Enhanced Bioaccessibility of Carotenoids, Antioxidants, and Minerals from Red Lobster By-Products Through High-Hydrostatic Pressure and Ultrasound Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Raw Material and Sample Preparation
2.3. Extraction Methods
2.3.1. Conventional Extraction (CE)
2.3.2. High Hydrostatic Pressure Extraction (HHPE)
2.3.3. Ultrasound-Assisted Extraction (UAE)
2.4. Extraction Yield
2.5. Determination of Carotenoids
2.5.1. β-Carotene and Lycopene Content
2.5.2. Astaxanthin
2.6. Determination of Antioxidant Capacity: DPPH and FRAP Assay
2.7. Determination of Mineral Elements
2.8. In Vitro Digestion and Relative Bioaccessibility
2.9. Statistical Evaluation
3. Results and Discussion
3.1. Effects of Different Extraction Methods on Extraction Yield
3.2. Carotenoid Content and Bioaccesibility
3.3. Antioxidant Capacity and Bioaccessibility
3.4. Mineral Content and Bioaccessibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Šimat, V. Valorization of Seafood Processing By-Products. In Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 515–536. ISBN 9780128240441. [Google Scholar]
- Xia, F.L.W.; Supri, S.; Djamaludin, H.; Nurdiani, R.; Seng, L.L.; Yin, K.W.; Rovina, K. Turning Waste into Value: Extraction and Effective Valorization Strategies of Seafood by-Products. Waste Manag. Bull. 2024, 2, 84–100. [Google Scholar] [CrossRef]
- Roy, V.C.; Islam, M.R.; Sadia, S.; Yeasmin, M.; Park, J.S.; Lee, H.J.; Chun, B.S. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar. Drugs 2023, 21, 485. [Google Scholar] [CrossRef] [PubMed]
- Šimat, V.; Rathod, N.B.; Čagalj, M.; Hamed, I.; Mekinić, I.G. Astaxanthin from Crustaceans and Their Byproducts: A Bioactive Metabolite Candidate for Therapeutic Application. Mar. Drugs 2022, 20, 206. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Castellano, J.M.; Espinosa, J.M.; Perona, J.S. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front. Cell Dev. Biol. 2020, 8, 555359. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Effect of Natural Food Antioxidants against Ldl and Dna Oxidative Changes. Antioxidants 2018, 7, 133. [Google Scholar] [CrossRef]
- Xiao, Y.; Nie, M.; Zhao, H.; Li, D.; Gao, R.; Zhou, C.; Xu, Y.; Dai, Z.; Zhang, Z. Citrus Flavanones Enhance the Bioaccessibility of β-Carotene by Improving Lipid Lipolysis and Incorporation into Mixed Micelles. J. Funct. Foods 2021, 87, 104792. [Google Scholar] [CrossRef]
- Metibemu, D.S.; Ogungbe, I.V. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022, 27, 6005. [Google Scholar] [CrossRef]
- Jurić, S.; Jurić, M.; Król-Kilińska, Ż.; Vlahoviček-Kahlina, K.; Vinceković, M.; Dragović-Uzelac, V.; Donsì, F. Sources, Stability, Encapsulation and Application of Natural Pigments in Foods. Food Rev. Int. 2020, 38, 1735–1790. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, W.; Lee, J.S.; Youn, S.J.; Lee, H.; Baik, M.Y. Enhanced Antioxidant Capacity of Puffed Turmeric (Curcuma longa L.) by High Hydrostatic Pressure Extraction (HHPE) of Bioactive Compounds. Foods 2020, 9, 1690. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental Design, Modeling, and Optimization of High-Pressure-Assisted Extraction of Bioactive Compounds from Pomegranate Peel. Food Bioproc. Tech. 2017, 10, 886–900. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Louis, A.C.F.; Venkatachalam, S. Energy Efficient Process for Valorization of Corn Cob as a Source for Nanocrystalline Cellulose and Hemicellulose Production. Int. J. Biol. Macromol. 2020, 163, 260–269. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Chiș, M.S.; Martínez-Monzó, J.; García-Segovia, P.; Becze, A.; Török, A.I.; Cadar, O.; Coldea, T.E.; Igual, M. In Vitro Digestibility of Minerals and B Group Vitamins from Different Brewers’ Spent Grains. Nutrients 2022, 14, 3512. [Google Scholar] [CrossRef]
- Liu, J.; Liu, D.; Bi, J.; Liu, X.; Lyu, Y.; Verkerk, R.; Dekker, M. Micelle Separation Conditions Based on Particle Size Strongly Affect Carotenoid Bioaccessibility Assessment from Juices after in Vitro Digestion. Food Res. Int. 2022, 151, 110891. [Google Scholar] [CrossRef]
- Rios-Romero, E.A.; Ochoa-Martínez, L.A.; Bello-Pérez, L.A.; Morales-Castro, J.; Quintero-Ramos, A.; Gallegos-Infante, J.A. Effect of Ultrasound and Steam Treatments on Bioaccessibility of β-Carotene and Physicochemical Parameters in Orange-Fleshed Sweet Potato Juice. Heliyon 2021, 7, e06632. [Google Scholar] [CrossRef]
- Sentandreu, E.; Stinco, C.M.; Vicario, I.M.; Mapelli-Brahm, P.; Navarro, J.L.; Meléndez-Martínez, A.J. High-Pressure Homogenization as Compared to Pasteurization as a Sustainable Approach to Obtain Mandarin Juices with Improved Bioaccessibility of Carotenoids and Flavonoids. J. Clean. Prod. 2020, 262, 121325. [Google Scholar] [CrossRef]
- Wellala, C.K.D.; Bi, J.; Liu, X.; Wu, X.; Lyu, J.; Liu, J.; Liu, D.; Guo, C. Effect of High Pressure Homogenization on Water-Soluble Pectin Characteristics and Bioaccessibility of Carotenoids in Mixed Juice. Food Chem. 2022, 371, 131073. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Venegas-Cubillos, G.; Ortiz-Portilla, S.; Chacana-Ojeda, M.; Maureira, H. Effects of High Hydrostatic Pressure (HHP) on Bioaccessibility, as Well as Antioxidant Activity, Mineral and Starch Contents in Granny smith Apple. Food Chem. 2011, 128, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Jamaludin, R.; Kim, D.S.; Md Salleh, L.; Lim, S. Bin Optimization of High Hydrostatic Pressure Extraction of Bioactive Compounds from Noni Fruits. J. Food Meas. Charact. 2020, 14, 2810–2818. [Google Scholar] [CrossRef]
- Lara-Abia, S.; Welti-Chanes, J.; Cano, M.P. Effect of High Hydrostatic Pressure on the Extractability and Bioaccessibility of Carotenoids and Their Esters from Papaya (Carica papaya L.) and Its Impact on Tissue Microstructure. Foods 2021, 10, 2435. [Google Scholar] [CrossRef] [PubMed]
- Briones-Labarca, V.; Muñoz, C.; Maureira, H. Effect of High Hydrostatic Pressure on Antioxidant Capacity, Mineral and Starch Bioaccessibility of a Non Conventional Food: Prosopis chilensis Seed. Food Res. Int. 2011, 44, 875–883. [Google Scholar] [CrossRef]
- Perumal, N.; Nallappan, M.; Shohaimi, S.; Kassim, N.K.; Tee, T.T.; Cheah, Y.H. Synergistic Antidiabetic Activity of Taraxacum officinale (L.) Weber Ex F.H.Wigg and Momordica charantia L. Polyherbal Combination. Biomed. Pharmacother. 2022, 145, 112401. [Google Scholar] [CrossRef]
- Laur, L.M.; Tian, L. Provitamin A and Vitamin C Contents in Selected California-Grown Cantaloupe and Honeydew Melons and Imported Melons. J. Food Compos. Anal. 2011, 24, 194–201. [Google Scholar] [CrossRef]
- Kaur, A.; Donis-Gonzalez, I.R.; St. Clair, D.A. Evaluation of a Hand-Held Spectrophotometer as and in-Field Phenotyping Tool for Tomato and Pepper Fruit Quality. Plant Phenome J. 2020, 1–23. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘“Antioxidant Power”’: The FRAP Assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef]
- Shokunbi, O.S.; Adepoju, O.T.; Ramaite, I.D.I.; Shokunbi, O.S.; Mojapelo, P.E.L.; Akinyele, I.O. Potassium, Sodium, Calcium and Magnesium Levels of Commonly Consumed Foods and Estimates of Dietary Intakes of Selected Nigerian Adults. Heliyon 2023, 9, e13729. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrì, F.; Boutrou, R.; Corredig, F.M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Pinheiro, A.C.D.A.S.; Martí-Quijal, F.J.; Barba, F.J.; Tappi, S.; Rocculi, P. Innovative Non-Thermal Technologies for Recovery and Valorization of Value-Added Products from Crustacean Processing by-Products—An Opportunity for a Circular Economy Approach. Foods 2021, 10, 2030. [Google Scholar] [CrossRef] [PubMed]
- Valisakkagari, H.; Chaturvedi, C.; Rupasinghe, H.P.V. Green Extraction of Phytochemicals from Fresh Vegetable Waste and Their Potential Application as Cosmeceuticals for Skin Health. Processes 2024, 12, 742. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Peng, D.; Wang, L.; Liu, H.; Xie, B.; Sun, Z. Effect of Mild High Hydrostatic Pressure Treatments on Physiological and Physicochemical Characteristics and Carotenoid Biosynthesis in Postharvest Mango. Postharvest Biol. Technol. 2021, 172, 111381. [Google Scholar] [CrossRef]
- Wu, W.; Xiang, F.; He, F. Polyphenols from Artemisia argyi Leaves: Environmentally Friendly Extraction under High Hydrostatic Pressure and Biological Activities. Ind. Crop. Prod. 2021, 171, 113951. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of High Hydrostatic Pressure and Ultrasound-Assisted Extractions as a Novel Approach for Pectin and Polyphenols Recovery from Tomato Peel Waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Cañas-Sarazúa, R. Optimization of Extraction Yield, Flavonoids and Lycopene from Tomato Pulp by High Hydrostatic Pressure-Assisted Extraction. Food Chem. 2019, 278, 751–759. [Google Scholar] [CrossRef]
- Shahidi, F.; Dissanayaka, C.S. Binding of Carotenoids to Proteins: A Review. J. Food Bioact. 2023, 24, 13–28. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.S.; Lee, J.H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Yao, Y.; Goh, H.M.; Kim, J.E. The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants 2021, 10, 1978. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakopoulos, I.; Karantonis, H.C.; Kartelias, I.G.; Nasopoulou, C. Ultrasonic-Assisted Extraction of Astaxanthin from Shrimp By-Products Using Vegetable Oils. Mar. Drugs 2023, 21, 467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, Z.; Song, L.; Farag, M.A. Maximizing Crustaceans (Shrimp, Crab, and Lobster) by-Products Value for Optimum Valorization Practices: A Comparative Review of Their Active Ingredients, Extraction, Bioprocesses and Applications. J. Adv. Res. 2024, 57, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yan, X.; Sun, L.; Yang, T.; Hu, X.; He, Z.; Liu, F.; Liu, X. Research Progress on Extraction, Biological Activities and Delivery Systems of Natural Astaxanthin. Trends Food Sci. Technol. 2019, 91, 354–361. [Google Scholar] [CrossRef]
- Chronis, M.; Christopoulou, V.M.; Papadaki, S.; Stramarkou, M.; Krokida, M. Optimization of Mild Extraction Methods for the Efficient Recovery of Astaxanthin, a Strong Food Antioxidant Carotenoid from Microalgae. Chem. Eng. Trans. 2021, 87, 151–156. [Google Scholar] [CrossRef]
- Nunes, A.N.; Roda, A.; Gouveia, L.F.; Fernández, N.; Bronze, M.R.; Matias, A.A. Astaxanthin Extraction from Marine Crustacean Waste Streams: An Integrate Approach between Microwaves and Supercritical Fluids. ACS Sustain. Chem. Eng. 2021, 9, 3050–3059. [Google Scholar] [CrossRef]
- Hamdi, M.; Nasri, R.; Dridi, N.; Li, S.; Nasri, M. Development of Novel High-Selective Extraction Approach of Carotenoproteins from Blue Crab (Portunus segnis) Shells, Contribution to the Qualitative Analysis of Bioactive Compounds by HR-ESI-MS. Food Chem. 2020, 302, 125334. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Y.; Ding, W.; Mao, X.; Li, Y.; Gerken, H.; Liu, J. Astaxanthin Is Ketolated from Zeaxanthin Independent of Fatty Acid Synthesis in Chromochloris Zofingiensis. Plant Physiol. 2020, 183, 883–897. [Google Scholar] [CrossRef]
- Stoklosa, R.J.; Johnston, D.B.; Nghiem, N.P. Utilization of Sweet Sorghum Juice for the Production of Astaxanthin as a Biorefinery Co-Product by Phaffia rhodozyma. ACS Sustain. Chem. Eng. 2018, 6, 3124–3134. [Google Scholar] [CrossRef]
- Hu, J.; Lu, W.; Lv, M.; Wang, Y.; Ding, R.; Wang, L. Extraction and Purification of Astaxanthin from Shrimp Shells and the Effects of Different Treatments on Its Content. Rev. Bras. De Farmacogn. 2019, 29, 24–29. [Google Scholar] [CrossRef]
- Zou, T.B.; Jia, Q.; Li, H.W.; Wang, C.X.; Wu, H.F. Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis. Mar. Drugs 2013, 11, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Aslam, R.; Makroo, H.A. High Pressure Extraction and Its Application in the Extraction of Bio-Active Compounds: A Review. J. Food Process Eng. 2019, 42, e12896. [Google Scholar] [CrossRef]
- Martínez-Delgado, A.A.; Khandual, S.; Villanueva–Rodríguez, S.J. Chemical Stability of Astaxanthin Integrated into a Food Matrix: Effects of Food Processing and Methods for Preservation. Food Chem. 2017, 225, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Radzali, S.A.; Baharin, B.S.; Othman, R.; Markom, M.; Rahman, R.A. Co-Solvent Selection for Supercritical Fluid Extraction of Astaxanthin and Other Carotenoids from Penaeus Monodon Waste. J. Oleo Sci. 2014, 63, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshani, A.M.B. A Review on Factors Influencing Bioaccessibility and Bioefficacy of Carotenoids. Crit. Rev. Food Sci. Nutr. 2017, 57, 1710–1717. [Google Scholar] [CrossRef]
- Mutsokoti, L.; Panozzo, A.; Pallares Pallares, A.; Jaiswal, S.; Van Loey, A.; Grauwet, T.; Hendrickx, M. Carotenoid Bioaccessibility and the Relation to Lipid Digestion: A Kinetic Study. Food Chem. 2017, 232, 124–134. [Google Scholar] [CrossRef]
- Oancea, A.M.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. Phytochemicals and Antioxidant Activity Degradation Kinetics during Thermal Treatments of Sour Cherry Extract. LWT-Food Sci. Technol. 2017, 82, 139–146. [Google Scholar] [CrossRef]
- Pereira, U.C.; Chagas Barros, R.G.; Santana Andrade, J.K.; de Oliveira, C.S.; Gualberto, N.C.; Narain, N. Effect of in Vitro Gastrointestinal Digestion on Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Crustaceans Residues with Potential Antidiabetic Impact. LWT 2020, 133, 110004. [Google Scholar] [CrossRef]
- Shen, S.; Liu, X.; Tang, D.; Yang, H.; Cheng, J. Digestive Characteristics of Astaxanthin Oil in Water Emulsion Stabilized by a Casein-Caffeic Acid–Glucose Ternary Conjugate. Food Chem. 2024, 438, 138054. [Google Scholar] [CrossRef]
- Francisco, J.; Horta, A.; Pedrosa, R.; Afonso, C.; Cardoso, C.; Bandarra, N.M.; Gil, M.M. Bioaccessibility of Antioxidants and Fatty Acids from Fucus spiralis. Foods 2020, 9, 440. [Google Scholar] [CrossRef]
- Nicolescu, A.; Babotă, M.; Barros, L.; Rocchetti, G.; Lucini, L.; Tanase, C.; Mocan, A.; Bunea, C.I.; Crișan, G. Bioaccessibility and Bioactive Potential of Different Phytochemical Classes from Nutraceuticals and Functional Foods. Front. Nutr. 2023, 10, 1184535. [Google Scholar] [CrossRef]
- Hossain, A.; Shahidi, F. Upcycling Shellfish Waste: Distribution of Amino Acids, Minerals, and Carotenoids in Body Parts of North Atlantic Crab and Shrimp. Foods 2024, 13, 2700. [Google Scholar] [CrossRef]
- Schulz, M.; Biluca, F.C.; Gonzaga, L.V.; Borges, G.d.S.C.; Vitali, L.; Micke, G.A.; de Gois, J.S.; de Almeida, T.S.; Borges, D.L.G.; Miller, P.R.M.; et al. Bioaccessibility of Bioactive Compounds and Antioxidant Potential of Juçara Fruits (Euterpe edulis Martius) Subjected to in Vitro Gastrointestinal Digestion. Food Chem. 2017, 228, 447–454. [Google Scholar] [CrossRef]
Sample | Extraction Method | Carotenoids (mg/100 g FW) | ||
---|---|---|---|---|
Astaxanthin | β-Carotene | Lycopene | ||
Extract | CE | 3.38 ± 0.12 a | 0.63 ± 0.02 a | 0.56 ± 0.02 a |
UAE | 3.61 ± 0.20 b | 0.59 ± 0.00 a | 0.48 ± 0.01 b | |
HHPE | 2.93 ± 0.07 a | 0.64 ± 0.02 b | 0.52 ± 0.01 c | |
GIT | CE | 2.36 ± 0.02 a | 0.24 ± 0.02 a | 0.12 ± 0.01 a |
UAE | 2.02 ± 0.01 b | 0.18 ± 0.03 a | 0.12 ± 0.01 a | |
HHPE | 2.41 ± 0.05 a | 0.16 ± 0.02 b | 0.10 ± 0.01 a | |
% Bioaccessibility | CE | 69.8 | 37.8 | 21.8 |
UAE | 56.0 | 30.3 | 24.9 | |
HHPE | 82.4 | 24.8 | 18.9 |
Sample | Extraction Method | Antioxidant Assay (μM/g FW) | |
---|---|---|---|
DPPH | FRAP | ||
Extract | CE | 11.12 ± 0.20 a | 158.33 ± 1.08 a |
UAE | 14.09 ± 0.41 b | 311.94 ± 2.13 b | |
HHPE | 18.01 ± 0.58 c | 421.65 ± 1.40 c | |
GIT | CE | 3.24 ± 0.36 a | - |
UAE | 6.77 ± 0.71 b | - | |
HHPE | 17.45 ± 0.18 c | - | |
% Bioaccessibility | CE | 29.2 | - |
UAE | 48.0 | - | |
HHPE | 96.9 | - |
Sample | Extraction Method | Mineral Content (mg/100 g) | |||
---|---|---|---|---|---|
Calcium | Magnesium | Sodium | Potassium | ||
Extract | CE | 6.40 ± 0.10 a | 0.58 ± 0.01 a | 584.27 ± 2.19 a | 0.58 ± 0.01 a |
UAE | 14.79 ± 0.46 b | 1.93 ± 0.01 b | 437.92 ± 5.32 b | 1.93 ± 0.01 b | |
HHPE | 7.15 ± 0.15 c | 0.77 ± 0.02 c | 371.56 ± 1.95 c | 0.77 ± 0.02 c | |
GIT | CE | 5.73 ± 0.03 a | 0.52 ± 0.03 a | 12.36 ± 0.39 a | 0.52 ± 0.03 a |
UAE | 12.90 ± 0.40 b | 1.52 ± 0.01 b | 27.07 ± 0.33 b | 1.52 ± 0.01 b | |
HHPE | 5.87 ± 0.15 a | 0.49 ± 0.00 a | 23.05 ± 0.72 c | 0.49 ± 0.00 | |
% Bioaccessibility | CE | 89.6 | 90.9 | 2.1 | 90.9 |
UAE | 87.2 | 78.9 | 6.2 | 78.9 | |
HHPE | 82.1 | 64.1 | 6.2 | 64.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briones-Labarca, V.; Giovagnoli-Vicuña, C. Enhanced Bioaccessibility of Carotenoids, Antioxidants, and Minerals from Red Lobster By-Products Through High-Hydrostatic Pressure and Ultrasound Extraction. Processes 2025, 13, 10. https://doi.org/10.3390/pr13010010
Briones-Labarca V, Giovagnoli-Vicuña C. Enhanced Bioaccessibility of Carotenoids, Antioxidants, and Minerals from Red Lobster By-Products Through High-Hydrostatic Pressure and Ultrasound Extraction. Processes. 2025; 13(1):10. https://doi.org/10.3390/pr13010010
Chicago/Turabian StyleBriones-Labarca, Vilbett, and Claudia Giovagnoli-Vicuña. 2025. "Enhanced Bioaccessibility of Carotenoids, Antioxidants, and Minerals from Red Lobster By-Products Through High-Hydrostatic Pressure and Ultrasound Extraction" Processes 13, no. 1: 10. https://doi.org/10.3390/pr13010010
APA StyleBriones-Labarca, V., & Giovagnoli-Vicuña, C. (2025). Enhanced Bioaccessibility of Carotenoids, Antioxidants, and Minerals from Red Lobster By-Products Through High-Hydrostatic Pressure and Ultrasound Extraction. Processes, 13(1), 10. https://doi.org/10.3390/pr13010010