An Application Review of Full-Process Testing Methods for the Assistive Efficiency of Exoskeleton Robots
Abstract
1. Introduction
- Integrate physiological and mechanical sensing data to establish a multi-technology collaborative framework for exoskeleton evaluation;
- Systematically compare the strengths and weaknesses of traditional and innovative testing technologies;
- Identify the key challenges and potential directions for future research.
2. EMG
2.1. sEMG for Muscle Fatigue Assessment
2.2. sEMG Signal Processing and Intelligent Control
3. Motion Capture Technology
3.1. OpenSim Biomechanical Modeling
3.2. Qualisys Optical Motion Capture
4. Human–Robot Interface Pressure Testing
4.1. Distributed Pressure Testing
4.2. Fluid Pressure Testing
5. Energy Consumption
5.1. Heart Rate Monitoring
5.2. Volume of Oxygen and Carbon Dioxide (VO2/VCO2)
6. Muscle Strength Assessment
6.1. Dynamometry
6.2. Force Plates
6.3. Borg Scale
7. Conclusions and Outlook
- (1)
- Enhanced EMG signal analysis capability: sEMG signal decoding technologies based on machine learning algorithms such as LDA, SVM, and ANN have achieved accurate identification and classification of user movement intent and muscle fatigue states.
- (2)
- Improved kinematic evaluation precision: The synergistic application of the OpenSim simulation platform and Qualisys optical motion capture systems has enabled high-precision joint torque reconstruction and kinematic parameter analysis.
- (3)
- Optimized human–robot interaction pressure monitoring: The application of flexible sensing arrays allows for real-time monitoring and visualization of pressure distribution, providing a direct basis for exoskeleton structural design and mechanical optimization.
- (4)
- Breakthrough in metabolic energy consumption quantification: Multi-source sensor fusion strategies have controlled energy expenditure estimation error within ±2.1%, significantly enhancing the objectivity and accuracy of metabolic benefit assessment.
- (5)
- Establishment of a subjective-objective integrated assessment system: The systematic integration of the Borg scale with physiological and mechanical indicators has validated the practical value of exoskeletons in reducing physical load and improving user experience.
7.1. Towards a Standardized Multi-Dimensional Evaluation Framework
7.2. Current Challenges and Limitations
- (1)
- Lack of system integration and standardization: Unified protocols for multi-sensor synchronous acquisition, calibration, and data fusion are absent, resulting in low comparability and repeatability of data across different studies.
- (2)
- Insufficient adaptability to dynamic scenarios: Current evaluations are mostly confined to controlled laboratory environments; their effectiveness in complex, unstructured real-world scenarios—such as industrial workshops, rehabilitation centers, and home settings—has not been fully validated.
- (3)
- Unclear mechanisms of long-term effects and individual differences: The effects of long-term exoskeleton use on human neuromuscular adaptation, metabolic regulation, and motor learning remain poorly understood. Personalized adaptation strategies for different user groups, including patients and the elderly, lack theoretical support.
- (4)
- Computational efficiency and real-time performance bottlenecks: Complex analysis methods, such as biomechanical simulation and multidimensional data processing, place high demands on the computing resources and power consumption of exoskeleton hardware, making real-time operation on resource-constrained wearable platforms challenging.
7.3. Future Research Directions
- (1)
- Developing a Comprehensive and Standardized Evaluation Framework: Based on the comparative analysis of multi-modal techniques presented here, a concerted effort is needed to define unified data acquisition protocols, performance metrics, and reporting standards.
- (2)
- Construction of Cross-scale Standardized Testing Platforms: To address the lab-to-field gap, future platforms should integrate virtual simulation and real-world validation approaches, enabling more efficient and representative performance calibration.
- (3)
- Strengthening Human Factors and Ethical Considerations: The importance of subjective assessment highlighted in this study underscores the need for deeper integration of user experience metrics, alongside rigorous data security and social acceptance studies, to guide human-centric development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anam, K.; Al-Jumaily, A.A. Active exoskeleton control systems: State of the art. Procedia Eng. 2012, 41, 988–994. [Google Scholar] [CrossRef]
- Slade, P.; Kochenderfer, M.J.; Delp, S.L.; Collins, S.H. Personalizing exoskeleton assistance while walking in the real world. Nature 2022, 610, 277–281. [Google Scholar] [CrossRef]
- Firouzi, V.; Seyfarth, A.; Song, S.; von Stryk, O.; Sharbafi, M.A. Biomechanical Models in the Lower-Limb Exoskeletons Development: A Review. J. Neuroeng. Rehabil. 2025, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.; Wilcox, M.; Ramirez, D.Z.M.; Loureiro, R.; Carlson, T. Quantifying The Human-Robot Interaction Forces Between A Lower Limb Exoskeleton And Healthy Users. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016. [Google Scholar] [CrossRef]
- Wolff, J.; Parker, C.; Borisoff, J.; Ben Mortenson, W.; Mattie, J. A survey of stakeholder perspectives on exoskeleton technology. J. Neuroeng. Rehabil. 2014, 11, 169. [Google Scholar] [CrossRef]
- Grosu, V.; Guerrero, C.R.; Brackx, B.; Grosu, S.; Vanderborght, B.; Lefeber, D. Instrumenting Complex Exoskeletons for Improved Human-Robot Interaction. IEEE Instrum. Meas. Mag. 2015, 18, 5–10. [Google Scholar] [CrossRef]
- Song, J.; Zhu, A.; Tu, Y.; Zhang, X.; Cao, G. Novel Design and Control of a Crank–Slider Series Elastic Actuated Knee Exoskeleton for Compliant Human–Robot Interaction. IEEE/ASME Trans. Mechatron. 2022, 28, 531–542. [Google Scholar] [CrossRef]
- Refai, M.I.M.; Moya-Esteban, A.; van Zijl, L.; van der Kooij, H.; Sartori, M. Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace. Wearable Technol. 2024, 5, e6. [Google Scholar] [CrossRef]
- Liguori, L.; Mariani, G.; Taborri, J.; Mileti, I.; Torricelli, D.; Mattioli, L.; Palermo, E.; Patanè, F.; Rossi, S. Performance of ankle exoskeletons on irregular terrains: Key design principles and benchmarking tests. IEEE Trans. Neural Syst. Rehabil. Eng. 2025, 33, 1988–1998. [Google Scholar] [CrossRef]
- De Bock, S.; Ghillebert, J.; Govaerts, R.; Tassignon, B.; Rodriguez-Guerrero, C.; Crea, S.; Veneman, J.; Geeroms, J.; Meeusen, R.; De Pauw, K. Benchmarking occupational exoskeletons: An evidence mapping systematic review. Appl. Ergon. 2022, 98, 103582. [Google Scholar] [CrossRef]
- Bayón, C.; Delgado-Oleas, G.; Avellar, L.; Bentivoglio, F.; Di Tommaso, F.; Tagliamonte, N.L.; Rocon, E.; van Asseldonk, E.H.F. Development and evaluation of BenchBalance: A system for benchmarking balance capabilities of wearable robots and their users. Sensors 2022, 22, 119. [Google Scholar] [CrossRef]
- De Luca, C.J. Surface Electromyography: Detection and Recording; Delsys Incorporated: Natick, MA, USA, 2002. [Google Scholar]
- Fleischer, C.; Hommel, G. A human-exoskeleton interface utilizing electromyography. IEEE Trans. Robot. 2008, 24, 872–882. [Google Scholar] [CrossRef]
- Reaz, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef]
- Rukina, N.; Kuznetsov, A.; Borzikov, V.; Komkova, O.; Belova, A. Surface electromyography: Its role and potential in the development of exoskeleton (Review). Sovrem. Tehnol. V Med. 2016, 8, 109–117. [Google Scholar] [CrossRef]
- Skrzat, J.M.; Carp, S.J.; Dai, T.; Lauer, R.; Hiremath, S.V.; Gaeckle, N.; A Tucker, C. Use of surface electromyography to measure muscle fatigue in patients in an acute care hospital. Phys. Ther. 2020, 100, 897–906. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, B.; Shi, H.; Xue, L.; Ao, Y.; Ding, L. SEMG-based fighter pilot muscle fatigue analysis and operation performance research. Med. Nov. Technol. Devices 2022, 16, 100189. [Google Scholar] [CrossRef]
- Gillette, J.C.; Saadat, S.; Butler, T. Electromyography-based fatigue assessment of an upper body exoskeleton during automotive assembly. Wearable Technol. 2022, 3, e23. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Srivastava, A.; Tewari, R.; Mathur, R. EMG Analysis of Lower Limb Muscles for Developing Robotic Exoskeleton Orthotic Device. Procedia Eng. 2012, 41, 32–36. [Google Scholar] [CrossRef]
- Baptista, R.; Salvaggio, F.; Cavallo, C.; Pizzocaro, S.; Galasso, S.; Schmid, M.; De Nunzio, A.M. Training-induced muscle fatigue with a powered lower-limb exoskeleton: A preliminary study on healthy subjects. Med. Sci. 2022, 10, 55. [Google Scholar] [CrossRef]
- Mulas, M.; Folgheraiter, M.; Gini, G. An EMG-controlled exoskeleton for hand rehabilitation. In Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; IEEE: New York, NY, USA, 2005; pp. 371–374. [Google Scholar] [CrossRef]
- Yogeswaran, G.; Gobee, S.; Durairajah, V. Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor. Procedia Comput. Sci. 2015, 76, 53–59. [Google Scholar] [CrossRef]
- Guo, L.; Sandsjö, L.; Ortiz-Catalan, M.; Skrifvars, M. Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording. Text. Res. J. 2020, 90, 227–244. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, Y.; Chen, C.; Sayeed, Z.; Hu, J.; Qi, J.; Frush, T.; Goitz, H.; Hovorka, J.; Cheng, M.; et al. Volitional control of upper-limb exoskeleton empowered by EMG sensors and machine learning computing. Array 2023, 17, 100277. [Google Scholar] [CrossRef]
- Carvalho, C.R.; Fernández, J.M.; Del-Ama, A.J.; Barroso, F.O.; Moreno, J.C. Review of electromyography onset detection methods for real-time control of robotic exoskeletons. J. Neuroeng. Rehabil. 2023, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Benitez, L.M.V.; Tabie, M.; Will, N.; Schmidt, S.; Jordan, M.; Kirchner, E.A. Exoskeleton technology in rehabilitation: Towards an EMG-based orthosis system for upper limb neuromotor rehabilitation. J. Robot. 2013, 2013, 610589. [Google Scholar] [CrossRef]
- Simao, M.; Mendes, N.; Gibaru, O.; Neto, P. A Review on Electromyography Decoding and Pattern Recognition for Human-Machine Interaction. IEEE Access 2019, 7, 39564–39582. [Google Scholar] [CrossRef]
- Sun, L.; Jing, J.; Li, C.; Lu, R. Multi-Terrains Assistive Force Parameter Optimization Method for Soft Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2028–2037. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Chen, J.-W.; Yang, Y.; Lan, Y.-H.; Lu, S.-W.; Wang, C.-F.; Lo, Y.-C.; Lin, C.-L.; Lin, S.-H.; Chen, P.-C.; et al. A Differentiable Dynamic Model for Musculoskeletal Simulation and Exoskeleton Control. Biosensors 2022, 12, 312. [Google Scholar] [CrossRef]
- An, C. Research on Human Machine Coupling Simulation of Lower Limb Exoskeleton Robot Based on OpenSim. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Noorani, S.M.R.; Pour Afshar, M.; Abedpour, N. Force Estimation on the Knee Flexor/Extensor Muscles based on EMG Signal and OpenSim Aided Forward Dynamics Simulation. Iran. J. Biomed. Eng. 2023, 17, 263–271. [Google Scholar] [CrossRef]
- Chandran, V.D.; Nam, S.; Hexner, D.; Bauman, W.A.; Pal, S. Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator. PLoS ONE 2023, 18, e0270078. [Google Scholar] [CrossRef]
- Sánchez Vera, Á. Asistencia de un Exoesqueleto Pasivo de las Extremidades Superiores Usando Opensim; Universidad de Zaragoza: Zaragoza, Spain, 2023. [Google Scholar]
- De Carvalho, G.B.; Chandran, V.D.; Spungen, A.M.; Harel, N.Y.; Bauman, W.A.; Pal, S. Hip, knee, and ankle joint forces during exoskeletal-assisted walking: Comparison of approaches to simulate human-robot interactions. medRxiv 2025. [Google Scholar] [CrossRef]
- Shakourisalim, M. Advanced Musculoskeletal Modeling and Kinematic Assessments for Comparing Occupational Exoskeletons Effectiveness and Muscle Dynamics in Laboratory and In-Field Environments. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2024. [Google Scholar]
- Aftabi, H.; Nasiri, R.; Ahmadabadi, M.N. Simulation-based biomechanical assessment of unpowered exoskeletons for running. Sci. Rep. 2021, 11, 11846. [Google Scholar] [CrossRef]
- Sayyed Noorani, M.R.; Farkhondeh Tale Nav, I.F.; Khojand, K. Neuromusculoskeletal Modeling of Elbow Flexion/Extension–Aided by OpenSim. In Proceedings of the Advanced Engineering Days, Tabriz, Iran, 9–10 July 2024. [Google Scholar]
- Jelti, Z.; Lebel, K.; Letellier, B.; Slangen, P.R.L. Motion capture and myoelectric multimodal measurements during static and dynamic bending tasks using a back-assisting exoskeleton: A preliminary study. SPIE Opt. Metrol. 2021. [Google Scholar] [CrossRef]
- Chander, D.S.; Marie, S.; Gréau, M.; Pontonniera, C. Biomechanical requirements of meat cutting tasks: An overview. Comput. Methods Biomech. Biomed. Eng. 2022, 1–2. [Google Scholar]
- Nuckols, R.W.; Lee, S.; Swaminathan, K.; Orzel, D.; Howe, R.D.; Walsh, C.J. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Sci. Robot. 2021, 6, eabj1362. [Google Scholar] [CrossRef] [PubMed]
- Esser, A.; Müller, F.; Manczurowsky, J.; Hasson, C.J.; Unger, T.; Awai, C.E.; Wolf, P.; Riener, R. Impact of a shoulder exosuit on range of motion, endurance, and task execution in users with neurological impairments. Wearable Technol. 2025, 6, e42. [Google Scholar] [CrossRef]
- Tröster, M.; Budde, S.; Maufroy, C.; Andersen, M.S.; Rasmussen, J.; Schneider, U.; Bauernhansl, T. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. Int. J. Environ. Res. Public Health 2022, 19, 9040. [Google Scholar] [CrossRef]
- Zhou, Y.; Seo, J.; Gong, Y.; Heung, K.H.; Khan, M.; Lei, T. Biomechanical assessment of a passive back exoskeleton using vision-based motion capture and virtual modeling. Autom. Constr. 2025, 172, 106035. [Google Scholar] [CrossRef]
- De Rossi, S.M.M.; Vitiello, N.; Lenzi, T.; Ronsse, R.; Koopman, B.; Persichetti, A.; Vecchi, F.; Ijspeert, A.J.; Van Der Kooij, H.; Carrozza, M.C. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors 2011, 11, 207–227. [Google Scholar] [CrossRef]
- Hoffmann, N.; Ersoysal, S.; Prokop, G.; Hoefer, M.; Weidner, R. Low-cost force sensors embedded in physical human–machine interfaces: Concept, exemplary realization on upper-body exoskeleton, and validation. Sensors 2022, 22, 505. [Google Scholar] [CrossRef]
- Katmah, R.; Al Shehhi, A.; Jelinek, H.F.; Hulleck, A.A.; Khalaf, K. A systematic review of gait analysis in the context of multimodal sensing fusion and AI. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 4189–4202. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, G.; Xu, W.; Zhao, J. Flexible force-sensing system for wearable exoskeleton using liquid pressure detection. Sens. Mater. 2018, 30, 1655–1664. [Google Scholar] [CrossRef]
- Lopes, J.M.; Figueiredo, J.; Fonseca, P.; Cerqueira, J.J.; Vilas-Boas, J.P.; Santos, C.P. Deep learning-based energy expenditure estimation in assisted and non-assisted gait using inertial, EMG, and heart rate wearable sensors. Sensors 2022, 22, 7913. [Google Scholar] [CrossRef]
- Woo, H.; Kong, K.; Rha, D.-W. Lower-limb-assisting robotic exoskeleton reduces energy consumption in healthy young persons during stair climbing. Appl. Bionics Biomech. 2021, 2021, 8833461. [Google Scholar] [CrossRef]
- Bradley, S.S.; de Holanda, L.J.; Chau, T.; Wright, F.V. Physiotherapy-assisted overground exoskeleton use: Mixed methods feasibility study protocol quantifying the user experience, as well as functional, neural, and muscular outcomes in children with mobility impairments. Front. Neurosci. 2024, 18, 1398459. [Google Scholar] [CrossRef]
- Oh, J.; Cho, G.; Kim, H. Performance analysis of wearable robotic exoskeleton in construction tasks: Productivity and motion stability assessment. Appl. Sci. 2025, 15, 3808. [Google Scholar] [CrossRef]
- Brunner, A.; van Sluijs, R.; Luder, T.; Camichel, C.; Kos, M.; Bee, D.; Bartenbach, V.; Lambercy, O. Effect of passive shoulder exoskeleton support during working with arms over shoulder level. Wearable Technol. 2023, 4, e26. [Google Scholar] [CrossRef]
- Garcia, G.; Arauz, P.G.; Alvarez, I.; Encalada, N.; Vega, S.; Martin, B.J. Impact of a passive upper-body exoskeleton on muscle activity, heart rate and discomfort during a carrying task. PLoS ONE 2023, 18, e0287588. [Google Scholar] [CrossRef] [PubMed]
- Pentenga, H.M.; Coenen, P.; Huysmans, M.A.; Speklé, E.M. The effects of working with a passive arm-support exoskeleton on objective and self-reported measures during field tasks—A randomised cross-over study. Ergonomics 2025, 68, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- Camardella, C.; Lippi, V.; Porcini, F.; Bassani, G.; Lencioni, L.; Mauer, C.; Haverkamp, C.; Avizzano, C.A.; Frisoli, A.; Filippeschi, A. User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol. Sensors 2024, 24, 5358. [Google Scholar] [CrossRef]
- Manzoori, A.R.; Malatesta, D.; Mortier, A.; Garcia, J.; Ijspeert, A.; Bouri, M. Adaptive hip exoskeleton control using heart rate feedback reduces oxygen cost during ecological locomotion. Sci. Rep. 2025, 15, 12345. [Google Scholar] [CrossRef]
- Brockmann, L.; Saengsuwan, J.; Schuster-Amft, C.; Hunt, K.J. Feedback control of heart rate during robotics-assisted tilt table exercise in patients after stroke: A clinical feasibility study. J. Neuroeng. Rehabil. 2024, 21, 141. [Google Scholar] [CrossRef]
- Yatsun, A.; Karlov, A.; Malchikov, A.; Jatsun, S. Investigation of the dynamical characteristics of the lower-limbs exoskeleton actuators. EDP Sci. 2018, 161, 03008. [Google Scholar] [CrossRef]
- Sefton, J.M.; Neal, F.K.; Agostinelli, P.J.; Bordonie, N.C.; Whitley, P.E.; Pickle, N.T.; Roos, P.E. The impact of a commercial lower extremity exoskeleton on metabolic load, perceived exertion, and physiological response to a challenging military relevant task: A randomized cross-over design pilot study. PLoS ONE 2025, 20, e0314613. [Google Scholar] [CrossRef]
- Blanco, A.; Catalan, J.M.; Martinez, D.; Garcia-Perez, J.V.; Garcia-Aracil, N. The Effect of an Active Upper-Limb Exoskeleton on Metabolic Parameters and Muscle Activity During a Repetitive Industrial Task. IEEE Access 2022, 10, 16479–16488. [Google Scholar] [CrossRef]
- Chang, Y.; Kang, J.; Jeong, B.; Kim, G.; Lim, B.; Choi, B.; Lee, Y. Verification of Industrial Worker Walking Efficiency with Wearable Hip Exoskeleton. Appl. Sci. 2023, 13, 12609. [Google Scholar] [CrossRef]
- Mishra, S.; Nayak, S.; Sahoo, P.; Sharma, M.; Equebal, A. Impact of Exoskeletal Prosthesis on Energy Expenditure in Female Amputees during Walking with Two Different Level of Amputation. Int. J. Health Sci. Res. 2020, 10, 377–382. [Google Scholar]
- Li-Baboud, Y.-S.; Virts, A.; Bostelman, R.; Yoon, S.; Rahman, A.; Rhode, L.; Ahmed, N.; Shah, M. Evaluation Methods and Measurement Challenges for Industrial Exoskeletons. Sensors 2023, 23, 5604. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Lin, Y.; Zhao, S.; Wei, J.; Zhang, X. An Unpowered Exoskeleton with a Bionic Multi-Segment Foot Structure for Walking Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2025, 33, 1969–1978. [Google Scholar] [CrossRef]
- Zhuang, J.-R.; Chang, W.-T.; Lin, Y.-M. Shoe-Like Unpowered Exoskeleton with Energy Harvesting for Enhanced Walking Economy. IEEE Trans. Neural Syst. Rehabil. Eng. 2025, 33, 2347–2355. [Google Scholar] [CrossRef]
- Martini, E.; Crea, S.; Parri, A.; Bastiani, L.; Faraguna, U.; McKinney, Z.; Molino-Lova, R.; Pratali, L.; Vitiello, N. Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly. Sci Rep. 2019, 9, 7157. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable sensors for activity monitoring and motion control: A review. Biomim. Intell. Robot. 2023, 3, 100089. [Google Scholar] [CrossRef]
- Bass, A.; Aubertin-Leheudre, M.; Vincent, C.; Duclos, C.; Gagnon, D.H. Upper Limb Muscle Strength and Wheelchair-Related Abilities Following an Exoskeleton-Assisted Walking Programme in Individuals with Chronic Spinal Cord Injury: An Exploratory Study. J. Rehabil. Med. 2024, 56, jrm19461. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, C.; Zhang, S.; Zhang, S.; Yi, C.; Ding, Z.; Wei, B.; Jiang, F. Knee Flexion-Assisted Method for Human-Exoskeleton System. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2800–2808. [Google Scholar] [CrossRef] [PubMed]
- Cumplido-Trasmonte, C.; Ramos-Rojas, J.; Delgado-Castillejo, E.; Garcés-Castellote, E.; Puyuelo-Quintana, G.; Destarac-Eguizabal, M.A.; Barquín-Santos, E.; Plaza-Flores, A.; Hernández-Melero, M.; Gutiérrez-Ayala, A.; et al. Effects of ATLAS 2030 gait exoskeleton on strength and range of motion in children with spinal muscular atrophy II: A case series. J. Neuroeng. Rehabil. 2022, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, A.U.; Sergi, F.; Erwin, A.; Yozbatiran, N.; Francisco, G.E.; O’MAlley, M.K. Design and Validation of the RiceWrist-S Exoskeleton for Robotic Rehabilitation After Incomplete Spinal Cord Injury. Robotica 2014, 32, 1415–1431. [Google Scholar] [CrossRef]
- Soma, Y.; Yoshioka, T.; Kubota, S.; Sugaya, H.; Shimizu, Y.; Hada, Y.; Yamazaki, M. Single-Joint Type Hybrid Assistive Limb for Knee Training in the Acute Postoperative Phase After Opening Wedge High Tibial Osteotomy: A Feasibility and Safety Trial. Cureus 2024, 16, e60122. [Google Scholar] [CrossRef]
- Nakamura, M.; Okawara, H.; Tashiro, S.; Sawada, T.; Sugai, K.; Matsubayashi, K.; Kawakami, M.; Nori, S.; Tsuji, O.; Nagoshi, N.; et al. Neurorehabilitation using a voluntary driven exoskeletal robot improves trunk function in patients with chronic spinal cord injury: A single-arm study. Neural Regen. Res. 2022, 17, 427–432. [Google Scholar] [CrossRef]
- Rivera, F.G.; Högberg, D.; Lamb, M.; Luque, E.P. DHM supported assessment of the effects of using an exoskeleton during work. Int. J. Hum. Factors Model. Simul. 2022, 7, 231–246. [Google Scholar] [CrossRef]
- Kang, B.; Lee, C.; Kim, D.; Lee, H.-J.; Lee, D.; Jeon, H.G.; Kim, Y.; Kim, D. Multivariable analysis for predicting lower limb muscular strength with a hip-joint exoskeleton. Front. Bioeng. Biotechnol. 2024, 12, 1431015. [Google Scholar] [CrossRef]
- Kuber, P.M.; Godbole, H.; Rashedi, E. Detecting Fatigue during Exoskeleton-Assisted Trunk Flexion Tasks: A Machine Learning Approach. Appl. Sci. 2024, 14, 3563. [Google Scholar] [CrossRef]
- Chen, X.; Martin, A.E. Automated Gait Event Detection for Exoskeleton-Assisted Walking Using a Long Short-Term Memory Model with Ground Reaction Force and Heel Marker Data. PLoS ONE 2025, 20, e0315186. [Google Scholar] [CrossRef]
- Ringhof, S.; Patzer, I.; Beil, J.; Asfour, T.; Stein, T. Does a Passive Unilateral Lower Limb Exoskeleton Affect Human Static and Dynamic Balance Control? Front. Sports Act. Living 2019, 1, 22. [Google Scholar] [CrossRef]
- Lin, W.; Xiong, Y.; Zhang, C.; Wang, X.; Han, B. Research and Design of a Medial-Support Exoskeleton Chair. Biomimetics 2025, 10, 330. [Google Scholar] [CrossRef]
- Khan, M.; Seo, J.O.; Antwi-Afari, M.F.; Zhou, Y. Effects of a Passive Back Support Exoskeleton on Balance While Walking. Kalpa Publ. Comput. 2025, 22, 143–152. [Google Scholar] [CrossRef]
- Tröster, M.; Wagner, D.; Müller-Graf, F.; Maufroy, C.; Schneider, U.; Bauernhansl, T. Biomechanical Model-Based Development of an Active Occupational Upper-Limb Exoskeleton to Support Healthcare Workers in the Surgery Waiting Room. Int. J. Environ. Res. Public Health 2020, 17, 5140. [Google Scholar] [CrossRef]
- Ahn, J.; Jung, H.; Moon, J.; Kwon, C.; Ahn, J. A comprehensive assessment of a passive back support exoskeleton for load handling assistance. Sci. Rep. 2025, 15, 3926. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, B.; Burdick, J.; Roussac, A.; Rye, M.; Naghdi, N.; Valentin, S.; Licka, T.; Sean, M.; Tétreault, P.; Elliott, J.; et al. The assessment of paraspinal muscle epimuscular fat in participants with and without low back pain: A case-control study. J. Biomech. 2024, 163, 111928. [Google Scholar] [CrossRef] [PubMed]
- Poliero, T.; Fanti, V.; Sposito, M.; Caldwell, D.G.; Di Natali, C. Active and Passive Back-Support Exoskeletons: A Comparison in Static and Dynamic Tasks. IEEE Robot. Autom. Lett. 2022, 7, 8463–8470. [Google Scholar] [CrossRef]
- Cardoso, A.; Colim, A.; Carneiro, P.; Costa, N.; Gomes, S.; Pires, A.; Arezes, P. Assessing the Short-Term Effects of Dual Back-Support Exoskeleton within Logistics Operations. Safety 2024, 10, 56. [Google Scholar] [CrossRef]
- Papetti, A.; Mandolini, M.; Brunzini, A.; Germani, M. Preliminary investigation of a wearable device for evaluating muscular effort and fatigue at workplace. Int. J. Interact. Des. Manuf. (IJIDeM) 2025, 19, 3647–3659. [Google Scholar] [CrossRef]
- Kuber, P.M.; Kulkarni, A.R.; Rashedi, E. Machine Learning-Based Fatigue Level Prediction for Exoskeleton-Assisted Trunk Flexion Tasks Using Wearable Sensors. Appl. Sci. 2024, 14, 4563. [Google Scholar] [CrossRef]
- Kuber, P.M.; Rashedi, E. Effects of a Wearable Assistive Device on Postural Control and Stability During Symmetric and Asymmetric Intermittent Trunk Flexion Tasks. Bioengineering 2025, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Zimmermann, A.K.; Herbert, W.G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with meta-analysis. Med. Devices Evid. Res. 2016, 9, 455–466. [Google Scholar] [CrossRef]
- Lamberti, G.; Sesenna, G.; Paja, Q.; Ciardi, G. Rehabilitation Program for Gait Training Using UAN.GO, a Powered Exoskeleton: A Case Report. Neurol. Int. 2022, 14, 536–546. [Google Scholar] [CrossRef]
- Jleilaty, S.; Ammounah, A.; Abdulmalek, G.; Nouveliere, L.; Su, H.; Alfayad, S. Distributedreal-time control architecture for delectrohydraulic humanoid robots. Robot. Intell. Autom. 2024, 44, 607–620. [Google Scholar] [CrossRef]
- Qi, W.; Xu, X.; Qian, K.; Schuller, B.W.; Fortino, G.; Aliverti, A. A Review of AIoT-Based Human Activity Recognition: From Application to Technique. IEEE J. Biomed. Health Inform. 2025, 29, 2425–2438. [Google Scholar] [CrossRef] [PubMed]






| Technical Aspect | Traditional Solution | Innovative Solution | Advantages | Challenges | 
|---|---|---|---|---|
| Signal Acquisition Electrodes | Ag-AgCl Wet Electrodes [21] | Textile-Based Dry Electrodes [23] | More comfortable, sweat-resistant, suitable for long-term monitoring, less prone to (displacement) | Signal quality stability, long-term durability, standardization | 
| Control Strategy | Pre-set Trajectory/Force Feedback [13] | Real-time sEMG-based Myoelectric Feedback Control [22] | Higher human–robot synergy, better aligned with user intent | Signal delay, anti-interference capability, adaptability to different users | 
| Signal Decoding Algorithm | Threshold Method, Simple Classifiers [25] | Machine Learning (LDA, SVM, ANN) [24] | High recognition accuracy (>98%), handles complex gesture patterns, more natural interaction | Computational complexity, requires large datasets for model training, real-time performance demands | 
| System Integration & Application | Laboratory Prototype [21] | Integrated Multi-sensor (e.g., IMU), Remote Monitoring (e.g., LabView) [22] | More comprehensive functionality, enables remote rehabilitation guidance, provides more information for closed-loop control | Increased system complexity, higher cost, wireless transmission delay and stability | 
| Technical Method | Advantages | Limitations | Evolution Relationship | 
|---|---|---|---|
| Monocular Video + OpenSim [32] | Markerless, strong site applicability | Overestimates exoskeleton assistance (error > 50%) | Exposes deficiencies in human-mechanics interaction modeling | 
| Multidimensional Fusion [33] | Multisource data correction (error < 2%) | Reveals gait constraints (hip flexion ↓40%) | Breaks accuracy limits but exposes new issues | 
| IMU + SPM Analysis [36] | Strong spinal load prediction correlation (r = 0.86) | Relies on lab environment | Validates model generalizability, promotes industrial application | 
| Metabolic Optimization Model [37] | Quantifies muscle fatigue chain (R2 = 0.91) | Does not solve real-time control | Proposes new simplified evaluation metrics | 
| Differentiable Dynamics [29] | Synergistic muscle analysis (error 0.22 Nm/kg) | High computational complexity | Enables closed-loop individualized neurorehabilitation (regulation) | 
| Technical Dimension | Qualisys Optical System | Comparative Technology | Advantages (Comp. Tech) | 
|---|---|---|---|
| Precision & Resolution | Sub-mm, Multi-marker sync [39] | IMU: Lower precision, drift, no line-of-sight needed | IMU: Portability, no occlusion issues | 
| Real-time Performance | High, Real-time dynamics feedback [39] | Magnetic Sys: Metal interference; IMU: Significant delay accumulation | Magnetic: Real-time, no occlusion | 
| Application Adaptability | Supports static/dynamic tasks, Inverse dynamics modeling [40] | Strain Gauges: Low cost, local measurement only | Strain Gauges: Easy integration | 
| Biomechanical Feedback | Combined with force plates: Joint torques, power params [41] | sEMG: Direct muscle activity, cannot link to kinematics | sEMG: Direct neuromuscular info | 
| Innovation Potential | Supports machine learning integration [42] | Wearable Sensors: Easily scalable, data fusion difficult | Wearable: Potential for ubiquitous sensing | 
| Technical Aspect | Traditional Solution | Innovative Solution | Advantages | Challenges | 
|---|---|---|---|---|
| Rehab Exo Pressure Monitoring | Single-point force sensor [47] | Optical flexible pressure sensor array (8ch) [47] | High precision, strong anti-interference, visualizes muscle contraction | Relatively thick, high cost | 
| Hand Motion Intent Recognition | Single modality sensor [46] | Thin-film force sensor & IMU integration (10ch) [46] | Flexible, easy integration, high recognition accuracy (97.1%) | Sensitive to temp/humidity | 
| Upper-Limb Exo Force Detection | Motor current estimation (error >15%) [46] | Low-cost silicone capsule force sensor [46] | Strong environmental adaptability, high linearity, low cost | Lower resolution, moderate dynamic response | 
| Technical Aspect | Traditional Solution | Innovative Solution | Advantages | Challenges | 
|---|---|---|---|---|
| Basic Lower-Limb Gait Monitor | Traditional plantar pressure sensor [48] | Silicone liquid cavity sensor (3 cavities) [48] | Strong anti-interference, fast response, good shear resistance (10° slope) | Lacks multi-dim fusion capability | 
| Complex Env. Gait Monitor | Single sensor system [49] | Multi-dim fusion system (EEG, EMG, IMU) [49] | High robustness, suitable for pathological gait recognition | Complex system, relies on multi-sensor synergy | 
| Self-Powered Gait Monitor | Wired power sensors [49] | Self-powered flexible sensor (e.g., piezoelectric nanogenerator) [49] | No external power needed, high autonomy, high recognition accuracy (>96%) | Depends on energy harvesting efficiency | 
| Testing Technology | Core Principle | Advantages | Limitations | 
|---|---|---|---|
| Gas Metabolic Analysis [61,62] | Real-time VO2/VCO2 exchange rate monitoring | Gold standard (error ±3.7%), directly reflects METs | requires wearing a metabolic mask (which can interfere with natural movement), and the equipment is cumbersome, limiting portability | 
| Heart Rate-Energy Model [50,51,52] | HRV maps to MET | Non-invasive, portable, good dynamic adaptability | Motion artifacts cause error ±8.2% (industrial scenarios) | 
| EMG-Metabolic Coupling [54,55] | Non-linear relation sEMG amplitude & VO2 | Reveals neuro-metabolic mechanisms | Electrodes susceptible to sweat, lengthy calibration | 
| Multidimensional Fusion [50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,69] | Combines HRV/IMU/sEMG/RER | Error reduced to ±2.1% (cross-population) | High computational complexity, poor real-time performance | 
| Technical Aspect | Traditional Solution | Innovative Solution | Advantages | Challenges | 
|---|---|---|---|---|
| Muscle Strength Signal Acquisition | Handheld device, static single-point measurement [73] | Multi-channel integrated sEMG & motion capture dynamic monitoring system [74] | Enables multi-joint synergistic force analysis, (more suitable for real work scenarios) | Complex sensor placement, high anti-interference requirements for dynamic signals | 
| Mechanical Parameter Acquisition | Lab static balance testing [81] | Synchronized multi-force plate combined with motion capture dynamic gait analysis [82] | Precisely acquires multidimensional biomech. params (GRF/CoP) | High equipment cost, environmental constraints, poor field portability | 
| Subjective Fatigue Assessment | Single subjective fatigue score [86] | Subjective-objective (collab. assessment) fused with multi-source data (sEMG, IMU, mech. params) [89] | Effectively quantifies subjective fatigue & comfort, supports personalized ergonomic optimization | Individual differences exist, requires multi-source data to improve reliability, avoid subjective bias | 
| Human–Robot Interaction Verification | Pre-set trajectory/fixed assistance control [13] | Adaptive control strategy based on real-time sEMG & mechanical feedback [26] | Improves human–robot synergy & user compliance, better aligns with natural movement intent | Needs optimized signal delay & anti-interference, algorithm cross-user adaptability (lacking) | 
| System Integration & Application | Lab-based standalone prototype system [21] | Multi-sensor (IMU/force/sEMG) integration & remote monitoring platform [22] | Supports remote rehab guidance & closed-loop control, comprehensive & scalable functionality | High system complexity, increased cost, wireless transmission delay & stability need ensuring | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wu, X.; Liu, J.; Xuan, W.; Zhang, W.; Pang, S.; Xu, H. An Application Review of Full-Process Testing Methods for the Assistive Efficiency of Exoskeleton Robots. Processes 2025, 13, 3476. https://doi.org/10.3390/pr13113476
Wu S, Wu X, Liu J, Xuan W, Zhang W, Pang S, Xu H. An Application Review of Full-Process Testing Methods for the Assistive Efficiency of Exoskeleton Robots. Processes. 2025; 13(11):3476. https://doi.org/10.3390/pr13113476
Chicago/Turabian StyleWu, Shenglin, Xinping Wu, Jianye Liu, Weike Xuan, Wei Zhang, Shan Pang, and Hang Xu. 2025. "An Application Review of Full-Process Testing Methods for the Assistive Efficiency of Exoskeleton Robots" Processes 13, no. 11: 3476. https://doi.org/10.3390/pr13113476
APA StyleWu, S., Wu, X., Liu, J., Xuan, W., Zhang, W., Pang, S., & Xu, H. (2025). An Application Review of Full-Process Testing Methods for the Assistive Efficiency of Exoskeleton Robots. Processes, 13(11), 3476. https://doi.org/10.3390/pr13113476
 
        

 
       