InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure
Abstract
:1. Introduction
2. Construction of InterMat Model
2.1. System Architecture
2.2. The Construction of Consortium Blockchain
- Nodes
- Material industry chain
- InterMat
2.3. Materials Data Discovery Protocol
3. System Implementation
3.1. Materials Data Identification and Blockchain Certification
- Data storage: The materials data are uploaded by the data provider to the cloud, where they are stored and a URL is provided. Afterwards, the data provider sends a request to the blockchain, including metadata from Table 1 and Table 2, material feature data from Table 3, master data hash, and data signature. According to the identification rules, the blockchain generates the TxID, user identity certificate hash (CaHash), and transaction hash of the transaction (TxHash). Then the TxID and the TxHash are returned to the data provider as the result of the blockchain certification.
- Data request: The data user makes a request to the blockchain for the data. The blockchain then finds the necessary data based on the data discovery protocol, resolves the URL using the identifier resolution rules, and sends the data back to the user. Data users use this URL request to access materials data in the cloud platform.
3.2. Materials Data Discovery Algorithm
- Material feature data extraction
- Data similarity calculation
3.3. Materials Data Traceability
- Data identifier;
- The version number of the current version;
- Data hash;
- Timestamp: the time of initial upload and the time of each modification.
- Data identifier;
- Owner of data;
- User: the user who requests data access;
- Event types: including browsing data, providing feedback on data quality (positive feedback, negative feedback), and citing data;
- Timestamp: the time when the behavior occurred.
3.4. Data Valuation
4. Application Case
- Data management
- Similar material discovery
- Data traceability and valuation
5. Evaluation and Discussion
- Materials data scene adaptation.
- High security of the system.
- Reasonable data sharing incentives.
- High scalability.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Liu, Z.; Zhang, D.; Chu, M. Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure. J. Iron Steel Res. Int. 2021, 33, 1003–1017. [Google Scholar]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-driven materials science: Status, challenges and perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef]
- Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 2016, 4, 053208. [Google Scholar] [CrossRef]
- Curtarolo, S.; Setyawan, W.; Hart, G.L.W.; Jahnatek, M.; Chepulskii, R.V.; Taylor, R.H.; Wang, S.; Xue, J.; Yang, K.; Levy, O.; et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 2013, 58, 218–226. [Google Scholar] [CrossRef]
- Draxl, C.; Scheffler, M. NOMAD: The FAIR Concept for Big-Data-Driven Materials Science. MRS Bull. 2018, 43, 676–682. [Google Scholar] [CrossRef]
- The Novel Materials Discovery (NOMAD) Laboratory. Available online: https://nomad-coe.eu/ (accessed on 20 September 2023).
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Das, A.; Suman, S.; Sinha, A.K. Development of multivariate process monitoring strategy for a typical process industry. Int. J. Product. Perform. Manag. 2017, 22, 1–21. [Google Scholar] [CrossRef]
- Austin, T. Towards a digital infrastructure for engineering materials data. Mater. Discov. 2016, 3, 1–12. [Google Scholar] [CrossRef]
- Corallo, A.; Lazoi, M.; Lezzi, M. Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts. Comput. Ind. 2019, 114, 103165. [Google Scholar] [CrossRef]
- Rohr, J.; Wright, A. Blockchain-Based Token Sales, Initial Coin Offerings, and the Democratization of Public Capital Markets. Hastings Law J. 2018, 70, 463. [Google Scholar] [CrossRef]
- Eyal, I. Blockchain Technology: Transforming Libertarian Cryptocurrency Dreams to Finance and Banking Realities. Computer 2017, 50, 38–49. [Google Scholar] [CrossRef]
- Park, K.; Youm, H.-Y. Proposal of Decentralized P2P Service Model for Transfer between Blockchain-Based Heterogeneous Cryptocurrencies and CBDCs. Big Data Cogn. Comput. 2022, 6, 159. [Google Scholar] [CrossRef]
- Zhang, G.; Li, T.; Li, Y.; Hui, P.; Jin, D. Blockchain-Based Data Sharing System for AI-Powered Network Operations. J. Commun. Inf. Netw. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Chenli, C.; Tang, W.; Gomulka, F.; Jung, T. ProvNet: Networked bi-directional blockchain for data sharing with verifiable provenance. J. Parallel. Distrib. Comput. 2022, 166, 32–44. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Chen, X. Trusted Data Sharing with Flexible Access Control based on Blockchain. Comput. Stand. Interfaces 2021, 78, 103543. [Google Scholar] [CrossRef]
- Zheng, B.K.; Zhu, L.H.; Shen, M.; Gao, F.; Zhang, C.; Li, Y.; Yang, J. Scalable and privacy-preserving data sharing based on blockchain. J. Comput. Sci. Technol. 2018, 33, 557–567. [Google Scholar] [CrossRef]
- Chowdhury, M.J.M.; Colman, A.; Kabir, M.A.; Han, J.; Sarda, P. Blockchain as a Notarization Service for Data Sharing with Personal Data Store. In Proceedings of the 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 1 August 2018. [Google Scholar]
- Ugochukwu, N.A.; Goyal, S.B.; Rajawat, A.S.; Islam, S.M.N.; He, J.; Aslam, M. An Innovative Blockchain-Based Secured Logistics Management Architecture: Utilizing an RSA Asymmetric Encryption Method. Mathematics 2022, 10, 4670. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, W.M.; Guo, H.; Barenji, A.V.; Li, Z.; Huang, G.Q. Industrial blockchain based framework for product lifecycle management in industry 4.0. Robot. Comput.-Integr. Manuf. 2020, 63, 101897. [Google Scholar] [CrossRef]
- Mandolla, C.; Antonio Messeni, P.; Percoco, G.; Andrea, U. Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Comput. Ind. 2019, 109, 134–152. [Google Scholar] [CrossRef]
- Joshi, S.; Pise, A.A.; Shrivastava, M.; Revathy, C.; Kumar, H.; Alsetoohy, O.; Akwafo, R. Adoption of blockchain technology for privacy and security in the context of industry 4.0. Wirel. Commun. Mob. Comput. 2022, 2022, 4079781. [Google Scholar] [CrossRef]
- Ding, K.; Fan, L.; Liu, C. Manufacturing system under I4.0 workshop based on blockchain: Research on architecture, operation mechanism and key technologies. Comput. Ind. Eng. 2021, 161, 107672. [Google Scholar] [CrossRef]
- Dorsala, M.R.; Sastry, V.N.; Chapram, S. Blockchain-based solutions for cloud computing: A survey. J. Netw. Comput. Appl. 2021, 196, 103246. [Google Scholar] [CrossRef]
- Sato, T.; Shimosawa, T.; Himura, Y. Operations Smart Contract to Realize Decentralized System Operations Workflow for Consortium Blockchain. IEICE Trans. Commun. 2022, 105, 1318–1331. [Google Scholar] [CrossRef]
- Henry, S.D.; Berardinis, L.A. A Review of Materials Data Infrastructure Projects. In Proceedings of the World Congress on Integrated Computational Materials Engineering: ICME 2015, Colorado Springs, CO, USA, 31 May 2015. [Google Scholar]
- Su, Y.; Yang, M.; Zhu, W.; Zhou, K.; Xue, D.; Wang, H.; Xie, J. Development of Key Technologies for Intelligent Research and Development of New Materials. Strat. Study CAE 2023, 25, 161–169. [Google Scholar] [CrossRef]
- Heery, R. Review of metadata formats. Program Electron. Libr. Inf. Syst. 1996, 30, 345–373. [Google Scholar]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Conde, J.G. A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 337–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, X. Metadata-driven data description and searchability. Big Data Min. Comput. Data 2017, 3, 59–74. [Google Scholar]
- Medina-Smith, A.; Becker, C.A.; Plante, R.L.; Bartolo, L.M.; Dima, A.; Warren, J.A.; Hanisch, R.J. A Controlled Vocabulary and Metadata Schema for Materials Science Data Discovery. Data Sci. J. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Cross, J.O.; Opila, R.L.; Boyd, I.W.; Kaufmann, E.N. Materials characterization and the evolution of materials. MRS Bull. 2015, 40, 1019–1033. [Google Scholar] [CrossRef]
- Abdalla, M.; Bourse, F.; CARO, A.D.; Pointcheval, D. Simple functional encryption schemes for inner products. In Proceedings of the IACR International Workshop on Public Key Cryptography, Gaithersburg, MD, USA, 30 March 2015–1 April 2015. [Google Scholar]
- Kim, S.; Lewi, K.; Mandal, A.; Montgomery, H.; Roy, A.; Wu, D.J. Function-Hiding Inner Product Encryption is Practical. In Proceedings of the Arctic Crypt, Longyearbyen, Svalbard, 17–22 July 2016. [Google Scholar]
No. | Components | Explanation |
---|---|---|
1 | SourceID | ID of data source, unique identifier of materials data source |
2 | SourceType | Data source types, including calculation software, laboratory, IoT devices, public data, and so on |
3 | SourceName | The specific name of the data source |
4 | Provider | The provider of the data source |
5 | CollectTime | Start time of data collection |
6 | CollectURL | Unified Resource Identification for data collection |
No. | Components | Explanation |
---|---|---|
1 | DataID | ID of data, unique identifier of materials data |
2 | DataName | Name of materials data |
3 | DataType | The format of the master data file, such as text, tables, images, etc. |
4 | Unit | Unit of measurement for materials data, such as KB, MB, GB, etc. |
5 | Size | Materials data size |
6 | Owner | Owner of materials data |
7 | CreatTime | Data creation time |
8 | MaterialName | Name of the material |
9 | MaterialType | Type of the material |
10 | MaterialFeature | Material feature data, as shown in Table 3 |
11 | Description | Remarks on materials data |
No. | Components | Explanation |
---|---|---|
1 | DataID | ID of data, unique identifier of materials data |
2 | Compositions | Chemical compositions data |
3 | Properties | Mechanical properties, physical properties, application performance, etc. |
4 | Processes | Molding process, heat treatment process, etc. |
5 | Structures | Crystal structure, phase structure, organization, etc. |
6 | DataID | ID of data, unique identifier of materials data |
No. | Project | Symbol |
---|---|---|
1 | The number of exchanged | E |
2 | Number of referenced | R |
3 | Positive feedback | Fp |
4 | Negative feedback | Fn |
5 | Page view | P |
6 | Data value | V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Su, H.; Duan, L.; Li, H. InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure. Processes 2023, 11, 3168. https://doi.org/10.3390/pr11113168
Wang C, Su H, Duan L, Li H. InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure. Processes. 2023; 11(11):3168. https://doi.org/10.3390/pr11113168
Chicago/Turabian StyleWang, Changchang, Hang Su, Linna Duan, and Hao Li. 2023. "InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure" Processes 11, no. 11: 3168. https://doi.org/10.3390/pr11113168
APA StyleWang, C., Su, H., Duan, L., & Li, H. (2023). InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure. Processes, 11(11), 3168. https://doi.org/10.3390/pr11113168