Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Storage Conditions for Oxidative Stability Testing
2.1.2. Collagen Hydrolysate and Cranberry Powder
2.2. Determination of Fatty Acid Composition
2.3. Determination of Color Characteristics
2.4. Protein Profiling (SDS-PAGE)
2.5. Sample Preparation for Oxidative Stability and Antioxidant Assays
2.5.1. Lipid Extraction for PV and AV
2.5.2. TBARS
2.5.3. Protein Carbonyls
2.5.4. Antioxidant Extracts for FRAP (Ferricyanide Reducing Power) and DPPH
2.6. Amino Acid Composition Analysis
2.7. Statistical Analyses
3. Results and Discussion
3.1. Determination of Fatty Acid Composition
3.2. Determination of Oxidative Stability During Storage
3.3. Determination of Amino Acid Composition
3.4. Determination of Color Characteristics and Light Stability
3.5. Determination of Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Toldrá, F.; Reig, M. Innovations for healthier processed meats. Trends Food Sci. Technol. 2011, 22, 517–522. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Egner, P.; Pavlačková, J.; Sedlaříková, J.; Matošková, L.; Mokrejš, P.; Janalíková, M. Collagen Hydrolysates from Animal By-Products in Topical Cosmetic Formulations. Int. J. Mol. Sci. 2025, 26, 2776. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef] [PubMed]
- Oztug, M. Bioactive Peptide Profiling in Collagen Hydrolysates: Comparative Analysis Using Targeted and Untargeted Liquid Chromatography-Tandem Mass Spectrometry Quantification. Molecules 2024, 29, 2592. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 2018, 245, 205–222. [Google Scholar] [CrossRef]
- Lafarga, T.; Hayes, M. Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Sci. 2014, 98, 227–239. [Google Scholar] [CrossRef]
- Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.-C.; Mora, L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem. 2020, 321, 126689. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2011, 77, R11–R24. [Google Scholar] [CrossRef]
- Neto, C.C. Cranberry and Its Phytochemicals: A Review of In Vitro Anticancer Studies. J. Nutr. 2007, 137, 186S–193S. [Google Scholar] [CrossRef]
- Côté, J.; Caillet, S.; Doyon, G.; Dussault, D.; Sylvain, J.-F.; Lacroix, M. Antimicrobial effect of cranberry juice and extracts. Food Control 2011, 22, 1413–1418. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and Their Bioactive Constituents in Human Health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef]
- Pappas, E.; Schaich, K.M. Phytochemicals of Cranberries and Cranberry Products: Characterization, Potential Health Effects, and Processing Stability. Crit. Rev. Food Sci. Nutr. 2009, 49, 741–781. [Google Scholar] [CrossRef]
- Petruskevicius, A.; Viskelis, J.; Urbonaviciene, D.; Viskelis, P. Anthocyanin Accumulation in Berry Fruits and Their Antimicrobial and Antiviral Properties: An Overview. Horticulturae 2023, 9, 288. [Google Scholar] [CrossRef]
- Howell, A.B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 2007, 51, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Relative Role of Phospholipids, Triacylglycerols, and Cholesterol Esters on Malonaldehyde Formation in Fat Extracted from Chicken Meat. J. Food Sci. 1984, 49, 704–708. [Google Scholar] [CrossRef]
- International Journal of Environment, Agriculture and Biotechnology. (n.d.). AI Publications. Available online: https://doi.org/10.22161/ijeab (accessed on 27 August 2025).
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Ayuso, P.; García-Pérez, P.; Nieto, G. New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods. Molecules 2025, 30, 2565. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Wang, D.; Wan, X.; Wang, Y. Covalent polyphenols-proteins interactions in food processing: Formation mechanisms, quantification methods, bioactive effects, and applications. Front. Nutr. 2024, 11. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Ciobanu, M.-M.; Flocea, E.-I.; Boișteanu, P.-C. The Impact of Artificial and Natural Additives in Meat Products on Neurocognitive Food Perception: A Narrative Review. Foods 2024, 13, 3908. [Google Scholar] [CrossRef]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics—A Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Metcalfe, L.D.; Schmitz, A.A.; Pelka, J.R. Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis. Anal. Chem. 1966, 38, 514–515. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters-Part 2: Preparation of Methyl Esters of Fatty Acids (2nd ed.). International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/72142.html (accessed on 27 August 2025).
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters-Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/63503.html (accessed on 27 August 2025).
- Iftikhar, A.; Dupas-Farrugia, C.; De Leonardis, A.; Macciola, V.; Moiz, A.; Martin, D. Antioxidant potential of olive leaf (Olea europaea L.) sustainable extracts evaluated in vitro and minced beef meat. Ital. J. Food Sci. 2024, 36, 305–316. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9, 255–262. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on Products of Browning Reactions: Antioxidative Activities of Product of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 Fatty acids and cardiovascular disease: Evidence explained and mechanisms explored. Clin. Sci. 2004, 107, 1–11. [Google Scholar] [CrossRef]
- Tyburcy, A.; Ścibisz, I.; Rostek, E.; Pasierbiewicz, A.; Florowski, T. Antioxidative Properties of Cranberry and Rose Juices in Meat Products Made of Defrosted Meat. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2014, 5, 72–84. [Google Scholar] [CrossRef]
- Guo, A.; Xiong, Y.L. Myoprotein-phytophenol interaction: Implications for muscle food structure—Forming properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2801–2824. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, T.; Yalcinkaya, İ.E.; Toydemir, G.; Capanoglu, E. Polyphenol-Protein Interactions and Changes in Functional Properties and Digestibility. Encycl. Food Chem. 2019, 566–577. [Google Scholar] [CrossRef]
- Gray, J.I.; Gomaa, E.A.; Buckley, D.J. Oxidative quality and shelf life of meats. Meat Sci. 1996, 43, 111–123. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Zaky, A.A.; Lorenzo, J.M.; Camiña, M.; Franco, D. A review on bioactive peptides derived from meat and by-products: Extraction methods, biological activities, applications and limitations. Meat Sci. 2023, 204, 109278. [Google Scholar] [CrossRef]
- McCarthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin E in raw and cooked pork patties. Meat Sci. 2001, 58, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Patel, B.; Kumar, P.; Mitra, P.; Lall, R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr. Issues Mol. Biol. 2025, 47, 80. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- De Rossi, L.; Rocchetti, G.; Lucini, L.; Rebecchi, A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants 2025, 14, 200. [Google Scholar] [CrossRef]
- Ferreira, V.C.S.; Morcuende, D.; Madruga, M.S.; Silva, F.A.P.; Estévez, M. Role of protein oxidation in the nutritional loss and texture changes in ready-to-eat chicken patties. Int. J. Food Sci. Technol. 2018, 53, 1518–1526. [Google Scholar] [CrossRef]
- Vuorela, S.; Salminen, H.; Mäkelä, M.; Kivikari, R.; Karonen, M.; Heinonen, M. Effect of Plant Phenolics on Protein and Lipid Oxidation in Cooked Pork Meat Patties. J. Agric. Food Chem. 2005, 53, 8492–8497. [Google Scholar] [CrossRef]
- Kanner, J. Oxidative processes in meat and meat products: Quality implications. Meat Sci. 1994, 36, 169–189. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2010, 3, a004978. [Google Scholar] [CrossRef]
- Vidal, A.R.; Cansian, R.L.; Mello Rde, O.; Demiate, I.M.; Kempka, A.P.; Dornelles, R.C.P.; Rodriguez, J.M.L.; Campagnol, P.C.B. Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants 2022, 11, 1173. [Google Scholar] [CrossRef]
- Phillips, S.M. A Brief Review of Critical Processes in Exercise-Induced Muscular Hypertrophy. Sports Med. 2014, 44 (Suppl. 1), 71–77. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Holwerda, A.M.; Phillips, S.M.; van Loon, L.J.C. What is the Optimal Amount of Protein to Support Post-Exercise Skeletal Muscle Reconditioning in the Older Adult? Sports Med. 2016, 46, 1205–1212. [Google Scholar] [CrossRef]
- Mazzulla, M.; Abou Sawan, S.; Williamson, E.; Hannaian, S.J.; Volterman, K.A.; West, D.W.D.; Moore, D.R. Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance. J. Nutr. 2020, 150, 505–511. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Volpi, E.; Campbell, W.W.; Dwyer, J.T.; Johnson, M.A.; Jensen, G.L.; Morley, J.E.; Wolfe, R.R. Is the Optimal Level of Protein Intake for Older Adults Greater Than the Recommended Dietary Allowance? J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 68, 677–681. [Google Scholar] [CrossRef]
- World Health Organization. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Technical Report Series No. 935; World Health Organization: Geneva, Switzerland, 2007; Available online: https://iris.who.int/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf (accessed on 27 August 2025).
- Food and Agriculture Organization of the United Nations. Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation; FAO Food and Nutrition Paper No. 92; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/4/i3124e/i3124e.pdf (accessed on 27 August 2025).
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2017, 77, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Liu, R.; Cao, S.; Zhang, W.; Guanghong, Z. Meat protein based bioactive peptides and their potential functional activity: A review. Int. J. Food Sci. Technol. 2019, 54, 1956–1966. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- Lu, M.; Guo, Y.; Ji, L.; Xue, H.; Li, X.; Tan, J. Insights into interactions between polyphenols and proteins and their applications: An updated overview. J. Agric. Food Res. 2025, 23, 102269. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
Name of the Indicator | Unit of Measurement | Sausage Without Collagen Hydrolysate and Cranberry | Sausage with Collagen Hydrolysate and Cranberry |
---|---|---|---|
SFA | |||
Butyric | C4:0 | <0.1 | <0.1 |
Caproic (Hexanoic) | C6:0 | <0.1 | <0.1 |
Caprylic (Octanoic) | C8:0 | <0.1 | <0.1 |
Capric (Decanoic) | C10:0 | <0.1 | <0.1 |
Undecanoic | C11:0 | <0.1 | <0.1 |
Lauric | C12:0 | <0.1 | <0.1 |
Tridecanoic | C13:0 | <0.1 | <0.1 |
Myristic | C14:0 | <0.1 | <0.1 |
Pentadecanoic | C15:0 | 0.2 ± 0.4 | <0.1 |
Palmitic | C16:0 | 20.2 ± 2.1 | 17.0 ± 1.8 |
Margaric (Heptadecanoic) | C17:0 | 0.3 ± 0.4 | 0.4 ± 0.4 |
Stearic | C18:0 | 6.0 ± 2.1 | 5.0 ± 1.6 |
Arachidic | C20:0 | 0.3 ± 0.4 | 0.4 ± 0.4 |
Heneicosanoic | C21:0 | <0.1 | <0.1 |
Behenic | C22:0 | 0.4 ± 0.4 | 0.4 ± 0.4 |
Tricosanoic | C23:0 | 0.6 ± 0.4 | 0.6 ± 0.4 |
Lignoceric | C24:0 | <0.1 | <0.1 |
ΣSFA | 28.0 | 23.9 | |
MUFA | |||
Myristoleic | C14:1 | <0.1 | <0.1 |
cis-10-Pentadecenoic | C15:1 | <0.1 | <0.1 |
Palmitoleic | C16:1 | 3.4 ± 0.4 | 4.0 ± 0.3 |
Heptadecenoic | C17:1 | <0.1 | <0.1 |
Oleic | C18:1 | 45.1 ± 2.1 | 48.5 ± 1.9 |
Elaidic (trans) | trans-C18:1 | 0.3 ± 0.4 | <0.1 |
Gondoic | C20:1 | 0.5 ± 0.4 | 0.6 ± 0.4 |
Erucic | C22:1 | <0.1 | <0.1 |
Nervonic | C24:1 | <0.1 | <0.1 |
ΣMUFA | 49.3 | 53.2 | |
PUFA n-3 | |||
α-Linolenic (ALA) | C18:3 n-3 | 0.8 ± 0.4 | 1.6 ± 0.3 |
Eicosapentaenoic (EPA) | C20:5 n-3 | <0.1 | <0.1 |
Eicosatrienoic | C20:3 n-3 | <0.1 | <0.1 |
Docosahexaenoic (DHA) | C22:6 n-3 | <0.1 | <0.1 |
Σn-3 PUFA | 0.81 | 1.61 | |
PUFA n-6 | |||
Linoleic | C18:2 n-6 | 21.2 ± 2.1 | 21.0 ± 2.0 |
Linoelaidic (trans) | trans-C18:2 n-6 | 0.2 ± 0.4 | <0.1 |
Dihomo-γ-linolenic (DGLA) | C20:3 n-6 | <0.1 | <0.1 |
Arachidonic | C20:4 n-6 | 0.5 ± 0.4 | 0.6 ± 0.4 |
Eicosadienoic | C20:2 n-6 | <0.1 | <0.1 |
Docosadienoic | C22:2 n-6 | <0.1 | <0.1 |
Σn-6 PUFA | 21.89 | 21.69 | |
ΣPUFA (n-3 + n-6) | 22.70 | 23.30 | |
Ratios | |||
PUFA/SFA | 0.81 | 0.97 | |
n-6/n-3 | 27.1 | 13.5 |
Indicator | Storage Time, Days | Sausage Without Collagen Hydrolysate and Cranberry | Sausage with Collagen Hydrolysate and Cranberry | p-Value, Treatment Within Storage Time |
---|---|---|---|---|
Peroxide value, PV (meq O2/kg fat) | 0 | 4.1 ± 0.4 | 4.5 ± 0.5 | 0.343 |
6 | 4.5 ± 0.5 | 5.0 ± 0.5 | 0.288 | |
10 | 9.8 ± 0.5 | 8.1 ± 0.4 | 0.011 | |
Carbonyl compounds, nmol/mg of protein | 10 | 106.13 ± 5.21 | 98.80 ± 4.87 |
Thiobarbituric Number, Storage Time, Days | Sausage Without Collagen Hydrolysate and Cranberry | Sausage with Collagen Hydrolysate and Cranberry | p-Value, Treatment Within Storage Time |
---|---|---|---|
0 | Below 0.039 | Below 0.039 | |
6 | 0.055 ± 0.006 | 0.042 ± 0.004 | 0.043 |
10 | 0.590 ± 0.041 | 0.156 ± 0.016 | <0.001 |
Acid Value, Storage Time, Days | Sausage Without Collagen Hydrolysate and Cranberry, mg KOH/g | Sausage with Collagen Hydrolysate and Cranberry, mg KOH/g | p-Value, Treatment Within Storage Time |
---|---|---|---|
0 | 2.5 ± 0.2 | 3.4 ± 0.2 | 0.005 |
6 | 3.2 ± 0.2 | 4.0 ± 0.3 | 0.024 |
10 | 4.4 ± 0.3 | 4.9 ± 0.3 | 0.111 |
Name of the Indicator | Sausage Without Collagen Hydrolysate and Cranberry, g/100 g Product | Sausage with Collagen Hydrolysate and Cranberry, g/100 g Product |
---|---|---|
Aspartic acid | 1.31 ± 0.20 | 0.87 ± 0.13 |
Glutamic acid | 2.31 ± 0.35 | 1.04 ± 0.16 |
Serine | 0.53 ± 0.08 | 0.56 ± 0.08 |
Threonine | 0.37 ± 0.06 | 0.47 ± 0.07 |
Glycine | 0.78 ± 0.12 | 0.87 ± 0.13 |
Arginine | 1.37 ± 0.21 | 1.37 ± 0.21 |
Alanine | 1.45 ± 0.22 | 1.39 ± 0.21 |
Tyrosine | 0.34 ± 0.05 | 0.41 ± 0.06 |
Cystine | 0.14 ± 0.02 | 0.18 ± 0.03 |
Valine | 0.73 ± 0.11 | 0.73 ± 0.11 |
Methionine | 0.53 ± 0.08 | 0.28 ± 0.05 |
Isoleucine | 0.58 ± 0.09 | 0.57 ± 0.09 |
Phenylalanine | 0.48 ± 0.07 | 0.49 ± 0.07 |
Leucine | 0.98 ± 0.15 | 1.37 ± 0.21 |
Proline | 0.43 ± 0.06 | 0.89 ± 0.13 |
Lysine | 0.86 ± 0.13 | 1.02 ± 0.15 |
Histidine | 0.72 ± 0.11 | 0.61 ± 0.09 |
Tryptophan | 0.17 ± 0.03 | 0.18 ± 0.03 |
Hydroxyproline | 0.17 ± 0.02 | 0.61 ± 0.05 |
Samples | Color Characteristics Before Exposure to Light | Color Characteristics After Exposure to Light | Color Stability, % | ||||
---|---|---|---|---|---|---|---|
L-lightness | a-Redness | b-Yellowness | L-Lightness | a-Redness | b-Yellowness | ||
Sausage without collagen hydrolysate and cranberry | 61.14 ± 0.50 | 17.82 ± 0.15 | 13.70 ± 0.24 | 60.04 ± 0.42 | 16.46 ± 0.45 | 14.80 ± 0.61 | 94.20 ± 1.50 |
Sausage with collagen hydrolysate and cranberry | 63.91 ± 0.97 | 13.82 ± 0.24 | 12.27 ± 0.17 | 62.62 ± 0.61 | 13.75 ± 0.76 | 13.98 ± 0.39 | 93.58 ± 1.76 |
Indicator | Results | p-Value | |
---|---|---|---|
Sausage Without Collagen Hydrolysate and Cranberry | Sausage with Collagen Hydrolysate and Cranberry | ||
Ferric-reducing antioxidant power (FRAP), mg GAE/g | Not detected | 30.5 ± 0.04 | <0.0001 |
DPPH radical-scavenging activity, % | 10.23 ± 0.004 | 29.88 ± 0.01 | <0.0001 |
IC50 of DPPH radical-scavenging activity, µg/mL | 149.51 ± 12.23 | 56.22 ± 4.02 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzakov, Y.; Aitbayeva, A.; Kaldarbekova, M.; Kozhakhiyeva, M.; Tortay, A.; Makangali, K. Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages. Processes 2025, 13, 3233. https://doi.org/10.3390/pr13103233
Uzakov Y, Aitbayeva A, Kaldarbekova M, Kozhakhiyeva M, Tortay A, Makangali K. Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages. Processes. 2025; 13(10):3233. https://doi.org/10.3390/pr13103233
Chicago/Turabian StyleUzakov, Yasin, Aziza Aitbayeva, Madina Kaldarbekova, Madina Kozhakhiyeva, Arsen Tortay, and Kadyrzhan Makangali. 2025. "Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages" Processes 13, no. 10: 3233. https://doi.org/10.3390/pr13103233
APA StyleUzakov, Y., Aitbayeva, A., Kaldarbekova, M., Kozhakhiyeva, M., Tortay, A., & Makangali, K. (2025). Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages. Processes, 13(10), 3233. https://doi.org/10.3390/pr13103233