Physical–Digital Integration-Based Study on Strong Mine Pressure Formation Mechanism Under Dynamic Chain Effect from Multi-Layer Control
Abstract
1. Introduction
2. Methodology
2.1. Physics-Digital Fusion Framework
2.2. Similar Model Experiment
2.3. Numerical Simulation Modeling
3. Results
3.1. Similar Simulation Experiment
3.1.1. Break and Caving Characteristics of the Overlying Strata During Initial Mining
3.1.2. Break and Caving Characteristics of the Overlying Strata During Normal Mining
3.1.3. Movement and Deformation of the Overlying Strata
3.1.4. Variation Law of Stress on Roof and Floor of the Coal Seam
3.2. Numerical Simulation
3.2.1. Fracture and Stress Evolution in Surrounding Rock Mass During Initial Mining
3.2.2. Development of Plastic Zone and Distribution Characteristics of Stress Field During Initial Fracture of Secondary Key Stratum
3.2.3. Plastic-Zone Development and Stress-Field Distribution During First Fracture of the Primary Key Stratum
3.2.4. Comparison with Data-Driven Surrogate Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.; He, X.Q.; Song, D.Z.; Tian, X.H.; Li, Z.L.; Xue, Y.R.; Aslam, K.S. Extracting and Predicting Rock Mechanical Behavior Based on Microseismic Spatio-temporal Response in an Ultra-thick Coal Seam Mine. Rock Mech. Rock Eng. 2023, 56, 3725–3754. [Google Scholar] [CrossRef]
- Yu, X.Y.; Lv, S.Y.; Luo, Y.F.; Liu, P.C.; Fu, H.; Zhou, Y.C. Research on Support Technology for Unstable Roof Roadway Under Abandoned Roadways in Ultra-Thick Coal Seam. Processes 2024, 12, 2886. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, A.K.; Kumar, A.; Singh, A.K.; Ram, S.; Singh, A.K.; Singh, R. Importance of Fracturing Hard and Massive Overlying Strata for Complete Extraction of Thick Coal Seam—Case Studies. J. Geol. Soc. India 2022, 98, 203–210. [Google Scholar] [CrossRef]
- Yang, Y.K.; Gao, P.P.; Zhang, C.; Wang, C.L. Numerical Investigation of the Influence of Roof-Cutting Parameters on the Stability of Top Coal Gob-Side Entry Retaining by Roof Pre-Fracturing in Ultra-Thick Coal Seam. Energies 2023, 16, 4788. [Google Scholar] [CrossRef]
- Cui, F.; Zong, C.; Lai, X.L.; Jia, C.; Luo, Z. Prediction of Coal Burst Location and Risk Level in Roadway Using XGBoost with Multi-element Microseismic Information and Its Application in Steeply Inclined Ultra-Thick Coal Seam. Rock Mech. Rock Eng. 2025, 58, 4023–4042. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Li, D.Q. Stability assessment of long gateroad pillar in ultra-thick coal seam: An extensive field and numerical study. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 147. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhu, S.T.; Zhang, X.R.; Wang, G.A.; Chen, Y.; Man, C.; Dong, C.Y.; Li, J.J.; Liu, L.Y. Mechanism of Coal Thickness Effect on Rockburst of Excavation Tunnel within Ultra-thick Coal Seam. J. Geophys. Eng. 2025, 22, 640–651. [Google Scholar] [CrossRef]
- Shi, J.L.; Yan, S.H.; Xu, Z.H.; Xue, J.S.; Zhao, K.K.; Zheng, J.W. Analysis of the Progressively Enhanced Mine Pressure in the Fully Mechanized Top Coal Caving Work Face of a 20 m Ultra-Thick Coal Seam. Shock Vib. 2021, 2021, 6678207. [Google Scholar] [CrossRef]
- Sun, X.M.; Zhao, W.C.; Wang, J.; Jiang, M.; Shen, F.X.; Zhang, Y.; Miao, C.Y. Research on Failure Mechanism and Stability Control Technology of Dynamic Pressure Roadway in Ultra-Thick Coal Seams Under a High Depth of Cover. Min. Metall. Explor. 2023, 40, 1955–1972. [Google Scholar] [CrossRef]
- Qian, M.G.; Miao, X.X.; Xu, J.L. Theoretical study of key stratum in ground control. J. China Coal Soc. 1996, 03, 2–7. [Google Scholar]
- Wang, G.A.; Zhu, S.T.; Zhang, X.F.; Wen, Y.Y.; Zhu, Z.J.; Zhu, Q.J.; Xie, L.F.; Li, J.J.; Tan, Y.; Yang, T. Prediction of Mining-induced Seismicity and Damage Assessment of Induced Surface Buildings in Thick and Hard Key Stratum Working Face: A case Study of Liuhuanggou Coal Mine in China. Front. Earth Sci. 2023, 11, 1238055. [Google Scholar] [CrossRef]
- He, Y.P.; Huang, Q.X.; Ma, L. Study on the Mechanism and Control of Strong Ground Pressure in the Mining of Shallow Buried Close-distance Coal Seam Passing Through the Loess Hilly Region. Geomech. Geophys. Geo-Energy Geo-Resour. 2025, 11, 14. [Google Scholar] [CrossRef]
- Geng, Z.; Jin, D.L.; Yuan, D.J.; Wang, Q.X.; Qiao, G.G. Study on Ground Deformation and Settlement Caused by the Construction of Pipe Jacking Tunnel in Multi-layer Strata. Tunn. Undergr. Space Technol. 2025, 165, 106856. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wu, W.D.; Wu, B.W. Grouting of Bed Separation Spaces to Control Sliding of the High-Located Main Key Stratum During Longwall Mining. Q. J. Eng. Geol. Hydrogeol. 2020, 53, 569–578. [Google Scholar] [CrossRef]
- Wang, W.Q.; Li, Z.H.; Du, F.; Li, G.S. Study on Fracture Characteristics of High Key Stratum and Development Law of Water and Gas Transport Channels in Datong Mining Area. Energy Sci. Eng. 2023, 11, 48–61. [Google Scholar] [CrossRef]
- Ju, J.F.; Xu, J.L. Structural Characteristics of Key Strata and Strata Behaviour of a Fully Mechanized Longwall Face with 7.0 m Height Chocks. Int. J. Rock Mech. Min. 2013, 58, 46–54. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.L.; Ju, J.F.; Zhu, W.B.; Xu, J.M. The Effects of the Rotational Speed of Voussoir Beam Structures Formed by Key Strata on the Ground Pressure of Stopes. Int. J. Rock Mech. Min. 2018, 108, 67–79. [Google Scholar] [CrossRef]
- Kuang, T.J.; Li, Z.; Zhu, W.B.; Xie, J.L.; Ju, J.F.; Liu, J.R.; Xu, J.M. The Impact of Key Strata Movement on Ground Pressure Behaviour in the Datong Coalfield. Int. J. Rock Mech. Min. 2019, 119, 193–204. [Google Scholar] [CrossRef]
- Han, H.K.; Xu, J.L.; Wang, X.Z.; Xie, J.L.; Xing, Y.T. Method to Calculate Working Surface Abutment Pressure Based on Key Strata Theory. Adv. Civ. Eng. 2019, 2019, 7678327. [Google Scholar] [CrossRef]
- Lu, W.Y.; He, C.C.; Zhang, X. Height of Overburden Fracture Based on Key Strata Theory in Longwall Face. PLoS ONE 2020, 15, e0228264. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.Z.; Jin, Z.P. Influence of the Primary Key Stratum on Surface Subsidence during Longwall Mining. Sustainability 2022, 14, 15027. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Lei, X.H.; Li, T.Z.; Ren, Y.Q. The Subsidence Mechanisms of Primary Key Stratum with Different Factors: A Case Study. Geotech. Geol. Eng. 2023, 41, 4351–4366. [Google Scholar] [CrossRef]
- Kim, K.; Juhyok, U.; Ri, Y.; Kwak, S. Free and Forced Vibration Analysis of Composite Beam Composed Laminated Composite Material and Functionally Graded Material. J. Vib. Eng. Technol. 2024, 12, 7349–7372. [Google Scholar] [CrossRef]
- Kim, K.; Ri, K.; Yun, C.; Pak, C.; Han, P. Nonlinear Forced Vibration Analysis of Composite Beam Considering Internal Damping. Nonlinear Dyn. 2022, 107, 3407–3423. [Google Scholar] [CrossRef]
- Sheng, J.; Yin, S.P.; Yue, J.H.; Yang, Y.H. Bending Performance of ECC-RC Composite Beam Reinforced with Textile. Constr. Build. Mater. 2021, 287, 123079. [Google Scholar] [CrossRef]
- Fang, S.H.; Zhu, H.Q.; Huo, Y.J.; Zhang, Y.L.; Wang, H.R.; Li, F.; Wang, X.K. The Pressure Relief Protection Effect of Different Strip Widths, Dip Angles and Pillar Widths of an Underside Protective Seam. PLoS ONE 2021, 16, e0246199. [Google Scholar] [CrossRef]
- Otoshi, A.; Sasaki, K.; Anggara, F. Screening of UCG Chemical Reactions and Numerical Simulation Up-scaling of Coal Seam from Laboratory Models. Combust. Theory Model. 2022, 26, 25–49. [Google Scholar] [CrossRef]
- Zhang, Y.J. Mechanism of Water Inrush of a Deep Mining Floor Based on Coupled Mining Pressure and Confined Pressure. Mine Water Environ. 2021, 40, 366–377. [Google Scholar] [CrossRef]
- Askarova, A.S.; Messerle, V.E.; Ustimenko, A.B.; Bolegenova, S.A.; Maksimov, V.Y. Numerical Simulation of the Coal Combustion Process Initiated by a Plasma Source. Thermophys. Aeromechanics 2014, 21, 747–754. [Google Scholar] [CrossRef]
- Chen, C.A.; Ma, Z.Q.; Zu, Z.Y.; Liu, P.; Zou, Y.H.; Xie, H.F. Experimental Study on the Bump-inducing Mechanism of Slicing in Thick Coal Seams with Hard Roofs. Energy Source Part A 2021, 47, 8254–8268. [Google Scholar] [CrossRef]
- Kim, D.; Seo, Y.; Kim, J.; Han, J.; Lee, Y. Experimental and Simulation Studies on Adsorption and Diffusion Characteristics of Coalbed Methane. Energies 2019, 12, 3445. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.X.; Feng, R.M.; Wang, W.; Lan, Y.W.; Xu, Z.J. Surrounding Rock Failure Analysis of Retreating Roadways and the Control Technique for Extra-thick Coal Seams Under Fully-mechanized Top Caving and Intensive Mining Conditions: A Case Study. Tunn. Undergr. Space Technol. 2020, 97, 103241. [Google Scholar] [CrossRef]
- Tarraf, M.; Hosseininia, E.S. The exact bearing capacity of strip footings on reinforced slopes using slip line method. Geomech. Eng. 2024, 38, 261–273. [Google Scholar] [CrossRef]
- Kalourazi, A.F.; Chenari, R.J.; Veiskarami, M. Bearing Capacity of Strip Footings Adjacent to Anisotropic Slopes Using the Lower Bound Finite Element Method. Int. J. Geomech. 2020, 20, 04020213. [Google Scholar] [CrossRef]
- El-Emam, M.; El Berizi, Y.; Mabrouk, A.B.; Tabsh, S.W. Bearing capacity of strip footing on top of slope: Numerical parametric study. Ain Shams Eng. J. 2023, 14, 102522. [Google Scholar] [CrossRef]
No. | Lithology | Thickness (m) | Depth (m) | Density (kg·m−3) | Compressive Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|---|
1 | Loess formation | 10.4 | 10.4 | 2710 | 0.01 | 0.001 |
2 | Mudstone | 201.6 | 212 | 2410 | 32.11 | 2.46 |
3 | Conglomerate | 58.8 | 270.8 | 2620 | 58.23 | 3.20 |
4 | Medium sandstone | 4.5 | 275.3 | 2650 | 33.79 | 2.23 |
5 | Mudstone | 9.2 | 284.5 | 2410 | 32.11 | 2.41 |
6 | Sandy mudstone | 52.2 | 336.7 | 2720 | 56.47 | 3.10 |
7 | Fine sandstone | 4.8 | 341.5 | 2820 | 70.94 | 4.26 |
8 | Sandy mudstone | 8.3 | 349.8 | 2720 | 56.47 | 3.22 |
9 | Medium sandstone | 10.4 | 360.2 | 2650 | 33.79 | 2.35 |
10 | Mudstone | 43.3 | 403.5 | 2410 | 32.11 | 2.60 |
11 | Fine sandstone | 18.9 | 422.4 | 2720 | 56.47 | 4.34 |
12 | Mudstone | 6.8 | 429.2 | 2410 | 32.11 | 2.61 |
13 | Sandy mudstone | 30.1 | 459.3 | 2720 | 56.47 | 3.33 |
14 | Fine sandstone | 4.8 | 464.1 | 2820 | 70.94 | 4.38 |
15 | Mudstone | 7.2 | 471.3 | 2410 | 32.11 | 2.67 |
16 | Grit stone | 6.6 | 477.9 | 2570 | 41.52 | 2.90 |
17 | Mudstone | 21 | 498.9 | 2410 | 32.11 | 2.65 |
18 | Sandy mudstone | 4.6 | 503.6 | 2720 | 56.47 | 3.41 |
19 | Siltstone | 21.8 | 525.3 | 2430 | 75.45 | 4.52 |
20 | Sandy mudstone | 7.4 | 532.7 | 2720 | 56.47 | 3.37 |
21 | Number five coal seam | 26 | 545.2 | 1250 | 17.19 | 1.20 |
22 | Fine sandstone | 8.6 | 567.3 | 2820 | 70.94 | 4.25 |
23 | Grit stone | 16.7 | 584 | 2570 | 41.52 | 2.90 |
24 | Mudstone | 8.9 | 592.9 | 2410 | 32.11 | 2.61 |
25 | Medium sandstone | 65.8 | 658.7 | 2650 | 33.79 | 2.35 |
Lithology | Density (kg/m3) | Ratio | Compressive Strength (MPa) |
---|---|---|---|
Loess formation | 1.69 | 12:1:0 | 0.02 |
Mudstone | 1.65 | 8:6:3 | 66.90 |
Conglomerate | 1.63 | 9:7:4 | 121.31 |
Medium sandstone | 1.66 | 8:7:3 | 66.23 |
Sandy mudstone | 1.70 | 9:6:4 | 117.65 |
Fine sandstone | 1.69 | 8:5:4 | 150.71 |
Grit stone | 1.64 | 8:6:4 | 86.50 |
Siltstone | 1.68 | 8:5:5 | 157.19 |
Number five coal seam | 0.78 | 8:8:2 | 35.81 |
Lithology | Density (kg/m3) | Bulk (GPa) | Shear (GPa) | Tension (MPa) | Cohesion (MPa) | Friction Angle (°) |
---|---|---|---|---|---|---|
Siltstone | 2350 | 8056 | 7631 | 1.29 | 2 | 35 |
Medium sandstone | 2360 | 3142 | 2693 | 0.8 | 2.7 | 35 |
Fine sandstone | 2640 | 18,604 | 18,274 | 1.2 | 2.75 | 35 |
Grit stone | 2410 | 14,444 | 12,222 | 1 | 2 | 35 |
Sandy mudstone | 2220 | 13,676 | 12,026 | 0.6 | 2 | 31 |
Conglomerate | 2180 | 13,432 | 11,945 | 1 | 4.6 | 21 |
Mudstone | 2420 | 8333 | 5737 | 0.6 | 1.9 | 34 |
Number five coal seam | 1280 | 5975 | 2422 | 0.15 | 2.08 | 46 |
Loess formation | 2080 | 2274 | 1777 | 0.25 | 1.3 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Yang, X.; Pan, B.; Li, Y.; Sun, F.; Jiao, Y. Physical–Digital Integration-Based Study on Strong Mine Pressure Formation Mechanism Under Dynamic Chain Effect from Multi-Layer Control. Processes 2025, 13, 3378. https://doi.org/10.3390/pr13113378
Hu C, Yang X, Pan B, Li Y, Sun F, Jiao Y. Physical–Digital Integration-Based Study on Strong Mine Pressure Formation Mechanism Under Dynamic Chain Effect from Multi-Layer Control. Processes. 2025; 13(11):3378. https://doi.org/10.3390/pr13113378
Chicago/Turabian StyleHu, Chaowen, Xiaojie Yang, Bo Pan, Yichao Li, Fulong Sun, and Yang Jiao. 2025. "Physical–Digital Integration-Based Study on Strong Mine Pressure Formation Mechanism Under Dynamic Chain Effect from Multi-Layer Control" Processes 13, no. 11: 3378. https://doi.org/10.3390/pr13113378
APA StyleHu, C., Yang, X., Pan, B., Li, Y., Sun, F., & Jiao, Y. (2025). Physical–Digital Integration-Based Study on Strong Mine Pressure Formation Mechanism Under Dynamic Chain Effect from Multi-Layer Control. Processes, 13(11), 3378. https://doi.org/10.3390/pr13113378