Towards Wine Waste Reduction: Up-Cycling Wine Pomace into Functional Fruit Bars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Raw Material Preparation
2.2.2. Fruit Bar Preparation
2.2.3. Analysis of Physical and Chemical Properties
Moisture Content
Extract Preparation
Total Dissolved Solids, Conductivity, and pH of the Extracts
Determination of Total Polyphenolic Content (TPC)
Determination of Antioxidant Activity Using the DPPH Method
Determination of Antioxidant Activity Using the FRAP Method
2.2.4. Sensory Analysis of Fruit Bars
2.2.5. Optimization, Definition of Optimal Composition, and Validation Experiments
2.2.6. Analysis of Nutritional Composition, Nutri-Score, and Microbiological Acceptability
3. Results and Discussion
3.1. Physical Properties of Newly Developed Fruit Bars
3.2. Chemical Properties of Fruit Bar Extracts
3.3. Sensory Properties of Newly Developed Fruit Bars
3.4. Modeling and Estimation of Significant Effects of Functional Ingredients on the Newly Developed Fruit Bar Properties
3.5. Optimization and Validation
3.6. Nutritional Composition and Microbiological Safety of Newly Developed Fruit Bars
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christ, K.L.; Burritt, R.L. Critical Environmental Concerns in Wine Production: An Integrative Review. J. Clean. Prod. 2013, 53, 232–242. [Google Scholar] [CrossRef]
- Abbate, S.; Centobelli, P.; Di Gregorio, M. Wine Waste Valorisation: Crushing the Research Domain. Rev. Manag. Sci. 2024, 1–36. [Google Scholar] [CrossRef]
- Dávila, I.; Robles, E.; Egüés, I.; Labidi, J.; Gullón, P. The Biorefinery Concept for the Industrial Valorization of Grape Processing By-Products. In Handbook of Grape Processing By-Products: Sustainable Solutions; Academic Press: Cambridge, MA, USA, 2017; pp. 29–53. ISBN 9780128098714. [Google Scholar]
- El Gharras, H. Polyphenols: Food Sources, Properties and Applications—A Review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-Chemical Properties of Cell Wall Materials Obtained from Ten Grape Varieties and Their Byproducts: Grape Pomaces and Stems. LWT-Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Igartuburu, J.M.; Del Río, R.M.; Montiel, J.; Pando, E.; Luis, F.R. Study of Agricultural By-Products. Extractability and Amino Acid Composition of Grape (Vitis Vinifera) Skin Proteins from Cv Palomino. J. Sci. Food Agric. 1991, 57, 437–440. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; Veschi, S.; Cama, A.; Acquaviva, A.; Libero, M.L.; Leone, S.; Di Simone, S.C.; Pagano, E.; Zengin, G.; et al. A Grape (Vitis vinifera L.) Pomace Water Extract Modulates Inflammatory and Immune Response in SW-480 Cells and Isolated Mouse Colon. Phytother. Res. 2022, 36, 4620–4630. [Google Scholar] [CrossRef]
- Izadfar, F.; Belyani, S.; Pormohammadi, M.; Alizadeh, S.; Hashempor, M.; Emadi, E.; Sangsefidi, Z.S.; Jalilvand, M.R.; Abdollahi, S.; Toupchian, O. The Effects of Grapes and Their Products on Immune System: A Review. Immunol. Med. 2023, 46, 158–162. [Google Scholar] [CrossRef]
- Percival, S.S. Grape Consumption Supports Immunity in Animals and Humans. J. Nutr. 2009, 139, 1801S–1805S. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Devi, G.; Van Doan, H.; Balasundaram, C.; Esteban, M.Á.; Abdel-Tawwab, M. Impact of Grape Pomace Flour (GPF) on Immunity and Immune-Antioxidant-Anti-Inflammatory Genes Expression in Labeo Rohita against Flavobacterium Columnaris. Fish Shellfish Immunol. 2021, 111, 69–82. [Google Scholar] [CrossRef]
- Chiavaroli, A.; Balaha, M.; Acquaviva, A.; Ferrante, C.; Cataldi, A.; Menghini, L.; Rapino, M.; Orlando, G.; Brunetti, L.; Leone, S.; et al. Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts. Molecules 2021, 26, 6216. [Google Scholar] [CrossRef]
- Wang, C.; You, Y.; Huang, W.; Zhan, J. The High-Value and Sustainable Utilization of Grape Pomace: A Review. Food Chem. X 2024, 24, 101845. [Google Scholar] [CrossRef] [PubMed]
- Lidiková, J.; Čeryová, N.; Musilová, J.; Bobko, M.; Bobková, A.; Demianová, A.; Poláková, K.; Grygorieva, O. Biogenic and Risk Elements in Grape Pomace of Different Cultivars. J. Microbiol. Biotechnol. Food Sci. 2024, 14, e11096. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape Pomace: A Potential Ingredient for the Human Diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef]
- Yu, J.; Smith, I.N.; Mikiashvili, N. Reducing Ochratoxin a Content in Grape Pomace by Different Methods. Toxins 2020, 12, 424. [Google Scholar] [CrossRef]
- Libera, J.; Latoch, A.; Wójciak, K.M. Utilization of Grape Seed Extract as a Natural Antioxidant in the Technology of Meat Products Inoculated with a Probiotic Strain of LAB. Foods 2020, 9, 103. [Google Scholar] [CrossRef]
- Felix da Silva, D.; Matumoto-Pintro, P.T.; Bazinet, L.; Couillard, C.; Britten, M. Effect of Commercial Grape Extracts on the Cheese-Making Properties of Milk. J. Dairy Sci. 2015, 98, 1552–1562. [Google Scholar] [CrossRef]
- Fontana, M.; Murowaniecki Otero, D.; Pereira, A.M.; Santos, R.B.; Gularte, M.A. Grape Pomace Flour for Incorporation into Cookies: Evaluation of Nutritional, Sensory and Technological Characteristics. J. Culin. Sci. Technol. 2024, 22, 850–869. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Gerardi, C.; D’Amico, L.; Durante, M.; Tufariello, M.; Giovinazzo, G. Whole Grape Pomace Flour as Nutritive Ingredient for Enriched Durum Wheat Pasta with Bioactive Potential. Foods 2023, 12, 2593. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.; Sousa, P.; Gonçalves, J.; Hontman, N.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages 2024, 10, 45. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef]
- Kosicka-Gębska, M.; Jeżewska-Zychowicz, M.; Gębski, J.; Sajdakowska, M.; Niewiadomska, K.; Nicewicz, R. Consumer Motives for Choosing Fruit and Cereal Bars—Differences Due to Consumer Lifestyles, Attitudes toward the Product, and Expectations. Nutrients 2022, 14, 2710. [Google Scholar] [CrossRef]
- Kosicka-Gębska, M.; Sajdakowska, M.; Jeżewska-Zychowicz, M.; Gębski, J.; Gutkowska, K. Consumer Perception of Innovative Fruit and Cereal Bars—Current and Future Perspectives. Nutrients 2024, 16, 1606. [Google Scholar] [CrossRef]
- Orrego, C.E.; Salgado, N.; Botero, C.A. Developments and Trends in Fruit Bar Production and Characterization. Crit. Rev. Food Sci. Nutr. 2014, 54, 84–97. [Google Scholar] [CrossRef]
- Alfheeaid, H.A.; Barakat, H.; Althwab, S.A.; Musa, K.H.; Malkova, D. Nutritional and Physicochemical Characteristics of Innovative High Energy and Protein Fruit- and Date-Based Bars. Foods 2023, 12, 2777. [Google Scholar] [CrossRef]
- Haș, I.M.; Vodnar, D.C.; Bungau, A.F.; Tarce, A.G.; Tit, D.M.; Teleky, B.E. Enhanced Elderberry Snack Bars: A Sensory, Nutritional, and Rheological Evaluation. Foods 2023, 12, 3544. [Google Scholar] [CrossRef]
- Pop, C.; Suharoschi, R.; Pop, O.L. Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability 2021, 13, 7219. [Google Scholar] [CrossRef]
- Öztürk Altuncevahir, İ.; Özkul Erdoğan, E.; Yücesoy, S. Evaluation Nutrients of Turkish Snack Bars Based on Labeling and Web Page Information: A Qualitative Research. J. Food Qual. Hazards Control 2024, 11, 94–104. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Fidan, H.; Aljaloud, S.O.; Stankov, S.; Ivanov, G. Application of Date (Phoenix dactylifera L.) Fruit in the Composition of a Novel Snack Bar. Foods 2021, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.H.; Aly, S.M.; Ali, H.; Babiker, A.Y.; Suikar, S.; Khan, A.A. Therapeutic Effects of Date Fruits (Phoenix dactylifera) in the Prevention of Diseases via Modulation of Anti-Inflammatory, Anti-Oxidant and Anti-Tumour Activity. Int. J. Clin. Exp. Med. 2014, 7, 483. [Google Scholar] [PubMed]
- Sandhu, A.K.; Islam, M.; Edirisinghe, I.; Burton-Freeman, B. Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022. Nutrients 2023, 15, 2623. [Google Scholar] [CrossRef]
- Katz, D.L.; Doughty, K.; Ali, A. Cocoa and Chocolate in Human Health and Disease. Antioxid. Redox Signal. 2011, 15, 2779. [Google Scholar] [CrossRef]
- De Souza, R.G.M.; Schincaglia, R.M.; Pimente, G.D.; Mota, J.F. Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef]
- Queiroz, L.P.; Nogueira, I.B.R.; Ribeiro, A.M. Flavor Engineering: A Comprehensive Review of Biological Foundations, AI Integration, Industrial Development, and Socio-Cultural Dynamics. Food Res. Int. 2024, 196, 115100. [Google Scholar] [CrossRef]
- Spence, C. Cinnamon: The Historic Spice, Medicinal Uses, and Flavour Chemistry. Int. J. Gastron. Food Sci. 2024, 35, 100858. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Praseptiangga, D.; Van de Walle, D.; Dewettinck, K. Interaction between Natural Antioxidants Derived from Cinnamon and Cocoa in Binary and Complex Mixtures. Food Chem. 2017, 231, 356–364. [Google Scholar] [CrossRef]
- Ronie, M.E.; Abdul Aziz, A.H.; Kobun, R.; Pindi, W.; Roslan, J.; Putra, N.R.; Mamat, H. Unveiling the Potential Applications of Plant By-Products in Food—A Review. Waste Manag. Bull. 2024, 2, 183–203. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC: Rockville, MD, USA, 1990; Volume 1. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method 991.43; AOAC: Rockville, MD, USA, 1996. [Google Scholar]
- Nutri-Score. Available online: https://www.santepubliquefrance.fr/en/nutri-score (accessed on 10 October 2024).
- HRN EN ISO 4833-2:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 Degrees C by the Surface Plating Technique. HRN4You—Croatian Standards Institute: Zagreb, Croatia, 2013.
- HRN EN ISO 6888-1:2021; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. HRN4You—Croatian Standards Institute: Zagreb, Croatia, 2021.
- HRN EN ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. HRN4You—Croatian Standards Institute: Zagreb, Croatia, 2017.
- HRN ISO 21527-2:2012; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0,95. HRN4You—Croatian Standards Institute: Zagreb, Croatia, 2012.
- HRN EN ISO 6579-1:2017/A1:2020; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.—Amendment 1 Broader Range of Incubation Temperatures, Amendment to the Status of Annex D, and Correction of the Composition of MSRV and SC. HRN4You—Croatian Standards Institute: Zagreb, Croatia, 2020.
- Bordiga, M. Valorization of Wine Making By-Products; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781482255331. [Google Scholar]
- Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef] [PubMed]
- Borchani, C.; Besbes, S.; Blecker, C.; Masmoudi, M.; Baati, R.; Attia, H. Chemical Properties of 11 Date Cultivars and Their Corresponding Fiber Extracts. Afr. J. Biotechnol. 2010, 9, 4096–4105. [Google Scholar]
- Muñoz-Bas, C.; Muñoz-Tebar, N.; Candela-Salvador, L.; Pérez-Alvarez, J.A.; Lorenzo, J.M.; Viuda-Martos, M.; Fernández-López, J. Quality Characteristics of Fresh Date Palm Fruits of “Medjoul” and “Confitera” Cv. from the Southeast of Spain (Elche Palm Grove). Foods 2023, 12, 2659. [Google Scholar] [CrossRef]
- Kalantari, M.; Niakousari, M.; Haghighi-Manesh, S.; Rasouli, M. Fig Extract Drying: The Relationship between the Main Operating Parameters of a Pilot-scale Spray Dryer and Product Specifications. Food Sci. Nutr. 2018, 6, 325. [Google Scholar] [CrossRef]
- Thirumalini, S.; Joseph, K. Correlation between Electrical Conductivity and Total Dissolved Solids in Natural Waters. Malays. J. Sci. 2009, 28, 55–61. [Google Scholar] [CrossRef]
- Radulescu, C.; Olteanu, R.L.; Buruleanu, C.L.; Nechifor, M.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G.; Banica, A.L. Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants 2024, 13, 1133. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Pereira Basílio, L.S.; Tecchio, M.A.; Pereira Lima, G.P. Bioactive Compounds and Antioxidant Capacity of Grape Pomace Flours. LWT 2021, 135, 110053. [Google Scholar] [CrossRef]
- AlFaris, N.A.; AlTamimi, J.Z.; AlGhamdi, F.A.; Albaridi, N.A.; Alzaheb, R.A.; Aljabryn, D.H.; Aljahani, A.H.; AlMousa, L.A. Total Phenolic Content in Ripe Date Fruits (Phoenix dactylifera L.): A Systematic Review and Meta-Analysis. Saudi J. Biol. Sci. 2021, 28, 3566–3577. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Kim, Y.J.; Lee, H.J.; Lee, C.Y. Cocoa Has More Phenolic Phytochemicals and a Higher Antioxidant Capacity than Teas and Red Wine. J. Agric. Food Chem. 2003, 51, 7292–7295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, G.Y.; Zhao, C.N.; Gan, R.Y.; Li, H. Bin Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants 2019, 8, 78. [Google Scholar] [CrossRef]
- Maisto, M.; Annunziata, G.; Schiano, E.; Piccolo, V.; Iannuzzo, F.; Santangelo, R.; Ciampaglia, R.; Tenore, G.C.; Novellino, E.; Grieco, P. Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods 2021, 10, 1760. [Google Scholar] [CrossRef]
- Safdar, M.N.; Baig, U.Y.; Riaz, M.M.; Mumtaz, A.; Jabbar, S.; E-Zehra, D.; Ur-Rehman, N.; Ahmad, Z.; Malik, H.; Yousaf, S. Extraction of Polyphenols from Different Herbs for the Development of Functional Date Bars. Food Sci. Technol. 2021, 42, e43521. [Google Scholar] [CrossRef]
- Solomon, A.; Golubowicz, S.; Yablowicz, Z.; Grossman, S.; Bergman, M.; Gottlieb, H.E.; Altman, A.; Kerem, Z.; Flaishman, M.A. Antioxidant Activities and Anthocyanin Content of Fresh Fruits of Common Fig (Ficus carica L.). J. Agric. Food Chem. 2006, 54, 7717–7723. [Google Scholar] [CrossRef]
- Aslam, H.; Nadeem, M.; Shahid, U.; Ranjha, M.M.A.N.; Khalid, W.; Qureshi, T.M.; Nadeem, M.A.; Asif, A.; Fatima, M.; Rahim, M.A.; et al. Physicochemical Characteristics, Antioxidant Potential, and Shelf Stability of Developed Roselle–Fig Fruit Bar. Food Sci. Nutr. 2023, 11, 4219. [Google Scholar] [CrossRef]
- Parn, O.J.; Bhat, R.; Yeoh, T.K.; Al-Hassan, A.A. Development of Novel Fruit Bars by Utilizing Date Paste. Food Biosci. 2015, 9, 20–27. [Google Scholar] [CrossRef]
- Ghazal, G.A.; Akasha, A.E.-K.E.; Abobaker, A.A.; Ghazal, G.A.; Akasha, A.E.-K.E.; Abobaker, A.A. Development of Novel Confectionary Bars by Utilizing Date “Tagyat Variety”. Food Nutr. Sci. 2016, 7, 533–543. [Google Scholar] [CrossRef]
- PA, P.; MP, G.; AG, K. Standardization and Formulation of Fig Mango Mix Fruit Bar. Int. J. Chem. Stud. 2018, 6, 394–398. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food; Food Science Text Series; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6487-8. [Google Scholar]
- Gujral, H.S.; Brar, S.S. Effect of Hydrocolloids on the Dehydration Kinetics, Color, and Texture of Mango Leather. Int. J. Food Prop. 2003, 6, 269–279. [Google Scholar] [CrossRef]
- Vatthanakul, S.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Wilkinson, B. Gold Kiwifruit Leather Product Development Using Quality Function Deployment Approach. Food Qual. Prefer. 2010, 21, 339–345. [Google Scholar] [CrossRef]
- Mangiapelo, L.; Frangiamone, M.; Vila-Donat, P.; Paşca, D.; Ianni, F.; Cossignani, L.; Manyes, L. Grape Pomace as a Novel Functional Ingredient: Mitigating Ochratoxin a Bioaccessibility and Unraveling Cytoprotective Mechanisms in Vitro. Curr. Res. Food Sci. 2024, 9, 100800. [Google Scholar] [CrossRef] [PubMed]
Sample | Date/Fig Content (g/100 g) | Grape Skin Content (g/100 g) | Cocoa/Hazelnut Mix Content (g/100 g) |
---|---|---|---|
D1/F1 | 70 | 30 | 0 |
D2/F2 | 50 | 50 | 0 |
D3/F3 | 68 | 30 | 2 |
D4/F4 | 48 | 50 | 2 |
D5/F5 | 60 | 40 | 0 |
D6/F6 | 69 | 30 | 1 |
D7/F7 | 49 | 50 | 1 |
D8/F8 | 58 | 40 | 2 |
D9/F9 | 59 | 40 | 1 |
Sample | Dry Matter * (%) | pH ** | TDS ** (mg/L) | Conductivity ** (mS/cm) |
---|---|---|---|---|
Date—based bars | ||||
D1 | 53.77 ± 1.68 a | 5.20 ± 0.01 a | 41.05 ± 0.21 a | 81.85 ± 0.64 a |
D2 | 46.93 ± 0.86 b | 5.05 ± 0.02 b | 37.65 ± 0.07 b | 75.55 ± 0.07 b |
D3 | 54.73 ± 0.61 a | 5.19 ± 0.03 c | 42.50 ± 0.42 c | 84.60 ± 0.57 c |
D4 | 49.86 ± 1.06 c | 5.16 ± 0.04 c | 47.85 ± 0.64 d | 96.50 ± 0.71 d |
D5 | 48.66 ± 0.05 d | 5.12 ± 0.06 d | 35.65 ± 0.07 e | 71.25 ± 0.21 e |
D6 | 51.68 ± 0.00 e | 5.21 ± 0.08 a | 38.45 ± 0.35 f | 76.40 ± 1.13 f |
D7 | 46.72 ± 0.22 b | 5.16 ± 0.05 c | 34.35 ± 1.77 e | 71.15 ± 0.64 e |
D8 | 50.05 ± 0.30 c | 5.25 ± 0.03 d | 36.20 ± 0.71 b | 73.75 ± 0.78 g |
D9 | 49.69 ± 1.31 c | 5.40 ± 0.04 e | 36.10 ± 1.27 b | 72.75 ± 0.92 g |
Fig—based bars | ||||
F1 | 56.57 ± 0.28 A | 4.98 ± 0.01 A | 34.50 ± 0.00 A | 69.80 ± 1.13 A |
F2 | 48.78 ± 0.42 B | 4.98 ± 0.01 A | 33.35 ± 0.21 B | 66.75 ± 0.07 B |
F3 | 57.57 ± 0.04 A | 5.19 ± 0.12 B | 38.10 ± 0.42 C | 76.65 ± 0.64 C |
F4 | 53.07 ± 1.27 C | 5.05 ± 0.05 C | 34.05 ± 0.07 A | 67.95 ± 0.35 A |
F5 | 51.67 ± 2.87 D | 5.03 ± 0.01 C | 36.20 ± 1.13 D | 73.90 ± 0.14 D |
F6 | 56.22 ± 0.21 A | 5.21 ± 0.03 B | 34.05 ± 0.07 A | 67.45 ± 0.92 A |
F7 | 51.90 ± 0.96 D | 5.09 ± 0.05 D | 34.30 ± 0.28 A | 68.05 ± 0.92 A |
F8 | 54.81 ± 0.14 E | 5.13 ± 0.02 E | 35.40 ± 0.85 E | 71.95 ± 0.64 E |
F9 | 56.18 ± 0.02 A | 5.13 ± 0.02 E | 35.15 ± 2.05 E | 72.50 ± 0.57 E |
Date Optimal Mixture Composition: 64.5% Date, 33.58% Grape Skin, 1.92% Cocoa/Hazelnut | Fig Optimal Mixture Composition: 64.5% Fig, 33.58% Grape Skin, 1.92% Cocoa/Hazelnut | |||||
---|---|---|---|---|---|---|
Parameter | Model Predicted Values * | Validation Experiment | RPE | Model Predicted Values * | Validation Experiment | RPE |
TPC | 3.3100 | 3.8335 ± 0.0038 | 15.81 | 2.5900 | 3.3772 ± 0.0034 | 30.39 |
FRAP | 0.1404 | 0.0183 ± 0.0005 | −86.96 | 0.0966 | 0.0173 ± 0.0008 | −82.09 |
DPPH | 0.0123 | 0.0123 ± 0.0010 | 0.00 | 0.0084 | 0.0124 ± 0.0010 | 47.62 |
Appearance | 3.93 | 3.17 ± 1.17 | −19.34 | 3.55 | 3.20 ± 0.84 | −9.86 |
Color | 3.95 | 2.83 ± 0.98 | −28.35 | 3.75 | 3.20 ± 0.45 | −14.67 |
Odor | 3.84 | 3.83 ± 0.41 | −0.26 | 4.49 | 4.60 ± 0.55 | 2.45 |
Sweetness | 3.78 | 3.83 ± 0.41 | 1.32 | 3.82 | 3.60 ± 1.14 | −5.76 |
Bitterness | 3.59 | 3.67 ± 0.51 | 2.23 | 4.03 | 3.60 ± 1.14 | −10.67 |
Aftertaste | 3.81 | 3.83 ± 0.41 | 0.52 | 3.85 | 3.60 ± 1.14 | −6.49 |
Texture | 3.74 | 3.50 ± 0.55 | −6.42 | 3.76 | 3.40 ± 1.34 | −9.57 |
Date-Based Bar | Fig-Based Bar | Reference Values * | |
---|---|---|---|
Nutritional analysis | |||
Energy (kJ/kcal) | 949/225 | 967/230 | / |
Fats (g/100 g) Of which saturated fats (g/100 g) | 2.3 0.4 | 3.2 0.2 | / |
Carbohydrates (g/100 g) Of which sugars (g/100 g) | 43.4 <0.5 | 42.2 <0.5 | / |
Proteins (g/100 g) | 2.9 | 3.2 | / |
Salt (g/100 g) | 0.2 | 0.3 | / |
Fiber (%) | 9.3 | 9.6 | / |
Nutri-Score (/) | −6 (A) | −5 (A) | / |
Microbiological analysis | |||
Aerobic mesophilic bacteria (CFU/g) | <100 | <100 | 100–1000 |
Staphylococcus aureus (CFU/g) | <10 | <10 | 10–100 |
Enterobacteriaceae (CFU/g) | <10 | <10 | 10–100 |
Yeasts and molds (per 25 g) | <100 | <100 | 10–100 |
Salmonella spp. (CFU/g) | n.d per 25 g | n.d per 25 g | n.d. per 25 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benković, M.; Cigić, F.; Valinger, D.; Sokač Cvetnić, T.; Jurinjak Tušek, A.; Jurina, T.; Gajdoš Kljusurić, J.; Radojčić Redovniković, I. Towards Wine Waste Reduction: Up-Cycling Wine Pomace into Functional Fruit Bars. Processes 2024, 12, 2941. https://doi.org/10.3390/pr12122941
Benković M, Cigić F, Valinger D, Sokač Cvetnić T, Jurinjak Tušek A, Jurina T, Gajdoš Kljusurić J, Radojčić Redovniković I. Towards Wine Waste Reduction: Up-Cycling Wine Pomace into Functional Fruit Bars. Processes. 2024; 12(12):2941. https://doi.org/10.3390/pr12122941
Chicago/Turabian StyleBenković, Maja, Filip Cigić, Davor Valinger, Tea Sokač Cvetnić, Ana Jurinjak Tušek, Tamara Jurina, Jasenka Gajdoš Kljusurić, and Ivana Radojčić Redovniković. 2024. "Towards Wine Waste Reduction: Up-Cycling Wine Pomace into Functional Fruit Bars" Processes 12, no. 12: 2941. https://doi.org/10.3390/pr12122941
APA StyleBenković, M., Cigić, F., Valinger, D., Sokač Cvetnić, T., Jurinjak Tušek, A., Jurina, T., Gajdoš Kljusurić, J., & Radojčić Redovniković, I. (2024). Towards Wine Waste Reduction: Up-Cycling Wine Pomace into Functional Fruit Bars. Processes, 12(12), 2941. https://doi.org/10.3390/pr12122941