An Evaluation Method of Gas-Bearing Properties Based on Gaussian Bimodal Function Pore Structure Characterization: A Case Study of Tight Sandstone in the East China Sea Basin
Abstract
:1. Introduction
2. Geological Setting
3. Experiments and Modeling
4. Results and Discussion
4.1. Reservoir Property
4.2. Pore Throat Structure Characteristics
4.2.1. Pore Throat Network Characteristics from HPMI
4.2.2. Pore Size Distributions from NMR
4.3. Gaussian Bimodal Function Fitting
4.4. Classification of Reservoirs Based on Pore Structure
4.5. Logging Response of Reservoir Classification
4.6. The Influence of Pore Structure on Rock Electrical Parameters
4.7. Method for Gas-Bearing Properties Based on Pore Structure
- (1)
- Collect core samples and experimental data, test the physical properties and NMR of the core samples, and then establish the measured nuclear magnetic curve based on the experimental data.
- (2)
- Fit and calculate the parameters (W1, logμ1, logσ1, W2, logμ2, logσ2) of the NMR curve and calculate the η value to classify the sample pore structure.
- (3)
- Rock electric experiments were used for different types of pore structures to determine the variations in rock electrical parameters.
- (4)
- For areas with NMR logging data, the values of η can be obtained by Gaussian function fitting to classify the pore structure of the target reservoir.
- (5)
- For areas without NMR logging data, the values of η can be obtained by establishing a logging fitting formula and then classifying the pore structure of the target reservoir.
- (6)
- Based on the classification of pore structure, varying rock electrical parameters should be selected for different types of reservoirs; then the water saturation of the target reservoir should be calculated to determine the gas-bearing properties.
4.8. Example Verification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Shen, J.; Hao, J.; Du, W. Characteristics of quartz sandstones and its reservoir significance of Xujiahe Formation in Yuanba area, northeastern Sichuan Basin. Acta Sedimentol. Sin. 2012, 30, 92–100. [Google Scholar]
- Jia, C.; Sepehrnoori, K.; Huang, Z.; Yao, J. Modeling and analysis of carbonate matrix acidizing using a new two-scale continuum model. SPE J. 2021, 26, 2570–2599. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, W.; Bo, D.; Hong, F.; Gong, Y.; Hao, J. Tight sandstone gas accumulation mechanisms and sweet spot prediction, Triassic Xujiahe Formation, Sichuan Basin, China. Pet. Sci. 2023. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Z.; Xu, S.; Liu, Z.; Liu, J.; Huang, Z.; Huang, Y.; Shi, Z.; Wu, Q.; Fan, L.; et al. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin. Oil Gas Geol. 2021, 42, 765–783. [Google Scholar]
- Feng, L.; Jiang, Y.; Guo, G.; Yang, C.; Zhu, X.; Zeng, Q.; Cai, G.; Wang, Z. Impacts of mineralogy and pore throat structure on the movable fluid of tight sandstone gas reservoirs in coal measure strata: A case study of the Shanxi formation along the southeastern margin of the Ordos Basin. J. Pet. Sci. Eng. 2023, 220, 111257. [Google Scholar]
- Li, P.; Zheng, M.; Bi, H.; Wu, S.; Wang, X. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. J. Pet. Sci. Eng. 2017, 149, 665–674. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, S.; Wang, J.; Gao, Y.; Wan, C.; Tong, H. Physical Properties, Pore-Throat Structure, Fractal Characteristics and Their Effects on the Gas-Bearing Capacity of Tight Sandstone: A Case Study from the Northern Tianhuan Depression, Ordos Basin, China. Nat. Resour. Res. 2022, 31, 1559–1584. [Google Scholar] [CrossRef]
- Clarkson, C.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.; Mastalerz, M.; Bustin, R.; Radlinski, A.; Blach, T. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, G.; Yang, Z.; Tao, S.; Hou, L.; Zhu, R.; Yuan, X.; Ran, Q.; Li, D.; Wang, Z. Concepts, characteristics, potential and technology of unconventional hydrocarbons: On unconventional petroleum geology. Pet. Explor. Dev. 2013, 40, 413–428. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Tao, S.; Yuan, X.; Zhu, R.; Hou, L.; Wu, S.; Sun, L.; Zhang, G.; Bai, B. Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China. Earth Sci. Rev. 2013, 126, 358–369. [Google Scholar] [CrossRef]
- Archie, G. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Syed, A.; Syed, H.; Asma, B.; Quaid, K.; Khalid, L. Petrophysical evaluation using the geometric factor theory and comparison with Archie model (Article). J. Nat. Gas Sci. Eng. 2020, 82, 103465. [Google Scholar]
- Zhong, Z.; Reza, R.; Lionel, E.; Matthew, E.; Feng, R. Determination of Archie’s cementation exponent for shale reservoirs; an experimental approach. J. Pet. Sci. Eng. 2021, 201, 108527. [Google Scholar] [CrossRef]
- Aboozar, S.; Abbas, H.; Mohammad, J.; Bahram, S. Development of a new model for prediction of cementation factor in tight gas sandstones based on electrical rock typing. J. Nat. Gas Sci. Eng. 2021, 94, 104128. [Google Scholar]
- Gao, Y.H.; Pan, B.Z.; Zhang, L.H.; Fang, C.H. Research and application of the relationship between transverse relaxation time and resistivity index in tight sandstone reservoir. J. Pet. Sci. Eng. 2018, 160, 597–604. [Google Scholar]
- Zhang, L.; Pan, B.; Shan, G.; Guo, Y. Research progress on influencing factors of saturation index n in Archie formula. Prog. Geophys. 2023, 38, 1247–1256. [Google Scholar] [CrossRef]
- Watfa, M.; Youssef, F. An Improved Technique for Estimating Permeability in Carbonates. Middle East Oil Show. 1987, SPE-15732-MS. [Google Scholar] [CrossRef]
- Attia, M. Effects of petrophysical rock properties on tortuosity factor. J. Pet. Sci. Eng. 2005, 48, 185–198. [Google Scholar] [CrossRef]
- Diederix, K. Anomalous relationships between resistivity index and water saturations in the Rotliefend sandstone (The Netherlands). In Proceedings of the SPWLA 23rd Annual Logging Symposium, Corpus Christi, TX, USA, 6 July 1982. [Google Scholar]
- Toumelin, E.; Torres-Verdin, C. Influence of oil saturation and wettability on rock resistivity measurements: A uniform pore-scale approach. In Proceedings of the SPWLA 46th Annual Logging Symposium, Corpus Christi, TX, USA, 6 July 1982. [Google Scholar]
- Xiao, L.; Zou, C.; Mao, Z.; Shi, Y.; Liu, X.; Jin, Y.; Guo, H.; Hu, X. Estimation of water saturation from nuclear magnetic resonance (NMR) and conventional logs in low permeability sandstone reservoirs(Article). J. Pet. Sci. Eng. 2013, 108, 40–51. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, C.; Zhang, Z.; Zhang, R.; Zhu, L.; Zhang, C. Saturation evaluation method in tight gas sandstones based on diagenetic facies (Article). Mar. Pet. Geol. 2019, 107, 310–325. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, J.; Li, Z.; Geng, B.; Kou, X.; Gao, Z. Analysis of Rock Electrical Parameters and Rw in Archie Formula for Clastic Rock. Well Logging Technol. 2017, 41, 127–133. [Google Scholar]
- Jiang, S.; Li, S.; Chen, X.; Zhang, H.; Wang, G. Simulation of oil–gas migration and accumulation in the East China Sea continental shelf basin: A case study from the Xihu depression. Geol. J. 2016, 51, 229–243. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Chen, X.; He, C.; Liu, H.; Li, Q.; Wang, C. The characteristics of low permeability reservoirs, gas origin, generation, and charge in the central and western Xihu Depression, east China Sea basin. J. Nat. Gas Sci. Eng. 2018, 53, 94–109. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, C.; Zhang, X.; Lin, C.; Huang, X.; Duan, D.; Lin, J.; Zeng, F.; Li, D. Reservoir controlling factors of the Paleogene Oligocene Huagang formation in the north central part of the Xihu Depression, East China Sea Basin, China. J. Pet. Sci. Eng. 2019, 175, 159–172. [Google Scholar]
- Hao, L.; Wang, Q.; Guo, R.; Tuo, C.; Ma, D.; Mou, W.; Tian, B. Diagenetic fluids evolution of Oligocene Huagang Formation sandstone reservoir in the south of Xihu Sag, the East China Sea Shelf Basin: Constraints from petrology, mineralogy, and isotope geochemistry. Acta Oceanol. Sin. 2018, 37, 25–34. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Y.; Zhang, T.; Zhang, S.; Tang, X. A discussion on the exploration potential of deep basin gas in Xihu sag, East China Sea. China Offshore Oil Gas 2013, 25, 24–29. [Google Scholar]
- Dong, J.; Huang, Z.; Chen, J.; Li, T.; Zhao, J.; Pan, Y.; Qu, T. Pore Structure and Fractal Characteristics of Tight Sandstone: A Case Study for Huagang Formation in the Xihu Sag, East China Sea Basin, China. Energies 2023, 16, 2013. [Google Scholar] [CrossRef]
- Qian, W.D.; Sun, Q.L.; Stuart, J.; Yin, T.J.; Zhang, C.M.; Xu, G.S.; Hou, G.W.; Zhang, B. Diagenesis and controlling factors of Oligocene Huagang Formation tight sandstone reservoir in the south of Xihu sag, the East China Sea Shelf Basin. J. Pet. Sci. Eng. 2022, 215, 110579. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef]
- Nooruddin, H.A.; Hossain, M.E.; Hasan, A.; Okasha, T. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. J. Pet. Sci. Eng. 2014, 121, 9–22. [Google Scholar] [CrossRef]
- Daigle, H.; Thomas, B.; Rowe, H.; Nieto, M. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333. J. Geophys. Res. Solid Earth 2014, 119, 2631–2650. [Google Scholar] [CrossRef]
- Müller-Huber, E.; Schön, J.; Börner, F. Pore space characterization in carbonate rocks—Approach to combine nuclear magnetic resonance and elastic wave velocity measurements. J. Appl. Geophys. 2016, 127, 68–81. [Google Scholar] [CrossRef]
- Dong, J.; Huang, Z.; Chen, J.; Zhang, W.; Wang, L.; Li, T.; Huang, Q.; Liu, L. A new method to establish NMR T 2 spectrum based on bimodal Gaussian density function: A case study of tight sandstone in East China Sea Basin. J. Pet. Sci. Eng. 2018, 167, 628–637. [Google Scholar] [CrossRef]
Well | Depth/m | Porosity/% | Permeability/×10−3μm2 | Maximum Mercury Saturation/% | Maximum Radius/μm | Average Radius/μm | Entry Pressure/Mpa | Median Pressure/Mpa | T2cutoff/ms | Movable Fluid Saturation/% | Movable-Fluid Porosity/% |
---|---|---|---|---|---|---|---|---|---|---|---|
A-1 | 3450.7 | 8.20 | 1.95 | 79.02 | 9.19 | 1.80 | 0.08 | 0.84 | 6.69 | 65.68 | 5.39 |
A-1 | 3830.5 | 12.60 | 1.66 | 99.22 | 3.68 | 0.99 | 0.20 | 0.96 | 6.69 | 58.14 | 7.33 |
A-2 | 3983.6 | 8.50 | 0.16 | 81.61 | 0.49 | 0.17 | 1.50 | 10.52 | 11.57 | 42.46 | 3.61 |
A-2 | 3600.72 | 10.84 | 11.88 | 67.41 | 13.35 | 3.12 | 0.06 | 4.39 | 3.41 | 69.81 | 7.57 |
A-2 | 3600.72 | 10.72 | 7.48 | 57.65 | 8.91 | 2.08 | 0.08 | 19.38 | 3.18 | 70.00 | 7.50 |
A-2 | 3961.62 | 5.13 | 0.17 | 79.20 | 1.07 | 0.28 | 0.69 | 10.46 | 2.25 | 43.13 | 2.21 |
A-2 | 3980.48 | 8.61 | 0.96 | 94.82 | 2.80 | 0.70 | 0.26 | 1.52 | 5.54 | 50.22 | 4.32 |
A-2 | 3980.48 | 9.41 | 1.03 | 80.29 | 2.80 | 0.72 | 0.26 | 2.51 | 2.25 | 62.66 | 5.90 |
A-2 | 4322.24 | 4.32 | 0.18 | 98.16 | 1.08 | 0.26 | 0.68 | 3.17 | 3.41 | 46.83 | 2.02 |
A-3 | 4120.2 | 6.10 | 0.08 | 66.25 | 0.49 | 0.13 | 1.50 | 39.34 | 6.69 | 56.34 | 3.44 |
A-4 | 3508.4 | 2.80 | 0.05 | 55.19 | 0.49 | 0.12 | 1.50 | 89.67 | 11.57 | 50.44 | 1.41 |
A-4 | 3915.1 | 7.20 | 0.95 | 80.01 | 2.45 | 0.53 | 0.30 | 3.39 | 6.69 | 62.84 | 4.52 |
B-2 | 3743.3 | 13.80 | 31.80 | 99.78 | 10.50 | 3.98 | 0.07 | 0.19 | 13.89 | 55.85 | 7.71 |
B-2 | 4000.2 | 3.50 | 0.07 | 87.19 | 0.37 | 0.14 | 2.00 | 9.28 | 13.89 | 15.97 | 0.56 |
B-2 | 4001.2 | 7.10 | 0.25 | 92.20 | 0.74 | 0.20 | 1.00 | 5.60 | 13.89 | 15.97 | 1.13 |
B-2 | 3742.45 | 12.64 | 28.86 | 78.74 | 13.36 | 4.16 | 0.06 | 1.07 | 2.58 | 71.71 | 9.06 |
B-2 | 3742.45 | 12.84 | 23.49 | 88.85 | 13.36 | 4.54 | 0.06 | 0.27 | 2.58 | 71.15 | 9.14 |
B-3 | 4292.7 | 7.00 | 0.12 | 98.61 | 0.74 | 0.19 | 1.00 | 4.39 | 13.89 | 45.25 | 3.17 |
C-1 | 3981.8 | 7.10 | 0.12 | 77.88 | 0.37 | 0.11 | 2.00 | 11.01 | 5.57 | 51.77 | 3.68 |
C-1 | 3989.6 | 6.90 | 0.20 | 83.92 | 0.49 | 0.17 | 1.50 | 6.20 | 4.64 | 57.87 | 3.99 |
Well | Depth/m | Porosity/% | Permeability/×10−3 μm2 | logu1/ms | logσ1 | W1/% | logu2/ms | logσ2 | W2/% | logd1/μm | logd2/μm | R2 | Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A-1 | 3450.70 | 8.20 | 1.95 | 0.61 | 0.49 | 0.38 | 1.93 | 0.54 | 0.62 | 0.11 | 2.37 | 1.00 | Ⅱ |
A-1 | 3830.50 | 12.60 | 1.66 | 0.59 | 0.48 | 0.35 | 1.92 | 0.57 | 0.65 | 0.05 | 1.13 | 1.00 | Ⅱ |
A-2 | 3983.60 | 8.50 | 0.16 | 0.49 | 0.39 | 0.70 | 1.61 | 0.42 | 0.30 | 0.04 | 0.58 | 1.00 | Ⅲ |
A-2 | 3600.72 | 10.84 | 11.88 | 0.24 | 0.58 | 0.43 | 1.80 | 0.53 | 0.57 | 0.09 | 3.20 | 1.00 | Ⅰ |
A-2 | 3600.72 | 10.72 | 7.48 | 0.19 | 0.55 | 0.42 | 1.74 | 0.56 | 0.58 | 0.09 | 3.19 | 1.00 | Ⅱ |
A-2 | 3961.62 | 5.13 | 0.17 | −0.03 | 0.51 | 0.71 | 1.22 | 0.61 | 0.29 | 0.07 | 1.27 | 1.00 | Ⅳ |
A-2 | 3980.48 | 8.61 | 0.96 | −0.16 | 0.48 | 0.37 | 1.31 | 0.68 | 0.63 | 0.03 | 0.82 | 0.99 | Ⅱ |
A-2 | 3980.48 | 9.41 | 1.03 | −0.15 | 0.49 | 0.38 | 1.34 | 0.68 | 0.62 | 0.03 | 0.90 | 1.00 | Ⅱ |
A-2 | 4322.24 | 4.32 | 0.18 | −0.03 | 0.50 | 0.42 | 1.16 | 0.92 | 0.58 | 0.03 | 0.47 | 1.00 | Ⅳ |
A-3 | 4120.20 | 6.10 | 0.08 | 0.51 | 0.42 | 0.35 | 1.72 | 0.64 | 0.65 | 0.02 | 0.38 | 1.00 | Ⅳ |
A-4 | 3508.40 | 2.80 | 0.05 | 0.52 | 0.45 | 0.37 | 1.86 | 0.58 | 0.63 | 0.03 | 0.57 | 1.00 | Ⅳ |
A-4 | 3915.10 | 7.20 | 0.95 | 0.59 | 0.49 | 0.36 | 1.92 | 0.56 | 0.64 | 0.04 | 0.92 | 1.00 | Ⅱ |
B-2 | 3743.30 | 13.80 | 31.80 | 0.71 | 0.62 | 0.54 | 1.88 | 0.44 | 0.46 | 0.18 | 2.62 | 1.00 | Ⅰ |
B-2 | 4000.20 | 3.50 | 0.07 | 0.34 | 0.37 | 0.85 | 1.68 | 0.26 | 0.15 | 0.04 | 0.92 | 1.00 | Ⅳ |
B-2 | 4001.20 | 7.10 | 0.25 | 0.34 | 0.37 | 0.85 | 1.68 | 0.26 | 0.15 | 0.04 | 0.94 | 1.00 | Ⅲ |
B-2 | 3742.45 | 12.64 | 28.86 | 0.18 | 0.65 | 0.46 | 1.73 | 0.46 | 0.54 | 0.09 | 3.03 | 0.99 | Ⅰ |
B-2 | 3742.45 | 12.84 | 23.49 | 0.25 | 0.64 | 0.48 | 1.70 | 0.43 | 0.52 | 0.10 | 2.84 | 1.00 | Ⅰ |
B-3 | 4292.70 | 7.00 | 0.12 | 0.41 | 0.41 | 0.47 | 1.72 | 0.50 | 0.53 | 0.03 | 0.70 | 1.00 | Ⅳ |
C-1 | 3981.80 | 7.10 | 0.12 | 0.48 | 0.39 | 0.49 | 1.72 | 0.56 | 0.51 | 0.02 | 0.42 | 1.00 | Ⅳ |
C-1 | 3989.60 | 6.90 | 0.20 | 0.49 | 0.40 | 0.44 | 1.76 | 0.58 | 0.56 | 0.02 | 0.38 | 1.00 | Ⅲ |
Classification Parameters | Classification of Pore Structure | |||
---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | |
η | >18 | 18~8 | 8~2 | <2 |
Porosity/% | >15 | 15~10 | 10~5 | <5 |
Permeability/×10−3 μm2 | >10 | 10~1 | 1~0.2 | <0.2 |
Entry Pressure/Mpa | <0.1 | 0.1~0.2 | 0.2~1 | >1 |
Average Radius/μm | >2 | 2~0.7 | 0.7~0.2 | <0.2 |
Movable Fluid Porosity/% | >11 | 8~11 | 4~8 | <4 |
Reservoir Evaluation | Excellent | Good | Fair | Poor |
Type | Rock Electrical Parameters | |||
---|---|---|---|---|
a | b | m | n | |
Ⅰ | 0.635 | 1.092 | 2.006 | 1.498 |
Ⅱ | 1.253 | 1.038 | 1.614 | 1.461 |
Ⅲ | 1.536 | 1.022 | 1.469 | 1.466 |
Ⅳ | 1.851 | 1.011 | 1.37 | 1.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Huang, Z.; Chen, J.; Li, T.; Qu, T.; Yang, Y. An Evaluation Method of Gas-Bearing Properties Based on Gaussian Bimodal Function Pore Structure Characterization: A Case Study of Tight Sandstone in the East China Sea Basin. Processes 2023, 11, 3169. https://doi.org/10.3390/pr11113169
Dong J, Huang Z, Chen J, Li T, Qu T, Yang Y. An Evaluation Method of Gas-Bearing Properties Based on Gaussian Bimodal Function Pore Structure Characterization: A Case Study of Tight Sandstone in the East China Sea Basin. Processes. 2023; 11(11):3169. https://doi.org/10.3390/pr11113169
Chicago/Turabian StyleDong, Jin, Zhilong Huang, Jinlong Chen, Tianjun Li, Tong Qu, and Yizhuo Yang. 2023. "An Evaluation Method of Gas-Bearing Properties Based on Gaussian Bimodal Function Pore Structure Characterization: A Case Study of Tight Sandstone in the East China Sea Basin" Processes 11, no. 11: 3169. https://doi.org/10.3390/pr11113169
APA StyleDong, J., Huang, Z., Chen, J., Li, T., Qu, T., & Yang, Y. (2023). An Evaluation Method of Gas-Bearing Properties Based on Gaussian Bimodal Function Pore Structure Characterization: A Case Study of Tight Sandstone in the East China Sea Basin. Processes, 11(11), 3169. https://doi.org/10.3390/pr11113169