]
- Hatta, N.M.; Halim, S.A. Potential Green Liquid From Ternary Deep Eutectic Solvent Composed of Gallic Acid, Urea, and Zinc Chloride: Characterization of Their Physicochemical and Thermal Properties. Malaysian J. Anal. Sci. 2024, 28, 174–187. Available online: https://mjas.analis.com.my/mjas/v28_n1/pdf/Mohd%20Hatta_28_1_15.pdf (accessed on 1 December 2025).
- Gregorio, V.; Baur, C.; Jankowski, P.; Chang, J.H. Deep Eutectic Solvents as Electrolytes for Zn Batteries: Between Blocked Crystallization, Electrochemical Performance and Corrosion Issues. ChemSusChem 2025, 18, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Agostinho, B.; Irska, I.; Kwiatkowska, M.; Szymczyk, A.; Silvestre, A.J.D.; Sousa, A.F. Optimized Closed-Loop Recycling of Bio-Based Poly(Trimethylene 2,5-Furandicarboxylate) Using Eutectic Solvents. Sustain. Mater. Technol. 2025, 45, e01506. [Google Scholar] [CrossRef]
- Hong, S.; Yuan, Y.; Yang, Q.; Chen, L.; Deng, J.; Chen, W.; Lian, H.; Mota-Morales, J.D.; Liimatainen, H. Choline Chloride-Zinc Chloride Deep Eutectic Solvent Mediated Preparation of Partial O-Acetylation of Chitin Nanocrystal in One Step Reaction. Carbohydr. Polym. 2019, 220, 211–218. [Google Scholar] [CrossRef]
- Gu, D.; Li, J.; Xu, C.; Wang, S.; Xiang, G.; Chen, W.; Zhang, Q.; Hua, Y.; Li, Y. Existence Forms and Electrodeposition Behavior of Various Zinc Compounds in Choline Chloride—Urea Deep-Eutectic Solvent. J. Mol. Liq. 2024, 394, 123592. [Google Scholar] [CrossRef]
- Tamaddon, F.; Ahmadi-Ahmad Abadi, E.; Noorbala, M.R. ZnCl2:ChCl:2urea as a New Ternary Deep Eutectic for Clean Production of High Content Zwitterionic Micro- or Nano-Cellulose by Passing to the Binary DES of ZnCl2:2urea. J. Mol. Liq. 2023, 387, 122662. [Google Scholar] [CrossRef]
- Meng, L.; Sun, H.; Zhang, H.; Zhang, Y.; Ding, C.; Xu, X.; Li, J. Green Eutectogel with Antibacterial-Sensing Integration for Infected Wound Treatment. Sci. China Mater. 2024, 67, 3861–3871. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Li, H.; Fan, X.; Yan, H.; Cai, M.; Xu, X.; Zhu, M. Insights into the Tribological Behavior of Choline Chloride—Urea and Choline Chloride—Thiourea Deep Eutectic Solvents. Friction 2023, 11, 76–92. [Google Scholar] [CrossRef]
- Saha, J.; Podder, J. Crystallization Of Zinc Sulphate Single Crystals And Its Structural, Thermal And Optical Characterization. J. Bangladesh Acad. Sci. 1970, 35, 203–210. [Google Scholar] [CrossRef]
- Salazar-García, S.; García-Rodrigo, J.F.; Delgado Buenrostro, N.L.; Martínez Castañón, G.A.; España Sánchez, B.L.; Chirino, Y.I.; Gonzalez, C. Zinc Chloride through N-Cadherin Upregulation Prevents the Damage Induced by Silver Nanoparticles in Rat Cerebellum. J. Nanoparticle Res. 2022, 24, 169. [Google Scholar] [CrossRef]
- Anžlovar, A.; Crnjak Orel, Z.; Žigon, M. Poly(Methyl Methacrylate) Composites Prepared by in Situ Polymerization Using Organophillic Nano-to-Submicrometer Zinc Oxide Particles. Eur. Polym. J. 2010, 46, 1216–1224. [Google Scholar] [CrossRef]
- Di Pietro, M.E.; Tortora, M.; Bottari, C.; Colombo Dugoni, G.; Pivato, R.V.; Rossi, B.; Paolantoni, M.; Mele, A. In Competition for Water: Hydrated Choline Chloride:Urea vs Choline Acetate:Urea Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2021, 9, 12262–12273. [Google Scholar] [CrossRef]
- Percevault, L.; Delhaye, T.; Chaumont, A.; Schurhammer, R.; Paquin, L.; Rondeau, D. Cold-Spray Ionization Mass Spectrometry of the Choline Chloride-Urea Deep Eutectic Solvent (Reline). J. Mass Spectrom. 2021, 56, e4725. [Google Scholar] [CrossRef]
- Diaz, P.I.; Xie, Z.; Sobue, T.; Thompson, A.; Biyikoglu, B.; Ricker, A.; Ikonomou, L.; Dongari-Bagtzoglou, A. Synergistic Interaction between Candida Albicans and Commensal Oral Streptococci in a Novel in Vitro Mucosal Model. Infect. Immun. 2012, 80, 620–632. [Google Scholar] [CrossRef]
- Kolenbrander, P.E.; Palmer, R.J.; Periasamy, S.; Jakubovics, N.S. Oral Multispecies Biofilm Development and the Key Role of Cell-Cell Distance. Nat. Rev. Microbiol. 2010, 8, 471–480. [Google Scholar] [CrossRef]
- Sevgi, F.; Bagkesici, U.; Kursunlu, A.N.; Guler, E. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) Complexes of Schiff Bases Based-on Glycine and Phenylalanine: Synthesis, Magnetic/Thermal Properties and Antimicrobial Activity. J. Mol. Struct. 2018, 1154, 256–260. [Google Scholar] [CrossRef]
- Liu, Y.; Kohno, T.; Tsuboi, R.; Kitagawa, H.; Imazato, S. Acidity-Induced Release of Zinc Ion from BiounionTM Filler and Its Inhibitory Effects against Streptococcus Mutans. Dent. Mater. J. 2020, 39, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.L.; Abuçafy, M.P.; Manaia, E.B.; Junior, J.A.O.; Chiari-Andréo, B.G.; Pietro, R.C.L.R.; Chiavacci, L.A. Relationship between Structure and Antimicrobial Activity of Zinc Oxide Nanoparticles: An Overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef]
- Tavassoli Hojati, S.; Alaghemand, H.; Hamze, F.; Ahmadian Babaki, F.; Rajab-Nia, R.; Rezvani, M.B.; Kaviani, M.; Atai, M. Antibacterial, Physical and Mechanical Properties of Flowable Resin Composites Containing Zinc Oxide Nanoparticles. Dent. Mater. 2013, 29, 495–505. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, J.X.; Tang, Y.L.; Wang, J.; Yang, Z. Assessing the Toxicity and Biodegradability of Deep Eutectic Solvents. Chemosphere 2015, 132, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Almoudi, M.M.; Hussein, A.S.; Mohd Sarmin, N.I.; Abu Hassan, M.I. Antibacterial Effectiveness of Different Zinc Salts on Streptococcus Mutans and Streptococcus Sobrinus: An in-Vitro Study. Saudi Dent. J. 2023, 35, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, M.; Nemati-Kande, E.; Hosseini, F.; Martinez, F.; Shekaari, H.; Mokhtarpour, M. Effect of Choline Chloride Based Deep Eutectic Solvents on the Aqueous Solubility of 4-Hydroxycoumarin Drug: Measurement and Correlation. J. Mol. Liq. 2022, 368, 120650. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, Cytotoxic and Antioxidative Evaluation of Natural Deep Eutectic Solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Popović, B.M.; Gligorijević, N.; Aranđelović, S.; Macedo, A.C.; Jurić, T.; Uka, D.; Mocko-Blažek, K.; Serra, A.T. Cytotoxicity Profiling of Choline Chloride-Based Natural Deep Eutectic Solvents. RSC Adv. 2023, 13, 3520–3527. [Google Scholar] [CrossRef]
- Wiriyasatiankun, P.; Sakoolnamarka, R.; Thanyasrisung, P. The Impact of an Alkasite Restorative Material on the PH of Streptococcus mutans Biofilm and Dentin Remineralization: An in Vitro Study. BMC Oral Health 2022, 22, 334. [Google Scholar] [CrossRef]
- Van Swaaij, B.W.M.; Slot, D.E.; Van der Weijden, G.A.; Timmerman, M.F.; Ruben, J. Fluoride, PH Value, and Titratable Acidity of Commercially Available Mouthwashes. Int. Dent. J. 2023, 74, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Lenander-Lumikari, M.; Saliva, V.L. Dental Caries. Adv. Dent. Res. 2000, 14, 40–47. [Google Scholar] [CrossRef]
- Canta, M.; Cauda, V. Europe PMC Funders Group The Investigation of the Parameters Affecting the ZnO Nanoparticles Cytotoxicity Behaviour: A Tutorial Review. Biomater. Sci. 2021, 8, 6157–6174. [Google Scholar] [CrossRef]
- Salesa, B.; Sabater, R.; Serrano-Aroca, Á. Promotion of Glycoprotein Synthesis and Antioxidant Gene Expression in Human Keratinocytes. Biology 2021, 10, 1072. [Google Scholar] [CrossRef]
- Marcinčáková, D.; Schusterová, P.; Mudroňová, D.; Csank, T.; Falis, M.; Fedorová, M.; Marcinčák, S.; Hus, K.K.; Legáth, J. Impact of Zinc Sulfate Exposition on Viability, Proliferation and Cell Cycle Distribution of Epithelial Kidney Cells. Polish J. Environ. Stud. 2019, 28, 3279–3286. [Google Scholar] [CrossRef] [PubMed]
- Khabir, Z.; Holmes, A.M.; Lai, Y.J.; Liang, L.; Deva, A.; Polikarpov, M.A.; Roberts, M.S.; Zvyagin, A.V. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int. J. Mol. Sci. 2021, 22, 12372. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.N.; Weaver, N.A.; Monahan, K.S.; Kim, K. Non-ROS-Mediated Cytotoxicity of ZnO and CuO in ML-1 and CA77 Thyroid Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 4055. [Google Scholar] [CrossRef]
- Cierech, M.; Wojnarowicz, J.; Kolenda, A.; Krawczyk-Balska, A.; Prochwicz, E.; Woźniak, B.; Łojkowski, W.; Mierzwińska-Nastalska, E. Zinc Oxide Nanoparticles Cytotoxicity and Release from Newly Formed PMMA–ZNO Nanocomposites Designed for Denture Bases. Nanomaterials 2019, 9, 1318. [Google Scholar] [CrossRef]
- Marinković, J.; Marković, T.; Miličić, B.; Soković, M.; Ćirić, A.; Marković, D. Outstanding Efficacy of Essential Oils Against Oral Pathogens. In Essential Oil Research; Springer: Cham, Switzerland, 2019; pp. 211–233. [Google Scholar] [CrossRef]
- Villalpando-Rodriguez, G.E.; Gibson, S.B. Review Article Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid. Med. Cell. Longev. 2021, 2021, 9912436. [Google Scholar] [CrossRef] [PubMed]





| DES | Designation | Molar Ratio | pH Value of Pure DESs | pH Value in Cell Culture Medium |
|---|---|---|---|---|
| Choline chloride:urea | ChCl:U | 1:2 | 8.90 ± 0.10 | 7.44 ± 0.04 |
| Choline chloride:urea:ZnSO4×7H2O | ChCl:U:ZnSO4 | 1:2:0.25 | 7.99 ± 0.11 | 7.36 ± 0.04 |
| Choline chloride:urea:ZnCl2 | ChCl:U:ZnCl2 | 1:2:0.25 | 8.56 ± 0.06 | 7.38 ± 0.02 |
| Choline chloride:urea:Zn(CH3COO)2×2H2O | ChCl:U:Zn(CH3COO)2 | 1:2:0.25 | 8.26 ± 0.06 | 7.38 ± 0.01 |
| ChCl:U:Zn(CH3COO)2 | ChCl:U:ZnSO4 | ChCl:U:ZnCl2 | ChCl:U | Positive Control (Amoxicillin) | Mouthwash Containing 0.2% Chlorhexidine | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
| µg/mL | ||||||||||||
| S. mutans | 9.375 | 18.75 | 18.59 | 18.59 | 9.06 | 9.06 | 68.75 | 137.5 | 4 | 16 | 6.62 | 26.48 |
| S. sanguinis | 1.17 | 4.68 | 1.16 | 2.32 | 1.13 | 2.26 | 68.75 | 137.5 | 2 | 10 | 3.31 | 26.48 |
| S. gordonii | 9.375 | 18.75 | 9.30 | 9.30 | 4.53 | 9.06 | 68.75 | 137.5 | 2 | 8 | 6.62 | 13.24 |
| S. mitis | 18.75 | 37.5 | 37.19 | 37.19 | 18.12 | 36.24 | 275 | 550 | 2 | 4 | 13.24 | 13.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipović Tričković, J.; Zdolšek, N.; Brković, S.; Veljković, F.; Veličković, S.; Janković, B.; Valenta Šobot, A.; Nemoda, M.; Marinković, J. Antibacterial Potential and Cytotoxicity Assessment of Zinc-Based Ternary Deep Eutectic Solvents: Towards Innovative Applications in Dental Medicine. Processes 2025, 13, 4087. https://doi.org/10.3390/pr13124087
Filipović Tričković J, Zdolšek N, Brković S, Veljković F, Veličković S, Janković B, Valenta Šobot A, Nemoda M, Marinković J. Antibacterial Potential and Cytotoxicity Assessment of Zinc-Based Ternary Deep Eutectic Solvents: Towards Innovative Applications in Dental Medicine. Processes. 2025; 13(12):4087. https://doi.org/10.3390/pr13124087
Chicago/Turabian StyleFilipović Tričković, Jelena, Nikola Zdolšek, Snežana Brković, Filip Veljković, Suzana Veličković, Bojan Janković, Ana Valenta Šobot, Milica Nemoda, and Jelena Marinković. 2025. "Antibacterial Potential and Cytotoxicity Assessment of Zinc-Based Ternary Deep Eutectic Solvents: Towards Innovative Applications in Dental Medicine" Processes 13, no. 12: 4087. https://doi.org/10.3390/pr13124087
APA StyleFilipović Tričković, J., Zdolšek, N., Brković, S., Veljković, F., Veličković, S., Janković, B., Valenta Šobot, A., Nemoda, M., & Marinković, J. (2025). Antibacterial Potential and Cytotoxicity Assessment of Zinc-Based Ternary Deep Eutectic Solvents: Towards Innovative Applications in Dental Medicine. Processes, 13(12), 4087. https://doi.org/10.3390/pr13124087

