Analysis of Fe(II)-Ni(II) Electrochemical Reduction Process and Electrodeposition of FeNi Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solutions
2.2. Electrochemical Measurements
2.3. Electrochemical Deposition
2.4. SEM and EDS Analyses
2.5. XRD Analyses
2.6. Magnetic Properties Analyses
3. Results
3.1. Analysis of Electrochemical Fe(II) and Ni(II) Co-Deposition Process
3.1.1. Electrochemical Co-Deposition of Fe(II) and Ni(II)
3.1.2. Effect of H3BO3 on the Electrochemical Co-Deposition Process of Fe(II) and Ni(II)
3.1.3. Effect of (NH4)2SO4 on the Electrochemical Co-Deposition Process of Fe(II) and Ni(II)
3.2. Component Analysis of Electrodeposited Thin Films
3.3. Morphology Analysis of Electrodeposited Thin Films
3.4. Structure Analysis of Electrodeposited Thin Films
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimes, C.A. EMI Shielding Characteristics of Permalloy Multilayer Thin Films. In Proceedings of the 1994 IEEE Aerospace Applications Conference Proceedings, Vail, CO, USA, 5–12 February 1994; pp. 211–221. [Google Scholar]
- Bhattacharya, S. Transforming the transformer. IEEE Spectr. 2017, 54, 38–43. [Google Scholar] [CrossRef]
- Krishnamurthy, S. Simplified loss analysis for high speed SiC MOSFET inverter. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012. [Google Scholar]
- Kroposki, B. Benefits of Power Electronic Interfaces for Distributed Energy Systems. IEEE Trans. Energy Convers. 2010, 25, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Bose, B.K. Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics. IEEE Ind. Electron. Mag. 2010, 4, 6–17. [Google Scholar] [CrossRef]
- Waide, P.; Brunner, C.U. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- Solmaz, R.; Karda, G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 2009, 54, 3726–3734. [Google Scholar] [CrossRef]
- Ullal, Y.; Hegde, A.C. Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy. Int. J. Hydrogen Energy 2014, 39, 10485–10492. [Google Scholar] [CrossRef]
- Zhou, Q.; He, F. Insight into the Mechanism of the Fe-Ni Alloys Co-Deposition from Poly-Nuclear Complexes. J. Electrochem. Soc. 2018, 165, D681–D686. [Google Scholar]
- Ahn, S.H.; Choi, I.; Park, H.-Y.; Hwang, S.J.; Yoo, S.J.; Cho, E.; Kim, H.-J.; Henkensmeier, D.; Nam, S.W.; Kim, S.-K. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem. Commun. 2013, 49, 9323–9325. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C. Electrodeposition of hierarchically structured threedimensional nickeleiron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bockris, J.O.; Drazic, D.; Despic, A.R. The electrode kinetics of the deposition and dissolution of iron. Electrochem. Acta 1961, 4, 325–361. [Google Scholar] [CrossRef]
- Hessami, S.; Tobias, C.W. In-situ measurement of interfacial pH using a rotating ring-disk electrode. AIChE J. 1993, 39, 149–162. [Google Scholar] [CrossRef]
- Gadad, S.; Harris, T.M. Oxygen Incorporation during the Electrodeposition of Ni, Fe, and Ni-Fe Alloys. J. Electrochem. Soc. 1998, 145, 3699–3703. [Google Scholar] [CrossRef]
Reagent | Concentration/M |
---|---|
NiSO4∙6H2O | 0.2 |
FeSO4∙7H2O | 0.015, 0.03, 0.05 |
H3BO3 | 0.4 |
(NH4)2SO4 | 0.15 |
NaCl | 0.7 |
Thiourea | 0.00079 |
Concentration of Fe(II)/M | Current Density/mA∙cm−2 | Average Grain Size/nm |
---|---|---|
0.015 | 15 | 10.1 |
20 | 11.4 | |
25 | 10.2 | |
35 | 10.1 | |
50 | 9.2 | |
0.03 | 15 | 9.2 |
20 | 10.1 | |
25 | 10.8 | |
35 | 11.1 | |
50 | 10.4 | |
0.05 | 15 | 9.9 |
20 | 10.9 | |
25 | 12.8 | |
35 | 10.2 | |
50 | 10.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; He, C.; Zhang, R.; Wang, W. Analysis of Fe(II)-Ni(II) Electrochemical Reduction Process and Electrodeposition of FeNi Films. Processes 2022, 10, 198. https://doi.org/10.3390/pr10020198
Qi Y, He C, Zhang R, Wang W. Analysis of Fe(II)-Ni(II) Electrochemical Reduction Process and Electrodeposition of FeNi Films. Processes. 2022; 10(2):198. https://doi.org/10.3390/pr10020198
Chicago/Turabian StyleQi, Yanling, Chenchen He, Run Zhang, and Wei Wang. 2022. "Analysis of Fe(II)-Ni(II) Electrochemical Reduction Process and Electrodeposition of FeNi Films" Processes 10, no. 2: 198. https://doi.org/10.3390/pr10020198
APA StyleQi, Y., He, C., Zhang, R., & Wang, W. (2022). Analysis of Fe(II)-Ni(II) Electrochemical Reduction Process and Electrodeposition of FeNi Films. Processes, 10(2), 198. https://doi.org/10.3390/pr10020198