Gasification Characteristics and Kinetics of Lipid-Extracted Nannochloropsis gaditana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis
2.3. Ultimate Analysis
2.4. Thermogravimetric Analysis (TGA)
2.5. Gasification Experiments
2.6. Syngas Analysis
2.7. Kinetic Study of Gasification
3. Results
3.1. Proximate Analysis
3.2. Effect of Heating Rate on Samples Decomposition
3.3. Kinetic Study of Gasification
3.4. Activation Energy (E)
3.5. Gasification of LEA
3.5.1. Effect of Temperature
3.5.2. Effect of Loading
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LEA | Lipid-extracted algae |
TGA | Thermogravimetric analysis/Thermogravimetric analyzer |
H2 | Hydrogen |
CO | Carbon monoxide |
CH4 | Methane |
CO2 | Carbon dioxide |
ER | Equivalence ratio |
GC-FID | Gas Chromatography with Flame Ionization Detector |
SWE | Subcritical water extraction |
KAS | Kissinger-Akahira-Sunose |
FWO | Flynn-Wall-Ozawa |
HHV | High heating value |
TPG | Temperature Programmed Gasifier |
References
- Khoo, C.G.; Dasan, Y.K.; Lam, M.K.; Lee, K.T. Algae Biorefinery: Review on a Broad Spectrum of Downstream Processes and Products. Bioresour. Technol. 2019, 292, 121964. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Guo, R.; Xu, X.; Fan, X.; Luo, S. Hydrogen and Methane Production from Lipid-Extracted Microalgal Biomass Residues. Int. J. Hydrogen Energy 2011, 36, 3465–3470. [Google Scholar] [CrossRef]
- Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from Algae: Challenges and Prospects. Curr. Opin. Biotechnol. 2010, 21, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Use of Algae as Biofuel Sources. Energy Convers. Manag. 2010, 51, 2738–2749. [Google Scholar] [CrossRef]
- Ansari, F.A.; Nasr, M.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: A commercial-scale application. Sci. Total Environ. 2019, 704, 135259. [Google Scholar] [CrossRef] [PubMed]
- Padovani, G.; Rodolfi, L.; Zittelli, G.C.; Biondi, N.; Bonini, G.; Tredici, M.R.; Agrarie, B. Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Raheem, A.; Wan Azlina, W.A.K.G.; Tau, Y.H.; Danquah, M.K. Thermochemical Conversion of Microalgal Biomass for Biofuel Production. Renew. Sustain. Energy Rev. 2015, 49, 990–999. [Google Scholar] [CrossRef]
- NRC. Sustainable Development of Algal Biofuels in the United States; National Academies Press: Washington, DC, USA, 2012; Volume 7, ISBN 9780309260329.
- Said, Z.; Trong, D.; Le, N.; Sharma, P.; Ha, V.; Son, H.; Tuyen, D.; Anh, T.; Bui, E.; Nguyen, V.G. Optimization of Combustion, Performance, and Emission Characteristics of a Dual-Fuel Diesel Engine Powered with Microalgae-Based Biodiesel/Diesel Blends and Oxyhydrogen. Fuel 2022, 326, 124987. [Google Scholar] [CrossRef]
- Sharma, P.; Sahoo, B.B. An ANFIS-RSM Based Modeling and Multi-Objective Optimization of Syngas Powered Dual-Fuel Engine. Int. J. Hydrogen Energy 2022, 47, 19298–19318. [Google Scholar] [CrossRef]
- Sims, R.E.H.; Mabee, W.; Saddler, J.N.; Taylor, M. An Overview of Second Generation Biofuel Technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef]
- Raheem, A.; Wan Azlina, W.A.K.G.; Yap, Y.H.T.; Danquah, M.K.; Harun, R. Optimization of the Microalgae Chlorella Vulgaris for Syngas Production Using Central Composite Design. RSC Adv. 2015, 5, 71805–71815. [Google Scholar] [CrossRef]
- Carrier, M.; Loppinet-serani, A.; Denux, D.; Lasnier, J. Thermogravimetric Analysis as a New Method to Determine the Lignocellulosic Composition of Biomass. Biomass Bioenergy 2010, 35, 298–307. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Cameron, K.D.; Stipanovic, A.J.; Smart, L.B. Analysis of Biomass Composition Using High-Resolution Thermogravimetric Analysis and Percent Bark Content for the Selection of Shrub Willow Bioenergy Crop Varieties. Bioenergy Resour. 2009, 2, 1–9. [Google Scholar] [CrossRef]
- Shawalliah, S.; Abd, N.; Ismail, K.; Bahari, A.; Abd, Z. Investigation on Thermochemical Behaviour of Low Rank Malaysian Coal, Oil Palm Biomass and Their Blends during Pyrolysis via Thermogravimetric Analysis (TGA). Bioresour. Technol. 2010, 101, 4584–4592. [Google Scholar] [CrossRef]
- Vuthaluru, H.B. Investigations into the Pyrolytic Behaviour of Coal/Biomass Blends Using Thermogravimetric Analysis. Bioresour. Technol. 2004, 92, 187–195. [Google Scholar] [CrossRef]
- Stenseng, M.; Jensen, A.; Dam-johansen, K. Investigation of Biomass Pyrolysis by Thermogravimetric Analysis and Differential Scanning Calorimetry. J. Anal. Appl. Pyrolysis 2001, 59, 765–780. [Google Scholar] [CrossRef]
- Chang, Y.M.; Tsai, W.T.; Li, M.H. Chemical Characterization of Char Derived from Slow Pyrolysis of Microalgal Residue. J. Anal. Appl. Pyrolysis 2015, 111, 88–93. [Google Scholar] [CrossRef]
- Shawalliah, S.; Abd, N.; Ismail, K. Combustion Characteristics of Malaysian Oil Palm Biomass, Sub-Bituminous Coal and Their Respective Blends via Thermogravimetric Analysis (TGA). Bioresour. Technol. 2012, 123, 581–591. [Google Scholar] [CrossRef]
- Me, E.; Jakab, E. Thermogravimetric and Reaction Kinetic Analysis of Biomass Samples from an Energy Plantation. Energy Fuels 2004, 18, 497–507. [Google Scholar]
- Raheem, A.; Sivasangar, S.; Wan Azlina, W.A.K.G.; Taufiq Yap, Y.H.; Danquah, M.K.; Harun, R. Thermogravimetric Study of Chlorella Vulgaris for Syngas Production. Algal Res. 2015, 12, 52–59. [Google Scholar] [CrossRef]
- Chang, Y.M.; Tsai, W.T.; Li, M.H.; Chang, S.H. Preparation and Characterization of Porous Carbon Material from Post-Extracted Algal Residue by a Thermogravimetric System. Algal Res. 2015, 9, 8–13. [Google Scholar] [CrossRef]
- Prins, M.J. Thermodynamic Analysis of Biomass Gasification and Torrefaction. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2005. [Google Scholar]
- Chang, Y.M.; Tsai, W.T.; Li, M.H. Characterization of Activated Carbon Prepared from Chlorella-Based Algal Residue. Bioresour. Technol. 2014, 184, 344–348. [Google Scholar] [CrossRef]
- Varol, M.; Atimtay, A.T.; Bay, B.; Olgun, H. Investigation of Co-Combustion Characteristics of Low Quality Lignite Coals and Biomass with Thermogravimetric Analysis. Thermochim. Acta 2010, 510, 195–201. [Google Scholar] [CrossRef]
- Biller, P. Hydrothermal Processing of Microalgae. Ph.D. Thesis, The University of Leeds, Leeds, UK, 2013. [Google Scholar]
- Tahmasebi, A.; Asyraf, M.; Yu, J.; Bhattacharya, S. Thermogravimetric Study of the Combustion of Tetraselmis Suecica Microalgae and Its Blend with a Victorian Brown Coal in O2/N2 and O2/CO2 Atmospheres. Bioresour. Technol. 2013, 150, 15–27. [Google Scholar] [CrossRef]
- Raheem, A.; Dupont, V.; Channa, A.Q.; Zhao, X.; Vuppaladadiyam, A.K.; Taufiq-Yap, Y.H.; Zhao, M.; Harun, R. Parametric Characterization of Air Gasification of Chlorella Vulgaris Biomass. Energy Fuels 2017, 31, 2959–2969. [Google Scholar] [CrossRef]
- Shuping, Z.; Yulong, W.; Mingde, Y.; Chun, L.; Junmao, T. Pyrolysis Characteristics and Kinetics of the Marine Microalgae Dunaliella Tertiolecta Using Thermogravimetric Analyzer. Bioresour. Technol. 2010, 101, 359–365. [Google Scholar] [CrossRef]
- Damartzis, T.; Vamvuka, D.; Sfakiotakis, S.; Zabaniotou, A. Thermal Degradation Studies and Kinetic Modeling of Cardoon (Cynara cardunculus) Pyrolysis Using Thermogravimetric Analysis (TGA). Bioresour. Technol. 2011, 102, 6230–6238. [Google Scholar] [CrossRef]
- Kassim, M.A.; Kirtania, K.; De La Cruz, D.; Cura, N.; Srivatsa, S.C.; Bhattacharya, S. Thermogravimetric Analysis and Kinetic Characterization of Lipid-Extracted Tetraselmis Suecica and Chlorella sp. ALGAL 2014, 6, 39–45. [Google Scholar] [CrossRef]
- Ho, B.C.H.; Harun, R. Extraction of Bioactive Compounds from Nannochloropsis Gaditana via Sub-Critical Water Extraction (SWE). BioMed Res. Int. 2016, 14, 19–24. [Google Scholar]
- Tiong, L.; Komiyama, M. Statistical Analysis of Microalgae Supercritical Water Gasification: Reaction Variables, Catalysis and Reaction Pathways. J. Supercrit. Fluids 2022, 183, 105552. [Google Scholar] [CrossRef]
- Marcilla, A.; Gómez-Siurana, A.; Gomis, C.; Chápuli, E.; Carmen, M.; Valdés, F.J. Characterization of Microalgal Species through TGA/FTIR Analysis: Application to Nannochloropsis sp. Thermochim. Acta 2009, 484, 41–47. [Google Scholar] [CrossRef]
- Sanchez-Silva, L.; López-González, D.; Garcia-Minguillan, A.; Valverde, J. Pyrolysis, Combustion and Gasification Characteristics of Nannochloropsis Gaditana Microalgae. Bioresour. Technol. 2013, 130, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Vu, H.; Kim, J.; Hyung, J.; Chul, H. Thermogravimetric Characteristics and Pyrolysis Kinetics of Alga sagarssum sp. Biomass. Bioresour. Technol. 2013, 139, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.J.; Wang, S.; Jiang, X.M.; Wang, N.; Zhang, C.Q. Thermal Analysis Studies on Combustion Caracteristics of Seaweed. J. Therm. Anal. Calorim. 2008, 93, 611–617. [Google Scholar] [CrossRef]
- Kongkaew, N.; Pruksakit, W.; Patumsawad, S. Thermogravimetric Kinetic Analysis of the Pyrolysis of Rice Straw; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 79. [Google Scholar]
- Carpio, R.B.; Zhang, Y.; Kuo, C.; Chen, W.; Charles, L.; Leon, R.L. De Characterization and Thermal Decomposition of Demineralized Wastewater Algae Biomass. Algal Res. 2019, 38, 101399. [Google Scholar] [CrossRef]
- Mikulandrić, R.; Lončar, D.; Böhning, D.; Böhme, R. Biomass Gasification Process Modelling Approaches. In Proceedings of the 8th Conference on Sustainable Development of Energy, Water and Environment Systems—SDEWES Conference, Dubrovnik, Croatia, 22–27 September 2013; pp. 1–13. [Google Scholar]
- Chen, W.H.; Lin, B.J.; Huang, M.Y.; Chang, J.S. Thermochemical Conversion of Microalgal Biomass into Biofuels: A Review. Bioresour. Technol. 2014, 184, 314–327. [Google Scholar] [CrossRef]
- Chen, W.; Hsieh, T.; Leo, T. An Experimental Study on Carbon Monoxide Conversion and Hydrogen Generation from Water Gas Shift Reaction. Energy Convers. Manag. 2008, 49, 2801–2808. [Google Scholar] [CrossRef]
- Doherty, W.; Reynolds, A.; Kennedy, D. The Effect of Air Preheating in a Biomass CFB Gasifier Using ASPEN Plus Simulation. Biomass Bioenergy 2009, 33, 1158–1167. [Google Scholar] [CrossRef]
This Study | Literature | ||||
---|---|---|---|---|---|
LEA | Chorella sp. LEA [31] | T. suecica LEA [31] | |||
HR | 5 | 10 | 15 | 10 | 10 |
M | 4.2 ± 0.5 | 5.2 ± 0.5 | 4.1 ± 0.6 | 6.0 | 6.0 |
VM | 65.7 ± 0.9 | 63.4 ± 1.4 | 68.1 ± 2.2 | 56.0 | 54.0 |
FC | 7.7 ± 1.4 | 5.9 ± 1.0 | 12 ± 0.7 | 18.0 | 20.0 |
A | 23.1 ± 0.3 | 20.4 ± 0.2 | 9.3 ± 0.3 | 20.0 | 20.0 |
This Study | Literature | ||||
---|---|---|---|---|---|
wt% | LEA | LEA [32] | Chorella sp. LEA [31] | T. suecica LEA [31] | Nannochloropsis sp. LEA [33] |
C | 48.04 ± 0.1 | 47.91 | 39.34 | 24.09 | 50.6 |
H | 7.27 ± 0.2 | 6.83 | 6.60 | 3.64 | 6.8 |
N | 6.57 ± 0.1 | 7.56 | 7.91 | 4.12 | 5.6 |
S | 0.64 ± 0.2 | 0.63 | 0.65 | 0.61 | 0.9 |
O * | 37.48 ± 0.3 | 37.07 | 45.50 | 67.54 | 27.8 |
HHV a (MJ kg−1) | 20.60 | - | - | - | - |
HR | Stage | Final Ash at 1000 °C (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | |||||||||||
Region 1 | Region 2 | ||||||||||||
ML (%) | AR (%/min) | Tmax (°C) | ML (%) | AR (%/min) | Tmax (°C) | ML (%) | AR (%/min) | Tmax (°C) | ML (%) | AR (%/min) | Tmax (°C) | ||
5 | 4.18 | 0.23 | 99.6 | 43.07 | 0.77 | 343.0 | 23.32 | 0.39 | 401.0 | 6.35 | 0.16 | 702.3 | 23.08 |
10 | 5.28 | 0.59 | 77.7 | 46.60 | 1.67 | 343.5 | 17.76 | 0.59 | 405.0 | 10.01 | 0.50 | 715.5 | 20.35 |
15 | 4.12 | 0.69 | 96.8 | 50.75 | 2.73 | 343.3 | 21.32 | 1.07 | 401.5 | 14.47 | 1.09 | 743.0 | 9.34 |
Decomposition (α) | Temperature (°C) | KAS | FWO | ||
---|---|---|---|---|---|
E (kJ mol−1) | R2 | E (kJ mol−1) | R2 | ||
0.3 | 323, 310, 303 | 215.59 | 0.9696 | 214.15 | 0.9721 |
0.4 | 347, 332, 323 | 167.09 | 0.9600 | 168.41 | 0.9644 |
0.5 | 386, 351, 341 | 125.75 | 0.9777 | 129.42 | 0.9999 |
0.6 | 452, 379, 363 | 91.52 | 0.9999 | 97.58 | 0.9825 |
0.7 | 559, 427, 395 | 92.78 | 0.9851 | 99.08 | 0.9883 |
0.8 | 689, 515, 436 | 57.99 | 0.9667 | 67.58 | 0.9784 |
Experimental Parameters | Syngas Composition (mol%) | ||||||
---|---|---|---|---|---|---|---|
Temp (oC) | Loading (g) | ER | H2 | CO | CO2 | CH4 | |
Effect of temperature | 600 | 0.4 | 0.25 | 47.8 ± 0.2 | 20.1 ± 0.9 | 25.9 ± 0.1 | 7.0 ± 0.8 |
700 | 0.4 | 0.25 | 51.2 ± 0.8 | 33.3 ± 0.7 | 11.2 ± 0.6 | 5.3 ± 0.5 | |
800 | 0.4 | 0.25 | 48.5 ± 0.5 | 46.2 ± 0.8 | 3.9 ± 0.2 | 3.4 ± 0.6 | |
900 | 0.4 | 0.25 | 45.6 ± 0.4 | 49.6 ± 0.4 | 2.6 ± 0.3 | 2.1 ± 0.7 | |
1000 | 0.4 | 0.25 | 40.7 ± 0.3 | 54.4 ± 0.6 | 2.3 ± 0.7 | 1.9 ± 0.4 | |
Effect of loading | 700 | 0.3 | 0.25 | 28.3 ± 0.7 | 16.4 ± 0.6 | 22.6 ± 0.4 | 31.3 ± 0.7 |
700 | 0.4 | 0.25 | 33.1 ± 0.9 | 14.3 ± 0.7 | 20.3 ± 0.7 | 30.2 ± 0.8 | |
700 | 0.5 | 0.25 | 45.6 ± 0.4 | 5.0 ± 0.8 | 18.3 ± 0.7 | 33.5 ± 0.5 | |
700 | 0.6 | 0.25 | 47.0 ± 1.2 | 4.6 ± 0.4 | 16.6 ± 0.6 | 33.9 ± 0.1 | |
700 | 0.7 | 0.25 | 50.6 ± 0.4 | 2.9 ± 0.3 | 10.9 ± 0.5 | 37.6 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atikah, M.S.N.; Azlina, W.A.K.G.W.; Taufiq-Yap, Y.H.; Mahmoud, O.; El-Shafay, A.S.; Ilyas, R.A.; Harun, R. Gasification Characteristics and Kinetics of Lipid-Extracted Nannochloropsis gaditana. Processes 2022, 10, 1525. https://doi.org/10.3390/pr10081525
Atikah MSN, Azlina WAKGW, Taufiq-Yap YH, Mahmoud O, El-Shafay AS, Ilyas RA, Harun R. Gasification Characteristics and Kinetics of Lipid-Extracted Nannochloropsis gaditana. Processes. 2022; 10(8):1525. https://doi.org/10.3390/pr10081525
Chicago/Turabian StyleAtikah, M. S. N., W. A. K. G. Wan Azlina, Y. H. Taufiq-Yap, Omar Mahmoud, A. S. El-Shafay, R. A. Ilyas, and Razif Harun. 2022. "Gasification Characteristics and Kinetics of Lipid-Extracted Nannochloropsis gaditana" Processes 10, no. 8: 1525. https://doi.org/10.3390/pr10081525
APA StyleAtikah, M. S. N., Azlina, W. A. K. G. W., Taufiq-Yap, Y. H., Mahmoud, O., El-Shafay, A. S., Ilyas, R. A., & Harun, R. (2022). Gasification Characteristics and Kinetics of Lipid-Extracted Nannochloropsis gaditana. Processes, 10(8), 1525. https://doi.org/10.3390/pr10081525