Decrease in Ca2+ Concentration in Quail Cardiomyocytes Is Faster than That in Rat Cardiomyocytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Isolation of Cardiomyocytes
2.3. Experimental Setup
2.4. Analysis of Cell Morphology and Contraction–Relaxation Behavior
2.5. Analysis of Ca2+ Concentration Changes at the Whole-Cell Level
2.6. Analysis of the Spatial Distributions of Changes in Ca2+ Concentration
2.7. Statistical Method
3. Results
3.1. Morphology and Contraction—Relaxation Behavior of Isolated Cardiomyocytes
3.2. Changes in Whole-Cell Ca2+ Concentration
3.3. Spatial Distributions of Ca2+ Concentration
3.4. Effects of SERCA Inhibition on the Decay Speed after Peak of Whole-Cell Ca2+ Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bassani, J.W.; Bassani, R.A.; Bers, D.M. Relaxation in rabbit and rat cardiac cells: Species-dependent differences in cellular mechanisms. J. Physiol. 1994, 476, 279–293. [Google Scholar] [CrossRef]
- Johnson, E.A.; Sommer, J.R. A strand of cardiac muscle. Its ultrastructure and the electrophysiological implications of its geometry. J. Cell Biol. 1967, 33, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, H.; Komazaki, S.; Nishi, M.; Iino, M.; Kangawa, K. Junctophilins: A novel family of junctional membrane complex proteins. Mol. Cell 2000, 6, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Louch, W.E.; Hake, J.; Jølle, G.F.; Mørk, H.K.; Sjaastad, I.; Lines, G.T.; Sejersted, O.M. Control of Ca2+ release by action potential configuration in normal and failing murine cardiomyocytes. Biophys. J. 2010, 99, 1377–1386. [Google Scholar] [CrossRef]
- Dibb, K.M.; Louch, W.E.; Trafford, A.W. Cardiac Transverse Tubules in Physiology and Heart Failure. Annu. Rev. Physiol. 2021, 84, 229–255. [Google Scholar] [CrossRef]
- Shiels, H.A.; Galli, G.L. The sarcoplasmic reticulum and the evolution of the vertebrate heart. Physiology 2014, 29, 456–469. [Google Scholar] [CrossRef]
- Franzini-Armstrong, C.; Protasi, F.; Tijskens, P. The assembly of calcium release units in cardiac muscle. Ann. N. Y. Acad. Sci. 2005, 1047, 76–85. [Google Scholar] [CrossRef]
- Honda, T.; Ujihara, Y.; Hanashima, A.; Hashimoto, K.; Tanemoto, K.; Mohri, S. Turtle spongious ventricles exhibit more compliant diastolic property and possess larger elastic regions of connectin in comparison to rat compact left ventricles. Kawasaki Med. J. 2018, 44, 1–17. [Google Scholar] [CrossRef]
- Grubb, B.R. Allometric relations of cardiovascular function in birds. Am. J. Physiol. 1983, 245, H567–H572. [Google Scholar] [CrossRef]
- Sheard, T.M.D.; Kharche, S.R.; Pinali, C.; Shiels, H.A. 3D ultrastructural organisation of calcium release units in the avian sarcoplasmic reticulum. J. Exp. Biol. 2019, 222, jeb197640. [Google Scholar] [CrossRef] [PubMed]
- Filatova, T.S.; Abramochkin, D.V.; Shiels, H.A. Warmer, faster, stronger: Ca2+ cycling in avian myocardium. J. Exp. Biol. 2020, 223, jeb228205. [Google Scholar] [CrossRef] [PubMed]
- Valance, D.; Desprès, G.; Boissy, A.; Mignon-Grasteau, S.; Constantin, P.; Leterrier, C. Genetic selection on a behavioural fear trait is associated with changes in heart rate variability in quail. Genes Brain Behav. 2007, 6, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Möller, C.; van Dijk, R.M.; Wolf, F.; Keck, M.; Schönhoff, K.; Bierling, V.; Potschka, H. Impact of repeated kindled seizures on heart rate rhythms, heart rate variability, and locomotor activity in rats. Epilepsy Behav. 2019, 92, 36–44. [Google Scholar] [CrossRef]
- Shioya, T. A simple technique for isolating healthy heart cells from mouse models. J. Physiol. Sci. 2007, 57, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, Y.; Kanagawa, M.; Mohri, S.; Takatsu, S.; Kobayashi, K.; Toda, T.; Naruse, K.; Katanosaka, Y. Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure. Nat. Commun. 2019, 10, 5754. [Google Scholar] [CrossRef]
- Sato, M.; Miyata, K.; Tian, Z.; Kadomatsu, T.; Ujihara, Y.; Morinaga, J.; Horiguchi, H.; Endo, M.; Zhao, J.; Zhu, S.; et al. Loss of Endogenous HMGB2 Promotes Cardiac Dysfunction and Pressure Overload-Induced Heart Failure in Mice. Circ. J. 2019, 83, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Kodama, A.; Ohira, M.; Kimoto, M.; Nakagawa, M.; Usui, Y.; Ujihara, Y.; Hanashima, A.; Mohri, S. Transient induction of cell cycle promoter Fam64a improves cardiac function through regulating Klf15-dependent cardiomyocyte differentiation in mice. BioRxiv 2021. [Google Scholar] [CrossRef]
- Illaste, A.; Wullschleger, M.; Fernandez-Tenorio, M.; Niggli, E.; Egger, M. Automatic Detection and Classification of Ca2+ Release Events in Line- and Frame-Scan Images. Biophys. J. 2019, 116, 383–394. [Google Scholar] [CrossRef]
- Katanosaka, Y.; Iwasaki, K.; Ujihara, Y.; Takatsu, S.; Nishitsuji, K.; Kanagawa, M.; Sudo, A.; Toda, T.; Katanosaka, K.; Mohri, S.; et al. TRPV2 is critical for the maintenance of cardiac structure and function in mice. Nat. Commun. 2014, 5, 3932. [Google Scholar] [CrossRef]
- Ujihara, Y.; Iwasaki, K.; Takatsu, S.; Hashimoto, K.; Naruse, K.; Mohri, S.; Katanosaka, Y. Induced NCX1 overexpression attenuates pressure overload-induced pathological cardiac remodelling. Cardiovasc. Res. 2016, 111, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Scriven, D.R.; Moore, E.D. Ca²⁺ channel and Na⁺/Ca²⁺ exchange localization in cardiac myocytes. J. Mol. Cell. Cardiol. 2013, 58, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, Y.; Mohri, S.; Katanosaka, Y. Effects of induced Na+/Ca2+ exchanger overexpression on the spatial distribution of L-type Ca2+ channels and junctophilin-2 in pressure-overloaded hearts. Biochem. Biophys. Res. Commun. 2016, 480, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Louch, W.E.; Mørk, H.K.; Sexton, J.; Strømme, T.A.; Laake, P.; Sjaastad, I.; Sejersted, O.M. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J. Physiol. 2006, 574 Pt 2, 519–533. [Google Scholar] [CrossRef]
- Øyehaug, L.; Loose, K.Ø.; Jølle, G.F.; Røe, Å.T.; Sjaastad, I.; Christensen, G.; Sejersted, O.M.; Louch, W.E. Synchrony of cardiomyocyte Ca2+ release is controlled by T-tubule organization, SR Ca2+ content, and ryanodine receptor Ca2+ sensitivity. Biophys. J. 2013, 104, 1685–1697. [Google Scholar] [CrossRef]
- Galli, G.L.; Taylor, E.W.; Shiels, H.A. Calcium flux in turtle ventricular myocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1781–R1789. [Google Scholar] [CrossRef]
- Ito, M.; Ujihara, Y.; Sugita, S.; Nakamura, M. Comparison of the histology and stiffness of ventricles in Anura of different habitats. J. Biol. Phys. 2021, 47, 287–300. [Google Scholar] [CrossRef]
- Ito, M.; Sugita, S.; Nakamura, M.; Ujihara, Y. Differences in Pressure Resistance and Tissue Structure of Ventricles between Aquatic, Semiaquatic, and Terrestrial Anura. Trans. Jpn. Soc. Med. Biol. Eng. 2021, 59, 162–168. [Google Scholar]
- Akester, A.R. Intercalated discs, nexuses, sarcoplasmic reticulum and transitional cells in the heart of the adult domestic fowl (Gallus gallus domesticus). J. Anat. 1981, 133 Pt 2, 161–179. [Google Scholar]
- Kim, C.S.; Davidoff, A.J.; Maki, T.M.; Doye, A.A.; Gwathmey, J.K. Intracellular calcium and the relationship to contractility in an avian model of heart failure. J. Comp. Physiol. B 2000, 170, 295–306. [Google Scholar] [CrossRef][Green Version]
- Baylor, S.M.; Hollingworth, S. Calcium indicators and calcium signalling in skeletal muscle fibres during excitation-contraction coupling. Prog. Biophys. Mol. Biol. 2011, 105, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Baylor, S.M.; Hollingworth, S. Fura-2 calcium transients in frog skeletal muscle fibres. J. Physiol. 1988, 403, 151–192. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogura, Y.; Ito, H.; Sugita, S.; Nakamura, M.; Ujihara, Y. Decrease in Ca2+ Concentration in Quail Cardiomyocytes Is Faster than That in Rat Cardiomyocytes. Processes 2022, 10, 508. https://doi.org/10.3390/pr10030508
Ogura Y, Ito H, Sugita S, Nakamura M, Ujihara Y. Decrease in Ca2+ Concentration in Quail Cardiomyocytes Is Faster than That in Rat Cardiomyocytes. Processes. 2022; 10(3):508. https://doi.org/10.3390/pr10030508
Chicago/Turabian StyleOgura, Yuhei, Hiroaki Ito, Shukei Sugita, Masanori Nakamura, and Yoshihiro Ujihara. 2022. "Decrease in Ca2+ Concentration in Quail Cardiomyocytes Is Faster than That in Rat Cardiomyocytes" Processes 10, no. 3: 508. https://doi.org/10.3390/pr10030508
APA StyleOgura, Y., Ito, H., Sugita, S., Nakamura, M., & Ujihara, Y. (2022). Decrease in Ca2+ Concentration in Quail Cardiomyocytes Is Faster than That in Rat Cardiomyocytes. Processes, 10(3), 508. https://doi.org/10.3390/pr10030508