Ground Subsidence Prediction and Shaft Control in Pillar Recovery During Mine Closure
Abstract
1. Introduction
2. Engineering Background
2.1. Mine Overview
2.2. Main Shaft Overview
3. Mining-Induced Deformation Prediction and Monitoring
3.1. Strip Mining Parameters
3.2. Predicted Parameters for Surface Deformation Using the Probability Integral Method
3.3. Prediction Based on New Probability Integral Method with Disturbance from Small Working Faces
3.4. Shaft and Surface Deformation Monitoring Design
3.5. Field Monitoring and Surface Survey
3.6. Shaft Monitoring and Maintenance Recommendations
4. Discussion
4.1. Comparison Between Predicted and Monitored Data
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, W.; Wang, Y. Research on the definition of high-intensity mining based on green mining and its index system. J. Min. Saf. Eng. 2017, 34, 616–623. [Google Scholar] [CrossRef]
- Sebbab, M.M.; El Ouahidi, A.; Ousbih, M.; Ouboulahcen, S.; Abdelrahman, K.; Abioui, M. Integrated geotechnical approach and GIS for identification of geological resources exploitable quarries for sustainable development in ifni inlier and lakhssas plateau (western anti atlas, morocco). Appl. Sci. 2023, 13, 3932. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Liu, D. Technology of variable-width strip mining under densely built industrial squares. J. Henan Polytech. Univ. 2017, 36, 8–14. [Google Scholar] [CrossRef]
- Wu, L. Theory and Practice of Coal Pillar Recovery Under Buildings; China University of Mining and Technology Press: Xuzhou, China, 1994. [Google Scholar]
- Zhang, P. Research on Shaft Pillar Recovery Damage Characteristics and Control Technology Under Industrial Squares. Master’s Thesis, Henan Polytechnic University, Henan, China, 2009. [Google Scholar]
- Gao, H.; An, B.; Han, Z.; Guo, Y.; Ruan, Z.; Li, W.; Zayzay, S. The sustainable development of aged coal mine achieved by recovering pillar-blocked coal resources. Energies 2020, 13, 3912. [Google Scholar] [CrossRef]
- Yang, X.; Hou, L.; Xue, H.; Yuan, D.; Cao, J.; Han, Z.; Gao, Y. Pressure distribution and deformation control of gob-side entry retaining formed by roof cutting influenced by abandoned roadways. Geotech. Geol. Eng. 2021, 39, 2533–2545. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Yao, H.; Yan, J.; Pei, Z. Study on the law and control mechanism of slope sliding instability under hanging wall coal mining. Adv. Civ. Eng. 2025, 1, 7884079. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Y.; Bolz, P.; Côte, C.; Ren, J. A multimethod GIS-based framework for site selection of underground pumped storage power stations using closing coal mines: A case study of the Shanxi province, China. Renew. Energy 2025, 243, 122521. [Google Scholar] [CrossRef]
- Yu, Q.; Ma, J.; Shimada, H.; Sasaoka, T. Influence of coal extraction operation on shaft lining stability in eastern Chinese coal mines. Geotech. Geol. Eng. 2014, 32, 821–827. [Google Scholar] [CrossRef]
- Li, W.; Duan, H.; Xu, Y.; Du, M. The stability evaluation of shaft during drastic drawdown dewatering of alluvium. Shock Vib. 2019, 2019, 3090439. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Z. A brief introduction to disaster rock mass mechanics. Geohazard Mech. 2023, 1, 53–57. [Google Scholar] [CrossRef]
- Wang, W.; Yao, Q.; Wang, A.; Hudson-Edwards, K.A.; Zheng, C.; Yan, L.; Dai, L.; Liu, Y. Study of a damage constitutive model for water-bearing coal measures sedimentary rock with nonlinear deformation during compaction stage. Geohazard Mech. 2023, 1, 244–254. [Google Scholar] [CrossRef]
- Du, C.; Wang, X.; Pan, Y.; Yin, X. A novel evaluation model of shaft stability based on combination weighting method and Promethee II decision-making algorithm. Arab. J. Geosci. 2022, 15, 682. [Google Scholar] [CrossRef]
- Jha, P.; Kumar, S. Simplified approach to estimate lateral load on drilled shafts resulting from a heavily loaded adjacent shallow foundation using horizontal stress isobars. Int. J. Geomech. 2016, 16, 04015032. [Google Scholar] [CrossRef]
- Rong, J.; Wang, B. Deformation and instability mechanisms of a shaft and roadway under the influence of rock mass subsidence. Appl. Sci. 2025, 15, 163. [Google Scholar] [CrossRef]
- Zhao, Q.; Yin, J.; Fu, B. Deformation mechanism and control technology of the surrounding rock of the floor roadway under the influence of mining. Adv. Civ. Eng. 2020, 2020, 6613039. [Google Scholar] [CrossRef]
- Tang, B.; Cai, H.; Cheng, H.; Lin, J.; Cao, G. Effect of seepage velocity on formation of shaft frozen wall in loose aquifer. Adv. Mater. Sci. Eng. 2018, 2018, 2307157. [Google Scholar] [CrossRef]
- Cai, H.; Yao, F.; Hong, R.; Lin, J.; Zeng, K. Multi-loop pipe freezing optimization of deep shaft considering seepage effect. Arab. J. Geosci. 2022, 15, 153. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Wang, A.; Dai, L.; Li, Y.; Zhang, H. Influence of cyclic dynamic disturbance on damage evolution and zoning effect of coal-rock under local static load constraint. Geohazard Mech. 2023, 1, 263–276. [Google Scholar] [CrossRef]
- Fujii, Y.; Ishii, Y.; Goto, T.; Ito, Y. A study on shaft damages due to mining. J. Min. Mater. Process. Inst. Jpn. 1995, 111, 993–1000. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Zhang, S.; Zhou, N. Physical modeling of the controlled shaft deformation law during the solid backfill mining of ultra-close coal seams. Bull. Eng. Geol. Environ. 2019, 78, 3741–3754. [Google Scholar] [CrossRef]
- Taira, M. The end process of the Joban coalfield Ibaraki: A case of closure measure for Takahagi Coal Mine Co. Ltd. Kushigata Mining Station. Jpn. J. Reg. Policy Stud. 2015, 14, 108–115. [Google Scholar] [CrossRef]
- Cole, M.J.; Mthenjane, M.; Van Zyl, A.T. Assessing coal mine closures and mining community profiles for the just transition’ in south africa. J. S. Afr. Inst. Min. Metall. 2023, 123, 329–342. [Google Scholar] [CrossRef]
- Li, P.; Zhu, X.; Ding, X.; Zhang, T. An experimental study of industrial site and shaft pillar mining at Jinggezhuang coal mine. Appl. Sci. 2023, 13, 2340. [Google Scholar] [CrossRef]
- Szlązak, N.; Korzec, M. Conditions that determine changing the function of mine shafts in a gassy coal Mine—A case study. Energies 2024, 17, 1379. [Google Scholar] [CrossRef]
- Yang, W.; Hu, C.; Zou, J.; Han, J. Deflection mechanism and safety analysis of coal mine shaft in deep soil strata. Math. Probl. Eng. 2019, 2019, 9461742. [Google Scholar] [CrossRef]
- Zhou, B.; Li, S.; Kang, J.; Zhang, L.; Zhang, J.; Li, M. A probability integral method modified model for accurately characterizing subsidence at the boundary of a mining area. Sci. Rep. 2025, 15, 21014. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, S.; Wang, Z.; Barbaryka, A.; Tost, M.; Li, M. New Prediction Method of Subsidence Based on the Numerical Displacement Analysis: A Study Case of Deep-Buried Thick Alluvial Layer and Thin Bedrock. Rock Mech. Rock Eng. 2025, 58, 6723–6744. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Ge, C.; Chen, J.; Li, W.; Zhou, H.; Hai-feng, W. Safety technologies for the excavation of coal and gas outburst-prone coal seams in deep shafts. Int. J. Rock Mech. Min. Sci. 2013, 57, 24–33. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Jie, Y. Test on water-level stabilization and prevention of mine-shaft failure by means of groundwater injection. Geotech. Test. J. 2014, 37, 319–332. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, G.; Bai, E.; Guo, M.; Wang, Y. Effect of overburden bending deformation and alluvium mechanical parameters on surface subsidence due to longwall mining. Bull. Eng. Geol. Environ. 2021, 80, 2751–2764. [Google Scholar] [CrossRef]
- Guo, W.; Tan, Y.; Bai, E. Top coal caving mining technique in thick coal seam beneath the earth dam. Int. J. Min. Sci. Technol. 2017, 27, 165–170. [Google Scholar] [CrossRef]
- Bai, E.; Guo, W.; Tan, Y. Negative externalities of high-intensity mining and disaster prevention technology in China. Bull. Eng. Geol. Environ. 2019, 78, 5219–5235. [Google Scholar] [CrossRef]
- Bai, E.; Guo, W.; Zhang, H.; Tan, Y.; Li, X.; Wei, Z. Degradation mechanism of cultivated land and its protection technology in the central coal-grain overlapped area of China. J. Clean. Prod. 2024, 468, 143075. [Google Scholar] [CrossRef]
- Bai, E.; Wang, R.; Guo, W.; Tan, Y.; Lei, W.; Li, H.; Wei, Z. Green coal mining technology of overburden grout injection with directional drilling under buildings. Bull. Eng. Geol. Environ. 2025, 84, 391. [Google Scholar] [CrossRef]
- Li, Y. Fault quasi-static and dynamic ruptures in deep coal mining: Impacts on working faces. Bull. Eng. Geol. Environ. 2024, 83, 515. [Google Scholar] [CrossRef]
- Li, Y.; Fukuyama, E.; Yoshimitsu, N. Comprehensive 3-D modeling of mining-induced fault slip: Impact of panel length, panel orientation and far-field stress orientation. Rock Mech. Rock Eng. 2025, 58, 5961–5979. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Gao, X. Fault slip amplification mechanisms in deep mining due to heterogeneous geological layers. Eng. Fail. Anal. 2025, 169, 109155. [Google Scholar] [CrossRef]
- Li, Y.; Fukuyama, E.; Yoshimitsu, N. Mining-induced fault failure and coseismic slip based on numerical investigation. Bull. Eng. Geol. Environ. 2024, 83, 386. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Yang, J.; Bai, E. Quantitative 3-D investigation of faulting in deep mining using Mohr–Coulomb criterion and slip weakening law. Geomech. Geophys. Geo-Energy Geo-Resour. 2025, 11, 1–24. [Google Scholar] [CrossRef]
- Li, Y. Heterogeneous layer effects on mining-induced dynamic ruptures. Comput. Geosci. 2025, 195, 105776. [Google Scholar] [CrossRef]
- Li, Y. Spatial distribution of strain energy changes due to mining-induced fault coseismic slip: Insights from a rockburst at the Yuejin coal mine, China. Rock Mech. Rock Eng. 2025, 58, 1693–1706. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X. Assessment of variations in shear strain energy induced by fault coseismic slip in deep longwall mining. Int. J. Coal Sci. Technol. 2025, 12, 3–16. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Yuan, W.; Fan, C.H.H. Attenuation of blast-induced vibration on tunnel structures. Geohazard Mech. 2024, 2, 153–163. [Google Scholar] [CrossRef]
- Avulapalle, N.; Chenna, R.; Vemuri, J. Assessment of seismic retrofitting interventions in reinforced concrete structures. Geohazard Mech. 2023, 1, 194–202. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X. Shear strain energy related to mining induced fault slip and its implications for rockbursts. Sci. Rep. 2025, 15, 15168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, X. Quantitative analysis of ultra-close fault dynamic rupture and seismic risks in deep roadway excavation. Sci. Rep. 2025, 15, 8891. [Google Scholar] [CrossRef] [PubMed]
Mining Area | Mining Depth (m) | Mining Thickness (m) | Mining Width (m) | Pillar Width (m) | Recovery Rate (%) | Coal Pillar Core Zone Width (m) | Safety Factor |
---|---|---|---|---|---|---|---|
North | 176~201 | 6 | 22 | 18 | 55 | 5.4 | 1.5 |
26 | 23 | 53 | 10.4 | 1.5 | |||
South | 201~246 | 6 | 20 | 20 | 50 | 7.4 | 1.5 |
40 | 50 | 44 | 37.4 | 1.8 |
No. | Coal Seam Dip Angle | Mining Depth | Mining Thickness | Inflection Point Offset | tan β | θ/(°) | b | q |
---|---|---|---|---|---|---|---|---|
/(°) | /m | /mm | /m | |||||
Small working face 1 | 19 | 198 | 15,000 | 0 | 2.4 | 83 | 0.3 | 0.5 |
Small working face 2 | 19 | 196 | 14,500 | 0 | 2.4 | 83 | 0.3 | 0.55 |
Small working face 3 | 18 | 196 | 14,200 | 0 | 2.4 | 83 | 0.3 | 0.57 |
Small working face 4 | 18 | 195 | 14,000 | 0 | 2.4 | 83 | 0.3 | 0.6 |
Small working face 5 | 18 | 195 | 16,000 | 0 | 2.4 | 83 | 0.3 | 0.62 |
Small working face 6 | 18 | 195 | 15,000 | 0 | 2.4 | 83 | 0.3 | 0.64 |
Small working face 7 | 17 | 195 | 12,000 | 0 | 2.4 | 83 | 0.3 | 0.66 |
Small working face 8 | 17 | 195 | 12,000 | 0 | 2.4 | 83 | 0.3 | 0.67 |
Small working face 9 | 17 | 195 | 10,000 | 0 | 2.4 | 83 | 0.3 | 0.68 |
Small working face 10 | 16 | 190 | 6000 | 0 | 2.4 | 83 | 0.3 | 0.7 |
Measuring Point | Distance from the Shaft/m | xx.12.24 | xx.12.29 | xx.4.4 | xx.5.4 | xx.6.2 | xx.7.1 | xx.8.1 | xx.9.1 | xx.10.1 | xx.12.25 |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 220 | 10.3 | 325.0 | 646.2 | 2473.3 | 3954.3 | 4835.3 | 5425.7 | 5898.7 | 6672.1 | 7620.6 |
A2 | 210 | 8.9 | 203.7 | 448.0 | 2006.8 | 3937.7 | 5068.6 | 6014.2 | 6739.9 | 7445.6 | 8114.5 |
A3 | 200 | 8.0 | 122.9 | 293.6 | 1514.3 | 2854.6 | 4395.0 | 6082.5 | 7225.8 | 8169.1 | 8462.5 |
A4 | 190 | 6.8 | 15.9 | 131.8 | 1040.0 | 2062.3 | 3483.5 | 5282.7 | 7219.1 | 8555.5 | 8726.8 |
A5 | 180 | 6.5 | 12.1 | 87.1 | 681.7 | 1374.9 | 2468.2 | 4532.5 | 6670.1 | 8307.7 | 8647.7 |
A6 | 170 | 4.0 | 11.1 | 56.3 | 403.8 | 935.3 | 1846.8 | 3467.1 | 5847.1 | 7627.1 | 8523.2 |
A7 | 160 | 3.6 | 7.3 | 28.7 | 114.1 | 441.6 | 1109.1 | 2374.1 | 4058.1 | 6041.9 | 8094.1 |
A8 | 150 | 3.4 | 5.5 | 16.3 | 64.5 | 348.0 | 685.4 | 1463.3 | 2802.7 | 4842.1 | 7444.9 |
A9 | 140 | 3.3 | 5.2 | 12.2 | 47.6 | 122.4 | 217.0 | 501.2 | 1323.9 | 3446.7 | 6673.6 |
A10 | 130 | 2.4 | 4.0 | 8.0 | 29.4 | 77.8 | 166.2 | 303.3 | 636.6 | 2210.0 | 5794.7 |
A11 | 120 | 2.2 | 3.6 | 6.5 | 28.1 | 65.4 | 122.7 | 222.1 | 463.5 | 1441.2 | 4868.6 |
A12 | 110 | 2.2 | 3.4 | 5.3 | 17.0 | 50.1 | 113.1 | 195.9 | 365.8 | 855.8 | 3758.3 |
A13 | 100 | 2.3 | 3.3 | 4.7 | 15.2 | 44.2 | 87.2 | 153.5 | 280.5 | 507.5 | 2673.4 |
A14 | 90 | 2.3 | 3.3 | 4.4 | 13.4 | 34.5 | 77.1 | 125.2 | 211.7 | 378.2 | 1652.7 |
A15 | 80 | 2.0 | 3.2 | 3.7 | 10.7 | 28.1 | 57.4 | 89.1 | 144.8 | 265.6 | 996.9 |
A16 | 70 | 2.2 | 3.1 | 4.0 | 4.6 | 20.3 | 36.1 | 64.1 | 97.6 | 183.1 | 665.8 |
A17 | 60 | 1.5 | 2.5 | 3.1 | 3.5 | 15.3 | 29.1 | 55.5 | 84.3 | 153.1 | 424.5 |
A18 | 50 | 1.8 | 3.0 | 4.9 | 15.9 | 22.9 | 33.8 | 52.3 | 80.3 | 115.3 | 272.2 |
A19 | 40 | 1.8 | 2.6 | 10.7 | 11.2 | 15.8 | 26.5 | 42.7 | 69.6 | 98.6 | 159.0 |
A20 | 30 | 2.6 | 3.0 | 3.8 | 6.9 | 12.7 | 20.9 | 31.9 | 55.9 | 83.9 | 85.7 |
Measuring Point | Distance from the Shaft/m | xx.12.24 | xx.12.29 | xx.4.4 | xx.5.4 | xx.6.2 | xx.7.1 | xx.8.1 | xx.9.1 | xx.10.1 | xx.12.25 |
---|---|---|---|---|---|---|---|---|---|---|---|
A28 | 40 | — | 3.3 | 6.0 | 10.0 | 12.0 | 14.0 | — | — | — | — |
A27 | 50 | 0.1 | 3.3 | 7.2 | 12.5 | 18.4 | 25.0 | — | — | — | — |
A30 | 60 | 0.2 | 3.4 | 8.5 | 14.8 | 24.1 | 34.5 | 39.2 | 42.14 | 43.9 | 45.1 |
A31 | 70 | 0.5 | 3.5 | 9.1 | 18.5 | 30.4 | 44.7 | 59.1 | 71.72 | 81.2 | 87.6 |
A32 | 80 | 0.7 | 5.0 | 37.6 | 40.1 | 54.7 | 71.4 | 96.1 | 124.8 | 150.3 | 168.5 |
A33 | 90 | 0.9 | 6.1 | 51.4 | 83.0 | 126.7 | 194.1 | — | — | — | — |
A34 | 100 | 1.8 | 7.6 | 72.4 | 122.4 | 213.4 | 321.5 | 375.9 | — | — | — |
A35 | 110 | 4.6 | 11.7 | 102.8 | 153.9 | 263.1 | 405.2 | 472.1 | 508.4 | 532.6 | 554.0 |
A36 | 120 | 5.0 | 13.6 | 139.1 | 241.7 | 390.5 | 551.9 | 611.4 | 659.6 | 692.9 | 721.6 |
A37 | 130 | 10.0 | 22.4 | 178.9 | 288.5 | 462.5 | 644.4 | 734.9 | 810.6 | 850.4 | 880.6 |
Distance from the Shaft/m | xx.12.24 | xx.12.29 | xx.4.4 | xx.5.4 | xx.6.2 | xx.7.1 | xx.8.1 | xx.9.1 | xx.10.1 | xx.12.25 |
---|---|---|---|---|---|---|---|---|---|---|
215 | 0.14 | 12.13 | 19.82 | 46.65 | 1.66 | −23.33 | −58.85 | −84.12 | −77.35 | −49.39 |
205 | 0.09 | 8.08 | 15.44 | 49.25 | 108.31 | 67.36 | −6.83 | −48.59 | −72.35 | −34.80 |
195 | 0.12 | 10.70 | 16.18 | 47.43 | 79.23 | 91.15 | 79.98 | 0.67 | −38.64 | −26.43 |
185 | 0.03 | 0.38 | 4.47 | 35.83 | 68.74 | 101.53 | 75.02 | 54.90 | 24.78 | 7.91 |
175 | 0.25 | 0.10 | 3.08 | 27.79 | 43.96 | 62.14 | 106.54 | 82.30 | 68.06 | 12.45 |
165 | 0.04 | 0.38 | 2.76 | 28.97 | 49.37 | 73.77 | 109.30 | 178.90 | 158.52 | 42.91 |
155 | 0.02 | 0.18 | 1.24 | 4.96 | 9.37 | 42.37 | 91.08 | 125.54 | 119.98 | 64.92 |
145 | 0.01 | 0.03 | 0.41 | 1.69 | 22.56 | 46.84 | 96.21 | 147.88 | 139.54 | 77.13 |
135 | 0.09 | 0.12 | 0.42 | 1.82 | 4.46 | 5.08 | 19.79 | 68.73 | 123.67 | 87.89 |
125 | 0.02 | 0.04 | 0.15 | 0.13 | 1.24 | 4.35 | 8.12 | 17.31 | 76.88 | 92.61 |
115 | 0.00 | 0.02 | 0.12 | 1.11 | 1.53 | 0.96 | 2.62 | 9.77 | 58.54 | 111.03 |
105 | −0.01 | 0.01 | 0.06 | 0.18 | 0.59 | 2.59 | 4.24 | 8.53 | 34.83 | 108.49 |
95 | 0.00 | 0.00 | 0.03 | 0.18 | 0.97 | 1.01 | 2.83 | 6.88 | 12.93 | 102.07 |
85 | 0.03 | 0.01 | 0.07 | 0.27 | 0.65 | 1.97 | 3.61 | 6.69 | 11.26 | 65.58 |
75 | −0.02 | 0.01 | −0.03 | 0.61 | 0.78 | 2.13 | 2.50 | 4.72 | 8.25 | 33.11 |
65 | 0.07 | 0.06 | 0.09 | 0.11 | 0.51 | 0.70 | 0.86 | 1.33 | 3.00 | 24.13 |
55 | −0.03 | −0.05 | −0.18 | −1.24 | −0.77 | −0.47 | 0.32 | 0.40 | 3.78 | 15.23 |
45 | 0.00 | 0.04 | −0.58 | 0.47 | 0.71 | 0.73 | 0.96 | 1.07 | 1.67 | 11.32 |
35 | −0.08 | −0.04 | 0.69 | 0.43 | 0.31 | 0.56 | 1.08 | 1.37 | 1.47 | 7.33 |
Distance from Shaft Opening (m) | Shaft Wall Observation Condition |
---|---|
30 | Peeling |
40 | Layer separation |
50 | Spalling |
65 | Water seepage |
85 | Slight spalling |
165 | Slight spalling |
Observation Point | Monitored Subsidence/mm | Predicted Subsidence/mm | Difference |
---|---|---|---|
A1 | 7620.6 | 7829.4 | −208.8 |
A2 | 8114.5 | 8204.5 | −90 |
A3 | 8462.5 | 8564.5 | −102 |
A4 | 8726.8 | 8826.8 | −100 |
A5 | 8647.7 | 8956.7 | −309 |
A6 | 8523.2 | 8821.9 | −298.7 |
A7 | 8094.1 | 8492.2 | −398.1 |
A8 | 7444.9 | 7844 | −399.1 |
A9 | 6673.6 | 7070.2 | −396.6 |
A10 | 5794.7 | 6191 | −396.3 |
A11 | 4868.6 | 5240 | −371.4 |
A12 | 3758.3 | 4118.3 | −360 |
A13 | 2673.4 | 2979.2 | −305.8 |
A14 | 1652.7 | 2007.3 | −354.6 |
A15 | 996.9 | 1260.8 | −263.9 |
A16 | 665.8 | 883.3 | −217.5 |
A17 | 424.5 | 566.7 | −142.2 |
A18 | 272.2 | 361.3 | −89.1 |
A19 | 159.0 | 188.7 | −29.7 |
A20 | 85.7 | 92.1 | −6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wang, Z.; Li, Y.; Wang, Y. Ground Subsidence Prediction and Shaft Control in Pillar Recovery During Mine Closure. Processes 2025, 13, 3274. https://doi.org/10.3390/pr13103274
Wang D, Wang Z, Li Y, Wang Y. Ground Subsidence Prediction and Shaft Control in Pillar Recovery During Mine Closure. Processes. 2025; 13(10):3274. https://doi.org/10.3390/pr13103274
Chicago/Turabian StyleWang, Defeng, Zhenqi Wang, Yatao Li, and Yong Wang. 2025. "Ground Subsidence Prediction and Shaft Control in Pillar Recovery During Mine Closure" Processes 13, no. 10: 3274. https://doi.org/10.3390/pr13103274
APA StyleWang, D., Wang, Z., Li, Y., & Wang, Y. (2025). Ground Subsidence Prediction and Shaft Control in Pillar Recovery During Mine Closure. Processes, 13(10), 3274. https://doi.org/10.3390/pr13103274