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Abstract: The effects of boric acid and ammonium sulfate on the electrochemical reduction process
of Fe(II) Ni(II) were studied. A series of FeNi thin films were prepared by electrodeposition with
different current density and Fe(II) concentration in solution. Linear sweep voltammetry (LSV) results
show that the reduction current of Fe(II) is higher than that of Ni(II) at the same concentration of
Fe(II) and Ni(II) as well as the same electrodeposition parameters. Adding H3BO3 to Fe(II) Ni(II)
solution is beneficial to obtain brighter and compact coating, and adding (NH4)2SO4 is beneficial to
obtain higher reduction current density. Energy dispersive X-Ray spectroscopy (EDS) results show
that the current density has a significant and nonlinear effect on the Fe content in FeNi thin films. The
highest Fe content is obtained at a current density of 25 A·cm−2. SEM results show that the surface
morphology of FeNi films is controlled by the content of Ni and Fe in the films. With increasing Fe
content in the film, the morphology of the film changes from smooth and compact to spherical bulge
and eventually to smooth again. X-ray diffraction (XRD) results show that the structure of FeNi films
is controlled by the content of Ni and Fe in the film. With increasing of Fe content in the film, the
structure of the film changes from FCC (111) phase dominant to BCC (110) phase dominant. The
average grain size of FeNi films does not change with solution composition and current density. The
results of magnetic properties show that the saturation magnetization Ms is proportional to the Fe
content in the films, and the maximum value of Ms appears at the highest Fe content. The coercivity
Hc is almost independent of Fe content in the films and does not change with solution composition
and current density.

Keywords: boric acid; ammonium sulfate; FeNi alloy; saturation magnetization; coercivity

1. Introduction

FeNi alloy is a kind of soft magnetic material with low coercivity and high permeability,
which has been applied to electromagnetic shielding of static magnetic field and low
frequency magnetic fields [1–3]. Soft magnetic materials are widely used in the manufacture
of stators and rotors of generators and motors, iron cores of transformers and inductors,
magnetic recording heads, magnetic shields, etc. Their application areas include power
supplies, switching power supplies, instrumentation, automotive electronics and solar
energy, and they play a key role in energy conversion around the world [4–6]. Nicke
liron alloys also have a wide range of applications in the field of electrocatalysis. Solmazy
studied NiFe alloys with different compositions for hydrogen evolution reactions. The NiFe
alloy with a molar concentration ratio of Ni2+: Fe2+ of 4:6 was found to be the best suitable
cathode material for the HER in an alkaline medium [7]. Ullal and co-worker studied the
hydrogen evolution reaction and oxygen evolution reaction of NiFe alloys prepared under
different current densities in alkaline solutions. They found that Ni–Fe coating deposited
at 6.0 Ad·m−2 was found to be the most corrosion resistant [8,9].
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In particular, the magnetic properties of NiFe alloy can be adjusted by changing the
composition and heat treatment process [10,11].

In this paper, the effects of boric acid and ammonium sulfate on the electrochemical
reduction process of Fe(II) Ni(II) were studied. By changing the deposition current density
and the concentration ratio of Fe(II)/Ni(II) in solution, a series of FeNi thin films with
different Fe content were prepared using the electrochemical method. The magnetic
properties of different NiFe alloy films are also discussed.

2. Materials and Methods
2.1. Solutions

All the reagents involved in the experiment were analytical pure. All the solutions
were prepared with secondary distilled water, and the pH was adjusted to 3 by H2SO4 or
NaOH. The composition of the electrodeposited FeNi solutions is shown in Table 1.

Table 1. Solution composition of electrodeposited FeNi films.

Reagent Concentration/M

NiSO4·6H2O 0.2
FeSO4·7H2O 0.015, 0.03, 0.05

H3BO3 0.4
(NH4)2SO4 0.15

NaCl 0.7
Thiourea 0.00079

2.2. Electrochemical Measurements

All electrochemical tests were carried out by using CHI660E electrochemical worksta-
tion (manufactured by Shanghai Chenhua Instruments Co., Ltd., Shanghai, China). The
standard three-electrode system was used. A platinum sheet (1 × 1 cm2) was used as
working electrode, a platinum titanium mesh as auxiliary electrode, and saturated calomel
electrode (SCE) as reference electrode. The working electrode was treated by mechanical
polishing, electrochemical degreasing and acid erosion before use. Linear sweep voltam-
metry (LSV) was used for electrochemical measurement at 25 ± 1 °C. The sweep rate was
100 mV/s, and no stirring during the test.

2.3. Electrochemical Deposition

XJ17232L traceable dual-channel DC regulated power supply (manufactured by Shang-
hai Xinjian) was used for electrodeposition (see Figure 1). Copper (2 × 1 cm2) was used as
cathode and platinum titanium mesh as anode. The copper was treated by mechanical pol-
ishing, electrochemical degreasing and acid erosion before use. Electrodeposition of FeNi
thin films was carried out at 30 ± 1 ◦C, the current densities were 15 mA·cm−2, 20 mA·cm−2,
25 mA·cm−2, 35 mA·cm−2 and 50 mA·cm−2, respectively. The electrodeposition capacity
was 30 C·cm−2 and the electromagnetic stirring was used in the electrodeposition process.
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2.4. SEM and EDS Analyses

The surface topography of the deposited film was obtained with a scanning electron
microscope (SEM) (FEI Nova NanoSEM 430), and the element composition of the deposited
film was obtained with an electron dispersive spectroscopy (EDS) that attached to the SEM.

2.5. XRD Analyses

The X-ray diffraction (XRD) pattern of the deposited film was obtained with an X-ray
diffractometer (BRUKER D8 FOCUS) using Cu Kα radiation (scan rate 4◦/min).

2.6. Magnetic Properties Analyses

The hystersis loop of the deposited film was obtained with a magnetic property
measurement system (MPMS) (SQUID-VSM).

3. Results
3.1. Analysis of Electrochemical Fe(II) and Ni(II) Co-Deposition Process
3.1.1. Electrochemical Co-Deposition of Fe(II) and Ni(II)

The LSV curves of the Pt electrode in Fe(II) unitary solution, Ni(II) unitary solution
and Fe(II)-Ni(II) binary solution are shown in Figure 2. It can be seen from the figure
that the LSV curve measured in the Fe(II) unitary solution has an obvious reduction peak
during the cathodic scanning process. Initial potential of the reduction peak is about
−0.8 V, and peak potential about −1.4 V, which correspond to the two-electron reduction
reaction of adsorption intermediate Fe(OH)+ [12,13]. The LSV curve measured in the
Ni(II) unitary solution shows no obvious reduction peak during cathodic scanning. It
is shown that the electrochemical polarization dominates the reaction at a sweep rate
of 100 mV/s, and corresponds to the two-electron reduction reaction of adsorption
intermediate Ni(OH)+ [13,14]. According to the LSV curves measured in Fe(II) and
Ni(II) unitary solutions, Fe(II) and Ni(II) have the same reduction potential, indicating
that Fe(II) and Ni(II) have the conditions of electrochemical co-deposition, and the
curves show that the reduction current of Fe(II) is higher than that of Ni(II) in the whole
reduction potential range under the same electrochemical reaction parameters and the
same concentration of Fe(II) and Ni(II) unitary solution. It shows that in the design of the
composition of Fe(II) and Ni(II) co-deposition solution, if the FeNi alloy coating with the
same atomic ratio is expected, the concentration of Fe(II) in the co-deposition solution
is less than that of Ni(II). The LSV curve measured in the Fe(II) Ni(II) binary solution
shows two obvious reduction peaks during cathodic scanning. The first reduction peak
has an initial potential of −0.8 V and a peak potential of −1.4 V, which indicates that
the reduction is dominated by the reduction of Fe(II). The second reduction peak has an
initial potential of −1.6 V, corresponding to the hydrogen evolution reaction of water.
The LSV curves measured in Fe(II) and Ni(II) unitary solutions were added arithmetically.
Then the results were compared with the LSV curve measured in the Fe(II) Ni(II) binary
solution. It was found that within the reduction potential range of −0.8 V to −1.6 V, the
actual measured reduction current of the Fe(II) and Ni(II) binary solution was higher
than the reduction current of the arithmetic addition of the Fe(II) and Ni(II) unitary
solution, indicating that Fe(II) and Ni(II) do cause electrochemical co-deposition, and
that Fe(II) and Ni(II) can promote each other’s electrochemical reduction reaction or
unidirectional electrochemical reduction reaction.

3.1.2. Effect of H3BO3 on the Electrochemical Co-Deposition Process of Fe(II) and Ni(II)

The LSV curves of Pt electrode in Fe(II) Ni(II) solutions with and without H3BO3
are shown in Figure 3. It can be seen from the figure that the LSV curve measured in the
solution of Fe(II) Ni(II) with H3BO3 added does not show obvious reduction peaks during
the cathodic scanning, which indicates that the electrochemical polarization dominates
the reaction at a sweep rate of 100 mV/s, and which leads to the addition of H3BO3 to
obtain a bright and compact coating. The reduction potential of current sharply increases
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in of Fe(II) Ni(II) binary solution added with H3BO3 is −1.0 V, which has a 0.2 V negative
shift than that of Fe(II) Ni(II) binary solution without H3BO3. This indicates that the
reduction overpotential of Fe(II) Ni(II) binary solution increased by adding H3BO3, which
may be due to the formation of complexes Fe[B(OH)4]+ and Ni[B(OH)4]+ with H3BO3,
respectively [14]. The reduction current curve of Fe(II) Ni(II) binary solution with H3BO3
added in the range of −1.4 V~−1.1 V potential is almost parallel to that of Fe(II)-Ni(II)
binary solution without H3BO3 added in the range of −1.3 V~−1.0 V potential, it shows
that adding H3BO3 does not change the mass transfer process of the reduction reaction of
Fe(II)-Ni(II) binary solution.
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3.1.3. Effect of (NH4)2SO4 on the Electrochemical Co-Deposition Process of Fe(II) and Ni(II)

The LSV curves of the Pt electrode in Fe(II) Ni(II) binary solutions with and without
(NH4)2SO4 and in Fe(II) Ni(II) solution with H3BO3 and (NH4)2SO4 are shown in Figure 4.
It can be seen from the figure that the LSV curve measured in the Fe(II) Ni(II) binary
solution containing (NH4)2SO4 only shows a small reduction peak during the cathodic
scanning, which indicates that the electrochemical polarization dominates the reaction
at a sweep rate of 100 mV/s, and thus leads to the addition of (NH4)2SO4 to obtain a
bright and compact coating. The reduction current of Fe(II) Ni(II) binary solution with
(NH4)2SO4 is higher than that of Fe(II) Ni(II) binary solution without (NH4)2SO4 from
−0.9 V. It is concluded that the addition of (NH4)2SO4 accelerates the mass transfer process
of Fe(II) Ni(II) binary solution. This may be due to the formation of a series of more positive
charged complexes with NH4

+ by Fe2+ and Ni2+ respectively, and these complexes diffuse
faster than Fe2+ and Ni2+ alone under the action of the electric field. The LSV curve of the
Fe(II) Ni(II) solution with H3BO3 and (NH4)2SO4 added shows no obvious reduction peaks
during cathodic scanning, indicating that the electrochemical polarization dominates the
reaction at a sweep rate of 100 mV/s. At the same time, the reduction current of Fe(II) Ni(II)
solution with H3BO3 and (NH4)2SO4 is higher than that of Fe(II) Ni(II) solution without
H3BO3 and (NH4)2SO4 from −1.1 V, indicating that the mass transfer process of Fe(II)
Ni(II) solution is accelerated by adding (NH4)2SO4. The addition of H3BO3 and (NH4)2SO4
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not only facilitates the formation of bright and compact coatings, but also leads to higher
reduction current density.
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and 0.15 M (NH4)2SO4.



Processes 2022, 10, 198 6 of 11

3.2. Component Analysis of Electrodeposited Thin Films

FeNi thin films were prepared by solutions in Section 2.1 and electrochemical deposi-
tion conditions in Section 2.3. The composition of the films was characterized by EDS. The
results show that the films contained three elements: Fe, Ni and S. The content of S is less
than or equal to 2.82 wt% in all thin films.

The relationship between Fe content and current density in FeNi films is plotted
in Figure 5. It can be seen from the figure that when Fe(II) concentration is 0.03 M and
0.05 M, the Fe content in thin films increases first and then decreases with the increase of
the current density. The highest value of Fe content in the FeNi films is 61.53 wt% at a
current density of 25 mA·cm−2. When the concentration of Fe(II) is 0.015 M, the Fe content
in the films ranges from 14.57 wt% to 25.04 wt%, and the change trend of the content is
not significant.

The relationship between the atomic ratio of Fe/Ni in the electrodeposited films and
the concentration ratio of Fe(II)/Ni(II) in the deposited solution is plotted in Figure 6.
It can be seen from the figure that the atomic ratio of Fe/Ni in films increases with
the increase in the concentration ratio of Fe(II)/Ni(II) in deposited solutions at the
same deposition current density, which shows that the composition of solution has a
significant influence on the content of Fe and Ni in films. The slope of Fe/Ni atom ratio
in films changing with Fe(II)/Ni(II) concentration ratio in solutions is different under
different deposition current densities. The order of slope is as follows: (c) 25 mA·cm−2>
(b) 20 mA·cm−2> (d) 35 mA·cm−2> (a) 15 mA·cm−2> (e) 50 mA·cm−2. It shows that the
current density also has significant influence on the composition of Fe and Ni in the
films. Under all electrodeposition conditions, the atomic ratio of Fe/Ni in the films is
significantly higher than that of Fe(II)/Ni(II) in the deposition solutions.
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3.3. Morphology Analysis of Electrodeposited Thin Films

The FeNi electrodeposited films were characterized by SEM, and the images are
shown in Figure 7. It can be seen from the figures that the surface of the deposited
films are smooth and compact when the concentration of Fe(II) in deposited solu-
tions is 0.015 M; the surface of the deposited films are uneven and densely spherical
when the concentration of Fe(II) in deposited solutions is 0.03 M; and the surface
of the deposited films are slightly flat when the concentration of Fe(II) in deposited
solutions is 0.05 M. The images show that the effect of current density on the sur-
face morphology of the films is irregular in the same deposition solution. Based on
the results of Section 3.2, it was found that the surface morphology of the films is
related to the composition of the film. The order of Fe content in different electrode-
posited films is: b < c < a < f < d < I < g < h, corresponding to the change of surface
morphology: flat and compact-sporadic small spherical protrusions-small spheri-
cal protrusions-uniform spherical protrusions-rough concave protrusions-uniform
spherical protrusions-slightly flat and spherical protrusions-slightly flat and sand
grains and spherical protrusions-sporadic small spherical protrusions. The results
show that the morphology of FeNi films changes from Ni morphology control to
FeNi morphology control and then to Fe morphology control with the changes of
Fe content.

3.4. Structure Analysis of Electrodeposited Thin Films

The FeNi electrodeposited films were characterized by XRD, and the results are
shown in Figure 8. It can be seen from the figure that when the concentration of
Fe(II) in deposited solutions is 0.015 M, the structure of deposited films is mainly
FCC(111) phase and FCC(200) phase, in which FCC(111) phase dominates; when the
concentration of Fe(II) in deposited solutions is 0.03 M, the structure of deposited
films is mainly FCC(111) phase and FCC(200) phase, and the BCC(110) phase begins to
appear. When the concentration of Fe(II) in deposited solutions is 0.05 M, the structure
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of deposited films is mainly FCC(111) phase and BCC(110) phase, when the current
density is 15 mA·cm−2, 20 mA·cm−2 and 25 mA·cm−2, the FCC (200) phase disappears,
and when the current density is 25 mA·cm−2, the BCC (110) phase dominates. It is
analyzed that the FCC (111) and FCC (200) phase are from Ni and BCC (110) phase is
from Fe. According to the results of Section 3.2, the order of Fe content in different
films is d < c < b < a < j < f < o < I < g < h < k < n < l < m. The corresponding
change of the films structure is that FCC(111) phase and FCC(200) phase dominate in
which the FCC(200) phase disappears, FCC(111) phase decreases and BCC(110) phase
dominates. This indicates that in the process of the Fe content change, the structure of
the films changes from Ni structure control to FeNi structure control and then to Fe
structure control.
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Figure 7. SEM images of FeNi electrodeposited films: (a–c) 0.015 M FeSO4, (d–f) 0.03 M FeSO4,
(g–i) 0.05 M FeSO4. At each FeSO4 concentration, the deposition current densities are 15 mA·cm−2,
25 mA·cm−2 and 50 mA·cm−2, respectively.

The XRD results of electrodeposited FeNi films were calculated and the average grain
sizes were obtained, as shown in Table 2. It can be seen from the table that the average
grain sizes of FeNi films prepared under different solution composition and current density
range from 9.2 to 12.8 nm, and essentially do not change with the solution composition and
current density.
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Figure 8. XRD spectra of FeNi electrodeposited thin films: (a–e) 0.015 M FeSO4, (f–j) 0.03 M FeSO4,
(k–o) 0.05 M FeSO4. At each FeSO4 concentration, the deposition current densities are 15 mA·cm−2,
20 mA·cm−2, 25 mA·cm−2, 35 mA·cm−2 and 50 mA·cm−2, respectively.

Table 2. Average grain sizes of FeNi electrodeposited films.

Concentration of Fe(II)/M Current Density/mA·cm−2 Average Grain Size/nm

0.015

15 10.1
20 11.4
25 10.2
35 10.1
50 9.2

0.03

15 9.2
20 10.1
25 10.8
35 11.1
50 10.4

0.05

15 9.9
20 10.9
25 12.8
35 10.2
50 10.6

4. Discussion

The magnetic properties of electrodeposited FeNi films were characterized in Figure 9.
The coercivity Hc is almost independent of Fe content and current density, and the measured
values range from 37 Oe~47 Oe. The relationship between saturation magnetization (Ms)
and Fe content in FeNi films is plotted in Figure 8. It can be seen from the figure that the
saturation magnetization Ms is essentially proportional to the Fe content in the films, which
is consistent with the saturation magnetic moment of Fe (217.5 emu/g), which is much
higher than that of Ni (54.4 emu/g). The maximum value of Ms appears at the highest Fe
content, and is 1.748 T.
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5. Conclusions

In this paper, the electrochemical reduction processes of Fe(II) and Ni(II) were studied,
and the effects of boric acid and ammonium sulfate on the electrochemical reduction process
of Fe(II)-Ni(II) were studied. The electrochemical reduction processes show that Fe(II) and
Ni(II) have the same reduction potential, and that Fe(II) and Ni(II) can promote each
other’s electrochemical reduction reaction or unidirectionally promote the electrochemical
reduction reaction; the reduction current of Fe(II) is higher than that of Ni(II) at the same
concentration of Fe(II) and Ni(II) as well as the same electrodeposition parameters. The
addition of H3BO3 increases the reduction overpotential of Fe(II)-Ni(II) binary solution
without changing the mass transfer process; addition of (NH4)2SO4 accelerates the mass
transfer process of Fe(II) Ni(II) solution; addition of H3BO3 and (NH4)2SO4 not only
facilitates the formation of bright and compact coatings, but also results in higher reduction
current density.

FeNi thin films prepared by electrodeposition contain three elements, Fe, Ni and S,
in which the S content is less than or equal to 2.82 wt%. The current density also has
a significant effect on the Fe content in electrodeposited FeNi films. With the increase
of current density at an Fe(II) concentration of 0.03 M and 0.05 M, the Fe content in the
films increases firstly and then decreases. The maximum Fe content in FeNi films is 61.53
wt% at 25 mA·cm−2 current density. The higher the concentration ratio of Fe(II)/Ni(II) in
solution, the more the Fe content in FeNi films are electrodeposited, and the Fe/Ni atomic
ratio in the films is significantly higher than the Fe(II)/Ni(II) concentration ratio in the
deposition solution.

The morphology of electrodeposited FeNi films is controlled by the content of Ni and
Fe in the film. With the increase in the Fe content in the films, the morphology of the films
changes from smooth and compact to spherical bulge and eventually back to smooth.

The structure of electrodeposited FeNi films is controlled by the content of Ni and
Fe in the film. With the increase in the Fe content in the films, the structure of the films
changes from FCC (111) phase dominant to FCC (200) phase disappearance and BCC (110)
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phase dominant. The average grain sizes of electrodeposited FeNi films range from 9.2 to
12.8 nm, and essentially does not change with the solution composition and current density.

The coercivity Hc is almost independent of Fe content and current density, the mea-
sured values are 37 Oe~47 Oe. The saturation magnetization Ms is proportional to the Fe
content in the films. The maximum value of Ms appears at the highest Fe content, which is
1.748 T.
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