Data-Driven Co-Optimization of Multiple Structural Parameters for the Combustion Chamber in a Coke Oven with a Multi-Stage Air Supply System
Abstract
1. Introduction
2. Materials and Methods
2.1. Physical Models
2.2. Numerical Models
2.3. Neural Network Model
2.3.1. Heterogeneous Two-Stream Encoder for Feature Extraction
2.3.2. Feature Fusion Module for Cross-Modal Feature Integration
2.3.3. Residual Block Enhanced Hierarchical Decoder for Stable Convergence
2.4. Support Vector Machine for NOx Predictions
2.5. Training Process of PFCN for Temperature Predictions and SVM for NOx Predictions
3. Model Validations
3.1. Validations of CFD Model
3.2. Validations of ML MODELS
4. Results and Discussion
4.1. Effect of Inlet Spacing
4.2. Effect of Air Staging Ratio
4.3. Effect of Air Staging Height
4.4. Effect of Exhaust Gas Recirculation
4.5. Parameter Sensitivity Analysis
4.6. Co-Optimization and Validation of Multiple Structural Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CFD | Computational fluid dynamics |
| CNN | Convolutional neural network |
| GELU | Gaussian error linear unit |
| MILD | Moderate and intense low-oxygen dilution |
| ML | Machine learning |
| MLP | Multilayer perceptron |
| PFCN | Parameter fusion convolutional network |
| R2 | Coefficient of determination |
| RF | Random forest |
| SVM | Support vector machine |
References
- Farias Neto, G.W.; Leite, M.B.M.; Marcelino, T.O.A.C.; Carneiro, L.O.; Brito, K.D.; Brito, R.P. Optimizing the coke oven process by adjusting the temperature of the combustion chambers. Energy 2021, 217, 119419. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Zhang, J.; Liu, Z.; Sahajwalla, V.; Yang, T.; Kong, D. The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: A review. Fuel 2014, 133, 194–215. [Google Scholar] [CrossRef]
- Li, Z.; Yi, Q.; Zhang, Y.; Zhou, H.; Zhao, Y.; Huang, Y.; Gao, D.; Hao, Y. Numerical study and design strategy for a low emission coke oven system using oxy-fuel combustion of coke oven gas. J. Clean. Prod. 2020, 252, 119656. [Google Scholar] [CrossRef]
- Buczyński, R.; Kim, R. On optimization of the coke oven twin-heating flue design providing a substantial reduction of NOx emissions part I: General description, validation of the models and interpretation of the results. Fuel 2022, 323, 124194. [Google Scholar] [CrossRef]
- Sharma, S.; Pingulkar, H.; Chowdhury, A.; Kumar, S. A new emission reduction approach in MILD combustion through asymmetric fuel injection. Combust. Flame 2018, 193, 61–75. [Google Scholar] [CrossRef]
- Bhatt, A.N.; Shrivastava, N. Application of artificial neural network for internal combustion engines: A state of the art review. Arch. Comput. Methods Eng. 2022, 29, 897–919. [Google Scholar] [CrossRef]
- Le, X.; Zhang, Z.; Zha, X.; Mao, W.; Luo, C.; Li, X.; Wu, F.; Zhang, L. Effects of tertiary air injection on the reaction behavior and NOx emissions during pulverized coal air-staged MILD combustion. Appl. Therm. Eng. 2025, 274, 126799. [Google Scholar] [CrossRef]
- Xu, Q.; Zou, Z.; Chen, Y.; Wang, K.; Du, Z.; Feng, J.; Ding, C.; Bai, Z.; Zang, Y.; Xiong, Y. Performance of a novel-type of heat flue in a coke oven based on high-temperature and low-oxygen diffusion combustion technology. Fuel 2020, 267, 117160. [Google Scholar] [CrossRef]
- Lyu, Q.-G.; Zhu, S.-J.; Zhu, J.-G.; Wu, H.-X.; Fan, Y.-Q. Experimental study on NO emissions from pulverized char under MILD combustion in an O2/CO2 atmosphere preheated by a circulating fluidized bed. Fuel Process. Technol. 2018, 176, 43–49. [Google Scholar] [CrossRef]
- Buczyński, R.; Kim, R. On optimization of the coke oven twin-heating flue design providing a substantial reduction of NOx emissions. Part II: Optimized designs for COG- and MG- fired units as well as operating characteristics of the new heating flues. Fuel 2022, 323, 124193. [Google Scholar] [CrossRef]
- Isaev, M.V.; Sultanguzin, I.A. Three-dimensional simulation of combustion processes in coke-battery furnace chambers. Coke Chem. 2010, 53, 305–310. [Google Scholar] [CrossRef]
- Toapanta-Ramos, F.; Guashco Rubio, M.; Ortega-Loza, F.; Diaz, W. Numerical study of 3D heat transfer in heat sinks with circular profile fins using CFD. Processes 2025, 13, 3199. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Ji, G.; Li, J.; Liu, Z. The influence of the depth of tubing in downward-inclined horizontal wells for shale gas on the drainage and production effect. Processes 2025, 13, 3348. [Google Scholar] [CrossRef]
- Gamrat, S.; Poraj, J.; Bodys, J.; Smolka, J.; Adamczyk, W. Influence of external flue gas recirculation on gas combustion in a coke oven heating system. Fuel Process. Technol. 2016, 152, 430–437. [Google Scholar] [CrossRef]
- Yan, R.; Liu, Y.; Dai, C.; Wu, S.; Tian, H.; Li, Y.; Xiang, C.; Dang, L.; Wei, H. Numerical simulation and optimization of the multi-stage air/gas supply system in a coke oven battery with 7.1 m coking chambers. Int. J. Coal Prep. Util. 2025, 45, 368–389. [Google Scholar] [CrossRef]
- Çıtmacı, B.; Luo, J.; Jang, J.B.; Canuso, V.; Richard, D.; Ren, Y.M.; Morales-Guio, C.G.; Christofides, P.D. Machine learning-based ethylene concentration estimation, real-time optimization and feedback control of an experimental electrochemical reactor. Chem. Eng. Res. Des. 2022, 185, 87–107. [Google Scholar] [CrossRef]
- Cai, K.; Feng, K.; He, D.; Yang, L.; Zhang, M. Incorporation of control parameters into a kinetic model for decarburization during basic oxygen furnace (BOF) steelmaking. Processes 2025, 13, 3048. [Google Scholar] [CrossRef]
- Dahiya, N.; Gupta, S.; Singh, S. A review paper on machine learning applications, advantages, and techniques. In Proceedings of the Electrochemical Society, Vancouver, BC, Canada, May 29–June 2 2022; IOP Science: Bristol, UK, 2022; Volume 107, p. 6137. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, H.; Chi, S.; Liu, S.; Zhu, Z. Spatiotemporal modeling of the total nitrogen concentration fields in a semi-enclosed water body using a TCN-LSTM-hybrid model. Processes 2025, 13, 3262. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- He, S.; Wang, M.; Zhang, J.; Tian, W.; Qiu, S.; Su, G.H. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators. Int. J. Heat Mass Transf. 2022, 198, 123424. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, Y.; Chen, J.; Liu, X.; Wu, X.; Chen, Y. A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas. Energy 2023, 273, 127126. [Google Scholar] [CrossRef]
- Yang, B.; Liu, L.; Huang, H.; Wang, Y.; Li, D.; Yang, Q.; Yin, L.; Zhang, Z. A real-time temperature field prediction method for steel rolling heating furnaces based on graph neural networks. Int. J. Heat Mass Transf. 2024, 235, 126220. [Google Scholar] [CrossRef]
- Xue, W.; Tang, Z.; Cao, S.; Lv, M.; Wang, Z.; Zhao, B.; Wang, G.; Lu, Y. Efficient online prediction and correction of 3D combustion temperature field in coal-fired boilers using GDNN. Measurement 2023, 222, 113507. [Google Scholar] [CrossRef]
- Liu, H.-X.; Li, M.-J.; Guo, J.-Q.; Zhang, X.-K.; Hung, T.-C. Temperature prediction of submerged arc furnace in ironmaking industry based on residual spatial-temporal convolutional neural network. Energy 2024, 309, 133024. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Chen, Z.X.; Guan, Y.; An, Q. Latent space-based machine learning prediction of coupled flame-flow fields in a hydrogen-enriched syngas combustor. Int. J. Hydrogen Energy 2024, 95, 650–665. [Google Scholar] [CrossRef]
- Strässle, R.M.; Faldella, F.; Doll, U. Deep learning-based image segmentation for instantaneous flame front extraction. Exp. Fluids 2024, 65, 94. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, Y.; Yao, G.; Li, K.; Liu, Y.; Liu, X.; Tang, Z.; Zhang, F.; Peng, X.; Lin, J.; et al. BoilerNet: Deep reinforcement learning-based combustion optimization network for pulverized coal boiler. Energy 2025, 318, 134804. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J.; Wang, Y.; Pan, M.; Lu, K.; Ye, Y.; Yin, Z. An artificial intelligence-based strategy for multi-objective optimization of diesel engine fueled with ammonia-diesel-hydrogen blended fuel. Energy 2025, 318, 134701. [Google Scholar] [CrossRef]
- Ren, S.; An, Y.; Pu, Y.; Liu, Y.; Lou, C.; Lim, M. Online prediction of combustion temperature field in a furnace from operating parameters and multi-point temperature data. Energy AI 2025, 21, 100530. [Google Scholar] [CrossRef]
- Cao, Y.; Du, Z.; Hu, Z.; Jin, S.; Lu, W.; Zhang, R. The effects of the size and location of the recirculation windows of combustion chambers in a coke oven on emissions of NO and unburnt fuels by CFD numerical simulation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 964, 12006. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Feng, Y.H.; Zhang, X.X.; Wang, M.D.; Yang, J.F.; Xu, Y. Decoupling simulation of thermal processes in coupled combustion and coking chambers of a coke oven. ISIJ Int. 2013, 53, 995–1001. [Google Scholar] [CrossRef]
- Smith, D.; Frenklach, M.; Moriarty, N.; Eiteneer, B.; Goldenberg, M.; Bowman, C.; Hanson, R.; Song, S.; Gardiner, W.; Lissianski, V.; et al. GRI-Mech 3.0. Available online: http://www.me.berkeley.edu/gri_mech/ (accessed on 30 July 2025).
- Chang, Y.; Jia, M.; Liu, Y.; Li, Y.; Xie, M.; Yin, H. Application of a decoupling methodology for development of skeletal oxidation mechanisms for heavy n -alkanes from n -octane to n -hexadecane. Energy Fuels 2013, 27, 3467–3479. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Chen, L.; Zhu, D.; Liu, Y.; Wu, T. A hybrid MLP-CNN model based on positional encoding for daytime radiative cooler. Opt. Commun. 2024, 560, 130448. [Google Scholar] [CrossRef]
- Nguyen, A.; Pham, K.; Ngo, D.; Ngo, T.; Pham, L. An analysis of state-of-the-art activation functions for supervised deep neural network. In Proceedings of the 2021 International Conference on System Science and Engineering (ICSSE), Nha Trang, Vietnam, 26–28 August 2021; pp. 215–220. [Google Scholar] [CrossRef]
- Nemati, M. A data-driven machine learning approach for turbulent flow field prediction based on direct computational fluid dynamics database. J. Appl. Fluid Mech. 2024, 17, 60–74. [Google Scholar] [CrossRef]
- Mahima, R.; Maheswari, M.; Roshana, S.; Priyanka, E.; Mohanan, N.; Nandhini, N. A comparative analysis of the most commonly used activation functions in deep neural network. In Proceedings of the 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 6–8 July 2023; pp. 1334–1339. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Nieto, D.M.C.; Quiroz, E.A.P.; Lengua, M.A.C. A systematic literature review on support vector machines applied to regression. In Proceedings of the 2021 IEEE Sciences and Humanities International Research Conference (SHIRCON), Lima, Peru, 17–19 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Mat Deris, A.; Mohd Zain, A.; Sallehuddin, R. Overview of support vector machine in modeling machining performances. Procedia Eng. 2011, 24, 308–312. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2019, arXiv:1711.05101. [Google Scholar] [CrossRef]
- Zhou, P.; Xie, X.; Lin, Z.; Yan, S. Towards understanding convergence and generalization of AdamW. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 6486–6493. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xie, M.; Moshayedi, A.J.; Noori Skandari, M.H. A hybrid improved neural networks algorithm based on L2 and dropout regularization. Math. Probl. Eng. 2022, 2022, 8220453. [Google Scholar] [CrossRef]
- Kang, T. Analysis of Factors Influencing Nitrogen Oxide Formation in Coke Ovens; Report, ACRE Coking & Refractory Engineering Consulting Corporation(Dalian): Dalian, China, 2024. [Google Scholar]
- Hu, Z. Numerical Simulation of NOx Formation in a Combustion Chamber of a Coke Oven by Computation Fluid Dynamics. Master’s Thesis, Shanghai Institute of Technology, Shanghai, China, 2013. Available online: https://kns.cnki.net/kcms2/article/abstract?v=SHX-2ztJhde3_jxXIla7D-3ddIOkfwyUszT0re2-NDW1nYB2HgYDrYPyWcuYp3Q3Vl1da0d0XH1HPec1Bn-m372I2A2MF7EoMYsYLToyshkNAN05cJx6iZ9E0FDtDX29htzFpQlTL84hQZFvY2ShqPdJ6F1U-jt-FWpjI4oyVKDXujcxoYfXGVPCN5Zng1tZ&uniplatform=NZKPT&language=CHS (accessed on 21 May 2019).
- Jin, K.; Feng, Y.; Zhang, X.; Wang, M.; Yang, J.; Ma, X. Simulation of transport phenomena in coke oven with staging combustion. Appl. Therm. Eng. 2013, 58, 354–362. [Google Scholar] [CrossRef]
- Terui, K.; Matsui, T.; Fukada, K.; Dohi, Y. Influence of temperature distribution in combustion chamber on coke cake discharging behavior. ISIJ Int. 2018, 58, 633–641. [Google Scholar] [CrossRef]
- FuRui; Al-Absi, M.A.; Lee, H.J. Introduce a specific process of genetic algorithm through an example. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 16–18 October 2019; pp. 422–425. [Google Scholar] [CrossRef]






















| Variables | Values (mm) |
|---|---|
| Length of the flue | 898 |
| Width of the flue | 350 |
| Height of the flue | 5811 |
| Diameter of the fuel inlet | 50 |
| Length of the 1st air inlet | 120 |
| Width of the 1st air inlet | 80 |
| Height of the 2nd air inlet | 1945 |
| Height of the 3rd air inlet | 3795 |
| Thickness of the flue wall | 150 |
| Thickness of the cooking wall | 95 |
| Variables | Value |
|---|---|
| Gas flow rate | 0.002076 kg/s |
| Gas temperature | 873 K |
| Total air flow rate | 0.02674 kg/s |
| Air temperature | 1373 K |
| Outlet pressure | 101,225 Pa |
| Wall temperature | 1375 K |
| Excess air ratio | 1.2 |
| Variables | Values |
|---|---|
| Input tensor dimensions of PFCN (H × W × C) | 25 × 200 × 5 |
| Tensor dimensions after fusion (H × W × C) | 25 × 200 × (512 + 64) |
| Output tensor dimensions of PFCN (H × W × C) | 25 × 200 × 1 |
| Size of dataset | 65 |
| Proportions of training and validation sets | 80:20 |
| Data normalization methods | Z-Score Normalization |
| Variables | Case 1 | Case 2 | Case 3 |
|---|---|---|---|
| Inlet spacing (mm) | 145 | 175 | 165 |
| Air staging ratio (−) | 0.4 | 0.5 | 0.45 |
| Second air staging height (mm) | 1549 | 1549 | 1945 |
| Third air staging height (mm) | 3399 | 3795 | 3399 |
| Exhaust gas recirculation rate (−) | 0.238 | 0.238 | 0.238 |
| Variables | Basecase | Range |
|---|---|---|
| Inlet spacing (mm) | 165 | 145–165 |
| Air staging ratio (−) | 0.5 | 0.4–0.6 |
| Second air staging height (mm) | 1945 | ±396 |
| Third air staging height (mm) | 3795 | ±396 |
| Exhaust gas recirculation rate (−) | 0.253 | 0.238–0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Y.; Yang, C.; Ning, X.; Wang, M.; Li, Y.; Jia, M.; Liu, H. Data-Driven Co-Optimization of Multiple Structural Parameters for the Combustion Chamber in a Coke Oven with a Multi-Stage Air Supply System. Processes 2025, 13, 3818. https://doi.org/10.3390/pr13123818
Shan Y, Yang C, Ning X, Wang M, Li Y, Jia M, Liu H. Data-Driven Co-Optimization of Multiple Structural Parameters for the Combustion Chamber in a Coke Oven with a Multi-Stage Air Supply System. Processes. 2025; 13(12):3818. https://doi.org/10.3390/pr13123818
Chicago/Turabian StyleShan, Yuan, Chen Yang, Xinyu Ning, Mingdeng Wang, Yaopeng Li, Ming Jia, and Hong Liu. 2025. "Data-Driven Co-Optimization of Multiple Structural Parameters for the Combustion Chamber in a Coke Oven with a Multi-Stage Air Supply System" Processes 13, no. 12: 3818. https://doi.org/10.3390/pr13123818
APA StyleShan, Y., Yang, C., Ning, X., Wang, M., Li, Y., Jia, M., & Liu, H. (2025). Data-Driven Co-Optimization of Multiple Structural Parameters for the Combustion Chamber in a Coke Oven with a Multi-Stage Air Supply System. Processes, 13(12), 3818. https://doi.org/10.3390/pr13123818

