Optimisation Using Response Surface Methodology of Quality, Nutritional and Antioxidant Attributes of ‘Wichita’ Pecan Nuts Roasted by Microwaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Microwave Roasting of Pecan Nuts
2.4. Measurement of Response Variables
2.4.1. Hardness
2.4.2. Total Colour Differences
2.4.3. DPPH Radical Scavenging Activity
2.5. Scanning Electronic Microscope (SEM)
2.6. Volatile Compounds Analysis
2.7. Analysis of Fatty Acid Composition
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Colour Difference (TCD)
3.2. Hardness
3.3. DPPH Radical Scavenging Activity
3.4. Optimisation and Validation
3.5. Scanning Electron Microscope
3.6. Fatty Acid Composition
3.7. Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Peng, F.; Li, Y. Pecan production in China. Sci. Hortic. 2015, 197, 719–727. [Google Scholar] [CrossRef]
- Casales, F.G.; Van der Watt, E.; Coetzer, G.M. Propagation of pecan (Carya illinoensis): A review. Afr. J. Biotechnol. 2018, 17, 586–605. [Google Scholar] [CrossRef]
- Villasante, J.; Pérez-Carrillo, E.; Heredia-Olea, E.; Metón, I.; Almajano, M.P. In vitro antioxidant activity optimization of nut shell (Carya illinoinensis) by extrusion using response surface methods. Biomolecules 2019, 9, 883. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Kerrihard, A.L.; Pegg, R.B. Characterization of the volatile compounds in raw and roasted Georgia pecans by HS-SPME-GC-MS. J. Food Sci. 2018, 83, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Villasante, J.; Girbal, M.; Metón, I.; Almajano, M.P. Effects of pecan nut (Carya illinoiensis) and roselle flower (Hibiscus sabdariffa) as antioxidant and antimicrobial agents for Sardines (Sardina pilchardus). Molecules 2018, 24, 85. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ding, Z.; Cheng, J.; Yang, S.; Liu, X. Microwave airflow drying of pecans at variable microwave power. J. Food Process. Eng. 2019, 42, e12946. [Google Scholar] [CrossRef]
- Maciel, L.G.; Ribeirob, F.L.; Teixeiraa, G.L.; Molognonic, L.; dos Santosc, J.N.; Nunesa, I.L.; Blocka, J.M. The potential of the pecan nut cake as an ingredient for the food industry. J. Food Res. Int. 2020, 127, 108718. [Google Scholar] [CrossRef]
- McKay, D.L.; Eliasziw, M.; Chen, C.Y.O.; Blumberg, J.B. A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: A randomized controlled trial. Nutrients 2018, 10, 339. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Özcan, M.M.; Uslu, N.; Doǧu, S. Pecan walnut (Carya illinoinensis (Wangenh.) K. Koch) oil quality and phenolic compounds as affected by microwave and conventional roasting. J. Food Sci. Technol. 2017, 54, 4436–4441. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Sabharanjakc, S.M.; Zengind, G.; Mollicae, A.; Szostaka, A.; Simirgiotisg, M.; Huminieckia, L.; Horbanczukh, O.K.; Nabavii, S.M.; Mocanj, A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Dini, A.; Falahati-pour, S.K.; Behmaram, K.; Sedaghat, N. The kinetics of colour degradation, chlorophylls and xanthophylls loss in pistachio nuts during roasting process. Food Qual. 2019, 3, 251–263. [Google Scholar] [CrossRef]
- Olatidoye, O.P.; Shittu, T.A.; Awonorin, S.O.; Ajisegiri, E.S. Influence of roasting conditions on physicochemical and fatty acid profile of raw and roasted cashew kernel (Anacardium occidentale) grown in Nigeria. Croat. J. Food Technol. Biotechnol. Nutr. 2020, 15, 17–26. [Google Scholar] [CrossRef]
- Tu, X.-H.; Wu, B.-F.; Xie, Y.; Xu, S.-L.; Wu, Z.-Y.; Lv, X.; Wei, F.; Du, L.-Q.; Chen, H. A comprehensive study of raw and roasted macadamia nuts: Lipid profile, physicochemical, nutritional, and sensory properties. Food Sci. Nutr. 2021, 9, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Nagarajan, S.; Rao, L.J.M. Microwave heating and conventional roasting of cumin seeds (Cuminum cyminum L.) and effect on chemical composition of volatiles. Food Chem. 2004, 87, 25–29. [Google Scholar] [CrossRef]
- Raigar, R.K.; Upadhyay, R.; Mishra, H.N. Optimization of microwave roasting of peanuts and evaluation of its physicochemical and sensory attributes. J. Food Sci. Technol. 2017, 54, 2145–2155. [Google Scholar] [CrossRef]
- Sharanagat, V.S.; Suhag, R.; Anand, P.; Deswal, G.; Kumar, R.; Chaudhary, A.; Singh, L.; Singh, O.; Mani, S.; Kumar, Y.; et al. Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J. Cereal Sci. 2019, 85, 111–119. [Google Scholar] [CrossRef]
- Olatidoye, O.P.; Awonorin, S.O.; Shittu, T.A.; Ajisegiri, E.S.A.; Sobowale, S.S.; Adebo, O.A. Optimizing the effect of temperature-time combinations on the quality attributes of roasted cashew (Anacardium occidentale) kernel. J. Bioprocess Biotech. 2017, 7, 2. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Wood, B. Use of edible coating to preserve pecans at room temperature. HortScience 2006, 41, 188–192. [Google Scholar] [CrossRef]
- Kazemian-Bazkiaee, F.; Ebrahimi, F.A.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Farhoodi, M.; Rahmatzadeh, B.; Sheikhi, Z. Evaluating the protective effect of edible coatings on lipid oxidation, fatty acid composition, aflatoxins levels of roasted peanut kernels. J. Food Meas. 2020, 14, 1025–1038. [Google Scholar] [CrossRef]
- Andres, A.I.; Petron, M.J.; Lopez, A.M.; Timon, M.L. Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using response surface methodology (RSM). Foods 2020, 9, 1398. [Google Scholar] [CrossRef]
- Kawhena, T.G.; Opara, U.L.; Fawole, O.A. Optimization of gum arabic and starch-based edible coatings with lemongrass oil using response surface methodology for improving postharvest quality of whole “wonderful” pomegranate fruit. Coatings 2021, 11, 442. [Google Scholar] [CrossRef]
- Dudhagara, D.R.; Rajpara, R.K.; Bhatt, J.K.; Gosai, H.B.; Dave, B.P. Bioengineering for polycyclic aromatic hydrocarbon degradation by Mycobacterium litorale: Statistical and artificial neural network (ANN) approach. Chemom. Intell. Lab. Syst. 2016, 159, 155–163. [Google Scholar] [CrossRef]
- Nandane, A.; Dave, R.K.; Rao, T.R. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology. J. Food Sci. Technol. 2017, 54, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Lasekan, O.; Muhammad, K.; Sulaiman, R.; Hussain, N. Effect of roasting conditions on color development and Fourier transform infrared spectroscopy (FTIR-ATR) analysis of Malaysian-grown tropical almond nuts (Terminalia catappa L.). Chem. Cent. J. 2014, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Effect of blanching pomegranate seeds on physicochemical attributes, bioactive compounds and antioxidant activity of extracted oil. Molecules 2020, 25, 2554. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of beverages, chocolates, nuts, and seeds. Int. J. Food Prop. 2014, 17, 86–92. [Google Scholar] [CrossRef]
- Fawole, O.A.; Makunga, N.P.; Opara, U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement Altern. Med. 2012, 12, 200. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Quality and antioxidant properties of cold-pressed oil from blanched and microwave-pretreated pomegranate seed. Foods 2021, 10, 712. [Google Scholar] [CrossRef]
- Bagheri, H.; Kashaninejad, M.; Ziaiifar, A.M.; Aalami, M. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Inf. Process. Agric. 2019, 6, 255–264. [Google Scholar] [CrossRef]
- Das, I.; Shah, N.G.; Kumar, G. Cashew nut quality as influenced by microwave heating used for stored grain insect control. Int. J. Food Sci. 2014, 2014, 516702. [Google Scholar] [CrossRef] [PubMed]
- Mosayebi, M.; Kashaninejad, M.; Najafian, L. Optimizing physiochemical and sensory properties of infrared-hot air roasted sunflower kernels using response surface methodology. J. Food Qual. 2018, 2018, 4186050. [Google Scholar] [CrossRef]
- Shakerardekani, A.; Karim, R. Optimization of processing variables of pistachio paste production. Pist. Health J. 2018, 1, 13–19. [Google Scholar] [CrossRef]
- Olatidoye, O.P. Effect of temperature and time combinations on colour characteristics, mineral and vitamin content raw and roasted cashew kernel. J. Food Process. Technol. 2021, 12, 554. [Google Scholar]
- Liaquat, M.; Pasha, I.; Ahsin, M.; Salik, A. Roasted fox nuts (Euryale Ferox L.) contain higher concentration of phenolics, flavonoids, minerals and antioxidants, and exhibit lower Glycemic Index (GI) in human subjects. Food Prod. Process. Nutr. 2022, 4, 1–12. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S.; Rosell, C.M. Effects of roasting on barley β-glucan, thermal, textural and pasting properties. J. Cereal Sci. 2011, 53, 25–30. [Google Scholar] [CrossRef]
- Shakerardekani, A.; Karim, R.; Mohd, G.H.; Chin, N.L. Effect of roasting conditions on hardness, moisture content and colour of pistachio kernels. Int. Food Res. J. 2011, 18, 59–65. [Google Scholar] [CrossRef]
- Lin, J.-T.; Liu, S.-C.; Hu, C.-C.; Shyu, Y.S.; Hsu, C.-Y.; Yang, D.-J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 2016, 190, 520–528. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef]
- Pradhan, D.; Pradhan, R.C. Optimization of process parameters using a hybrid intelligent system model and evaluation of physicochemical properties of microwave roasted Chironji (Buchanania lanzan) kernels. J. Food Meas. Charact. 2020, 14, 2956–2969. [Google Scholar] [CrossRef]
- Uquiche, E.; Jeréz, M.; Ortíz, J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov. Food Sci. Emerg. Technol. 2008, 9, 495–500. [Google Scholar] [CrossRef]
- Siebeneichler, T.J.; Hoffmann, J.F.; Galli, V.; Zambiazi, R.C. Composition and impact of pre-and post-harvest treatments/factors in pecan nuts quality. Trends Food Sci. Technol. 2022, 131, 46–60. [Google Scholar] [CrossRef]
- Ghazzawi, H.A.; Al-Ismail, K.A. Comprehensive study on the effect of roasting and frying on fatty acids profiles and antioxidant capacity of almonds, pine, cashew, and pistachio. J. Food Qual. 2017, 2017, 9038257. [Google Scholar] [CrossRef]
- Li, H.; Han, J.; Zhao, Z.; Tian, J.; Fu, X.; Zhao, Y.; Wei, C.; Wenyu Liu, W. Roasting treatments affect oil extraction rate, fatty acids, oxidative stability, antioxidant activity, and flavor of walnut oil. Front Nutr. 2023, 9, 1077081. [Google Scholar] [CrossRef] [PubMed]
- Kaseke, T.; Fawole, O.A.; Opara, U.L. Chemistry and functionality of cold-pressed macadamia nut oil. Processes 2021, 10, 56. [Google Scholar] [CrossRef]
- Lasekan, O.; Alfi, K.; Abbas, K.A. Volatile compounds of roasted and steamed Malaysian tropical almond nut (Terminalia catappa L.). Int. J. Food Prop. 2012, 15, 1120–1132. [Google Scholar] [CrossRef]
- Yang, J.; Pan, Z.; Takeoka, G.; Mackey, B.; Bingo, G.; Brandle, M.T.; Garcin, K.; McHugh, T.H.; Wang, H. Shelf-life of infrared dry-roasted almonds. Food Chem. 2013, 138, 671–678. [Google Scholar] [CrossRef]
- Kendirci, P.; Onoğur, T.A. Investigation of volatile compounds and characterization of flavor profiles of fresh pistachio nuts (Pistacia vera L.). Int. J. Food Prop. 2011, 14, 319–330. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Maestre Pérez, S.E.; Beltrán Sanahuja, A. Volatile profile of nuts, key odorants and analytical methods for quantification. Foods 2021, 10, 11611. [Google Scholar] [CrossRef]
Independent Variable | Levels | ||||
---|---|---|---|---|---|
−α () | Low (−1) | Centre (0) | High (+1) | +α () | |
Power (W) | 96.45 | 200 | 450 | 700 | 803.55 |
Time (min) | 1.38 | 2 | 3.5 | 5 | 5.62 |
Point Type | A: Power (W) | B: Time (min) | TCD | Hardness (N) | DPPH Radical Scavenging Activity (mmol Trolox/g) |
---|---|---|---|---|---|
Factorial | 200 | 2 | 2051.78 | 32.21 | 34.99 |
Factorial | 700 | 2 | 1949.37 | 27.64 | 32.48 |
Factorial | 200 | 5 | 2017.82 | 28.38 | 25.70 |
Factorial | 700 | 5 | 1527.44 | 24.24 | 37.76 |
Axial | 96.45 | 3.5 | 1860.10 | 31.71 | 30.30 |
Axial | 803.55 | 3.5 | 1430.97 | 25.38 | 40.01 |
Axial | 450 | 1.38 | 2145.70 | 33.96 | 34.46 |
Axial | 450 | 5.62 | 1943.60 | 25.66 | 31.29 |
Center | 450 | 3.5 | 2085.18 | 29.95 | 31.82 |
Center | 450 | 3.5 | 1976.93 | 32.63 | 35.12 |
Center | 450 | 3.5 | 1897.27 | 31.68 | 32.09 |
Center | 450 | 3.5 | 1934.46 | 33.24 | 32.92 |
Center | 450 | 3.5 | 2003.16 | 32.93 | 31.91 |
Responses | |||
---|---|---|---|
Regression Coefficients | TCD | Hardness (N) | DPPH Radical Scavenging Activity (mmol Trolox/g) |
A—Power | −149.96 * | −2.21 * | 2.91 * |
B—Time | −92.71 * | −2.37 * | −1.06 * |
AB | −96.99 * | 0.11 | 3.64 * |
A2 | −156.55 * | −2.04 * | − |
B2 | 43.00 | −1.40 * | − |
Mean | 1909.52 | 29.94 | 33.01 |
R2 | 0.9462 | 0.9113 | 0.8556 |
Adjusted R2 | 0.9077 | 0.8480 | 0.8075 |
Predicted R2 | 0.8392 | 0.6622 | 0.6853 |
Model (F-value) | 24.60 | 14.39 | 20.01 |
Model (p-value) | 0.0003 * | 0.0014 * | 0.0003 * |
Lack of Fit (p-value) | 0.73 ns | 0.51 ns | 0.43 ns |
CV | 3.29 | 4.35 | 4.44 |
Response Variable | Predicted Value | Experimental Value (Mean ± SD) | p-Value | Relative Deviation (%) |
---|---|---|---|---|
TCD | 1863.391 | 1835.496 ± 37.39 | 0.3762 | 1.50 |
Hardness (N) | 28.755 | 28.515 ± 0.50 | 0.2247 | 0.83 |
DPPH radical scavenging activity (mmol Trolox/g) | 33.877 | 34.859 ± 2.94 | 0.8678 | 2.90 |
Fatty Acids | Raw (mg/g; %) | Roasted (700 W/2.24 min) (mg/g; %) |
---|---|---|
SFA | ||
Lauric acid (C12:0) | 0.21 ± 0.00 a (0.018%) | 0.19 ± 0.01 b (0.016%) |
Myristic acid (C14:0) | 0.75 ± 0.01 a (0.064%) | 0.71 ± 0.01 b (0.059%) |
Pentadecyclic acid (C15:0) | 0.22± 0.00 a (0.019%) | 0.21 ± 0.00 a (0.018%) |
Palmitic acid (C16:0) | 77.06 ± 0.98 a (6.56%) | 77.65 ± 1.32 a (6.55%) |
Heptadecanoic acid (C17:0) | 0.85 ± 0.03 a (0.072%) | 0.90 ± 0.03 a (0.076%) |
Stearic acid (C18:0) | 20.19 ± 0.48 a (1.72%) | 18.40 ± 0.55 b (1.55%) |
Arachidic acid (C20:0) | 1.31 ± 0.05 a (0.11%) | 1.33 ± 0.03 a (0.11%) |
Docosanoic acid (C22:0) | 0.60 ±0.02 a (0.051%) | 0.59 ±0.04 a (0.050%) |
Tricosanoic acid (C23:0) | 0.13 ± 0.01 a (0.011%) | 0.14 ± 0.00 a (0.012%) |
Tetracosanoic acid (C24:0) | 0.17 ± 0.00 a (0.014%) | 0.16 ± 0.00 a (0.014%) |
ΣSFA | 101.49 ± 1.58 a (8.64%) | 100.28 ± 1.99 a (8.46%) |
MUFA | ||
Palmitoleic acid (C16:1) | 0.95 ± 0.02 a (0.081%) | 0.89 ± 0.02 a (0.075%) |
Oleic acid (C18:1 cis) | 757.68 ± 18.50 a (64.53%) | 770.56 ± 25.51 a (65.03%) |
ΣMUFA | 758.63 ± 18.52 a (64.61%) | 771.45 ± 25.53 a (65.11%) |
PUFA | ||
Linoleic acid (C18:2 cis) | 305.23 ± 5.26 a (26.00%) | 304.19 ± 7.52 a (25.67%) |
α-Linolenic acid (C18:3 n-3) | 8.20 ± 0.14 a (0.70%) | 8.65 ± 0.26 a (0.73%) |
Dihomo-γ-Linolenic acid (C20:3 n-6) | 0.090 ± 0.00 a (0.0077%) | 0.081 ± 0.00 b (0.0068%) |
Eicosatetraenoic acid (C20:4 n-3) | 0.13 ± 0.00 a (0.011%) | 0.11 ± 0.01 b (0.0093%) |
Eiocosapentaenoic acid (C20:5 n-3) | 0.37 ± 0.10 a (0.032%) | 0.11 ± 0.01 b (0.0093%) |
ΣPUFA | 314.02 ± 5.50 a (26.74%) | 313.14 ± 7.80 a (26.42%) |
ΣUFA | 1072.65 ± 24.02 a (91.36%) | 1084.59 ± 33.33 a (91.54%) |
ΣMUFA/ΣPUFA index | 2.42 ± 3.37 a (0.21%) | 2.46 ± 3.27 a (0.21%) |
ΣUFA/ΣSFA index | 10.57 ± 15.20 a (0.90%) | 10.82 ± 16.75 a (0.91%) |
ΣPUFA/ΣSFA index | 3.09 ± 3.48 a (0.26%) | 3.12 ± 3.92 a (0.27%) |
Volatiles Compounds (%) | Raw Pecan Nuts | Roasted Pecan Nuts (700 W/2.24 min) |
---|---|---|
Alcohol | ||
1-Pentanol | 0.75 ± 0.01 | ND |
3-Octanol | 0.47 ± 0.01 | ND |
1-vinylhexanol | 0.99 ± 0.01 | ND |
Isopentanol | ND | 0.77 ± 0.01 |
Aldehyde | ||
2 Hexanal | 1.99 ± 0.02 a | 1.01 ± 0.01 b |
Furfuralaldehyde | 2.31 ± 0.03 a | 0.89 ± 0.01 b |
Nonanal | 0.66 ± 0.01 a | 0.36 ± 0.00 b |
Phenylacetaldehyde | 0.40 ± 0.00 | ND |
5-Methylfurfural | 0.54 ± 0.01 a | 0.44 ± 0.01 b |
Acids | ||
Hydrazoic acid | ND | 2.73 ± 0.02 |
Hydrocarbons | ||
ρ-Xylene | 0.41 ± 0.01 b | 0.98 ± 0.01 a |
m-Xylene | ND | 1.02 ± 0.01 |
Myrcene | 4.01 ± 0.04 a | 3.30 ± 0.02 b |
Limonene | 84.50 ± 0.84 b | 85.42 ± 0.85 a |
ρ-cymene | 0.53 ± 0.00 | ND |
Ethenylbenzene | 1.16 ± 0.01 | ND |
Phenylethane | 0.70 ± 0.01 b | 0.90 ± 0.01 a |
Bromobenzene | 0.31 ± 0.01 | ND |
Chlorobenzene | ND | 1.02 ± 0.01 |
Ketone | ||
4-Ketoisophorone | 0.28 ± 0.00 | ND |
Lactones | ||
4,4-Dimethylbutyrolactone | ND | 0.90 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukwevho, P.L.; Kaseke, T.; Fawole, O.A. Optimisation Using Response Surface Methodology of Quality, Nutritional and Antioxidant Attributes of ‘Wichita’ Pecan Nuts Roasted by Microwaves. Processes 2023, 11, 2503. https://doi.org/10.3390/pr11082503
Mukwevho PL, Kaseke T, Fawole OA. Optimisation Using Response Surface Methodology of Quality, Nutritional and Antioxidant Attributes of ‘Wichita’ Pecan Nuts Roasted by Microwaves. Processes. 2023; 11(8):2503. https://doi.org/10.3390/pr11082503
Chicago/Turabian StyleMukwevho, Priscilla L., Tafadzwa Kaseke, and Olaniyi A. Fawole. 2023. "Optimisation Using Response Surface Methodology of Quality, Nutritional and Antioxidant Attributes of ‘Wichita’ Pecan Nuts Roasted by Microwaves" Processes 11, no. 8: 2503. https://doi.org/10.3390/pr11082503
APA StyleMukwevho, P. L., Kaseke, T., & Fawole, O. A. (2023). Optimisation Using Response Surface Methodology of Quality, Nutritional and Antioxidant Attributes of ‘Wichita’ Pecan Nuts Roasted by Microwaves. Processes, 11(8), 2503. https://doi.org/10.3390/pr11082503